Computing and Explaining Query Answers over Inconsistent DL-Lite Knowledge Bases - Archive ouverte HAL Access content directly
Journal Articles Journal of Artificial Intelligence Research Year : 2019

Computing and Explaining Query Answers over Inconsistent DL-Lite Knowledge Bases

(1) , (2) , (3)
1
2
3
Meghyn Bienvenu
Camille Bourgaux

Abstract

Several inconsistency-tolerant semantics have been introduced for querying inconsistent description logic knowledge bases. The first contribution of this paper is a practical approach for computing the query answers under three well-known such semantics, namely the AR, IAR and brave semantics, in the lightweight description logic DL-Lite R. We show that query answering under the intractable AR semantics can be performed efficiently by using IAR and brave semantics as tractable approximations and encoding the AR entail-ment problem as a propositional satisfiability (SAT) problem. The second issue tackled in this work is explaining why a tuple is a (non-)answer to a query under these semantics. We define explanations for positive and negative answers under the brave, AR and IAR semantics. We then study the computational properties of explanations in DL-Lite R. For each type of explanation, we analyze the data complexity of recognizing (preferred) explanations and deciding if a given assertion is relevant or necessary. We establish tight connections between intractable explanation problems and variants of SAT, enabling us to generate explanations by exploiting solvers for Boolean satisfaction and optimization problems. Finally, we empirically study the efficiency of our query answering and explanation framework using a benchmark we built upon the well-established LUBM benchmark.
Fichier principal
Vignette du fichier
11395-Article (PDF)-21164-1-10-20190310.pdf (3.18 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02066288 , version 1 (13-03-2019)

Identifiers

Cite

Meghyn Bienvenu, Camille Bourgaux, François Goasdoué. Computing and Explaining Query Answers over Inconsistent DL-Lite Knowledge Bases. Journal of Artificial Intelligence Research, 2019, 64, pp.563-644. ⟨10.1613/jair.1.11395⟩. ⟨hal-02066288⟩
216 View
208 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More