3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance imaging - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance imaging

(1, 2) , (3) , (1, 2) , (4) , (1) , (1, 2)
1
2
3
4

Abstract

We have recently proposed a new optimization algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) to design efficient Compressive Sampling patterns for Magnetic Resonance Imaging. This method has a few advantages over standard trajectories such as radial lines or spirals: i) it allows to sample the k-space along any arbitrary density while the other two are restricted to radial densities and ii) it achieves a higher image quality for a given readout time. Here, we introduce an extension of the SPARKLING method for 3D imaging that allows to achieve an isotropic resolution of 600 µm in just 45 seconds, compared to a scan duration of 14 min 31 s using 4-fold accelerated parallel imaging, for T2*-weighted ex vivo brain imaging at 7 Tesla over a field-of-view of 200 × 200 × 140 mm 3 .
Fichier principal
Vignette du fichier
3DSPARKLING_version_auteur.pdf (2.6 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02067080 , version 1 (14-03-2019)

Identifiers

  • HAL Id : hal-02067080 , version 1

Cite

Carole Lazarus, Pierre Weiss, Loubna El Gueddari, Franck Mauconduit, Alexandre Vignaud, et al.. 3D SPARKLING trajectories for high-resolution T2*-weighted Magnetic Resonance imaging. 2019. ⟨hal-02067080⟩
154 View
438 Download

Share

Gmail Facebook Twitter LinkedIn More