L. Arpaia and M. Ricchiuto, r-adaptation for shallow water flows: conservation, well balancedness, efficiency, Comput. & Fluids, vol.160, pp.175-203, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01372496

A. Bollermann, S. Noelle, and M. Luká?ová, Medvid'ová, Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput. Phys, vol.10, pp.371-404, 2011.

A. Chertock, Y. Epshteyn, H. Hu, and A. Kurganov, High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math, vol.44, pp.327-350, 2018.

C. Conca, E. Espejo, and K. Vilches, Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in R 2, European J. Appl. Math, vol.22, pp.553-580, 2011.

E. E. Espejo, A. Stevens, and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species, Differential Integral Equations, vol.25, pp.251-288, 2012.

E. E. Espejo, A. Stevens, and J. J. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differential Integral Equations, vol.23, pp.451-462, 2010.

E. E. Espejo, K. Vilches, and C. Conca, Sharp condition for blow-up and global existence in a two species chemotactic Keller-Segel system in R 2, European J. Appl. Math, vol.24, pp.297-313, 2013.

E. E. Espejo-arenas, A. Stevens, and J. J. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis (Munich), vol.29, pp.317-338, 2009.

A. Fasano, A. Mancini, and M. Primicerio, Equilibrium of two populations subject to chemotaxis, Math. Models Methods Appl. Sci, vol.14, pp.503-533, 2004.

S. Gottlieb, D. Ketcheson, and C. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations, 2011.
DOI : 10.1142/7498

S. Gottlieb, C. Shu, and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev, vol.43, pp.89-112, 2001.
DOI : 10.1137/s003614450036757x

W. Huang and R. D. Russell, Adaptive moving mesh methods, vol.174, 2011.
DOI : 10.1007/978-1-4419-7916-2

A. Kurganov, M. Luká?ová-medvid, and &. Ová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, vol.19, pp.131-152, 2014.

A. Kurganov, Z. Qu, O. Rozanova, and T. Wu, Adaptive moving mesh central-upwind schemes for hyperbolic system of PDEs. Applications to compressible Euler equations and granular hydrodynamics

A. Kurganov, Z. Qu, and T. Wu, Well-balanced positivity preserving adaptive moving mesh central-upwind schemes for the Saint-Venant systems of shallow water equations

M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Diff. Integral Eqns, vol.4, pp.427-452, 2003.

H. Tang and T. Tang, Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM Journal on Numerical Analysis, vol.41, pp.487-515, 2003.

G. Wolansky, Multi-components chemotactic system in the absence of conflicts, European J. Appl. Math, vol.13, pp.641-661, 2002.