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Sound Event Detection
in the DCASE 2017 Challenge

Annamaria Mesaros, Aleksandr Diment, Benjamin Elizalde, Toni Heittola,
Emmanuel Vincent, Senior Member, IEEE, Bhiksha Raj, Fellow, IEEE, Tuomas Virtanen, Senior Member, IEEE

Abstract—Each edition of the challenge on Detection and
Classification of Acoustic Scenes and Events (DCASE) contained
several tasks involving sound event detection in different setups.
DCASE 2017 presented participants with three such tasks, each
having specific datasets and detection requirements: Task 2,
in which target sound events were very rare in both training
and testing data, Task 3 having overlapping events annotated
in real-life audio, and Task 4, in which only weakly-labeled
data was available for training. In this paper, we present the
three tasks, including the datasets and baseline systems, and
analyze the challenge entries for each task. We observe the
popularity of methods using deep neural networks, and the
still widely used mel frequency based representations, with only
few approaches standing out as radically different. Analysis
of the systems behavior reveals that task-specific optimization
has a big role in producing good performance; however, often
this optimization closely follows the ranking metric, and its
maximization/minimization does not result in universally good
performance. We also introduce the calculation of confidence
intervals based on a jackknife resampling procedure, to perform
statistical analysis of the challenge results. The analysis indicates
that while the 95% confidence intervals for many systems overlap,
there are significant difference in performance between the top
systems and the baseline for all tasks.

Index Terms—Sound event detection, weak labels, pattern
recognition, jackknife estimates, confidence intervals

I . I N T R O D U C T I O N

Sound event detection is a considerably broad topic in the
field of environmental sound detection and classification, with
far-reaching applicability for surveillance and monitoring [1]–[3],
assistive technologies [4]–[6], or multimedia indexing [7]. In
this context, sound events are defined as individual sounds that
convey information about what is happening in the scene, for
example fire alarm, glass breaking, car horn, or dog barking,
to name a few. The interest in recognizing sounds in audio
recordings arises from the usefulness of such methods in the
aforementioned applications. In many applications, the main
purpose is to detect a small number of target sounds [8], [9],
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while a more generic research problem is to detect a large
number of possibly overlapping sound events [3].

Everyday soundscapes can be described in terms of sounds at
different levels, with the acoustic scene being more general, and
sound events being more detailed. Sound events are components
of a wider acoustic scene, allowing a detailed description of
what is happening, e.g., “people talking”, “children playing”,
“bird singing” possibly being part of a park acoustic scene. In
this sense, the acoustic scene considers the sound signal as a
whole, while the sound events consider only individual sources.
Auditory scene analysis [10] laid out the Gestalt principles
for perception of separate sound sources, while experiments
in psychology of perception showed that in everyday listening
situations humans perceive sound sources rather than physical
properties of sounds [11]. The sound sources can therefore be
used to label these sound events, for example people, children,
birds, and these represent the categories in the machine learning
formulation of sound event detection.

There are different theoretical cases for sound event detection,
depending on the number of classes involved and the number
of labels to be assigned. In general, the term classification is
used to indicate a multi-class single-label case, where a test
audio sample is assigned to a single category, i.e. given a single
label. When multiple labels are assigned to the same test audio
sample, the task is referred to as tagging, while estimation of
temporal activity of classes defines the case of detection [12].
Specifically, sound event detection involves marking onsets and
offsets for multiple instances of sound events within the same
test audio sample. All the mentioned cases are topics of the
recent series of challenges on Detection and Classification of
Acoustic Scenes and Events (DCASE).

The DCASE Challenge has recently received a lot of interest
in the research community, and has a continuously growing
number of participants. The challenge aims to provide open data
for researchers to use in their work, to encourage reproducible
research, and attract new researchers into the field. By providing
the setting for a competition, and supporting datasets and
evaluation tools, the challenge also creates successive reference
points for performance comparison. Until now, the challenge
has included tasks on acoustic scene classification, sound event
detection in synthetic and real-life audio, and audio tagging
[13], [14]. The highest number of participants in all previous
editions was in acoustic scene classification, but interest and
participation in sound event detection and tagging tasks is
continuously growing.

This paper presents the outcomes of the three sound event
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detection tasks in the DCASE 2017 Challenge1. We present
these three tasks and discuss the differences in the training
approaches imposed by the specific situation: training with highly
unbalanced data for detection of rare sound events, supervised
and moderately unbalanced data for polyphonic sound event
detection in real-life audio, and training using weakly-labeled
data. We then report and analyze the results of the methods
submitted by the challenge participants, and provide a statistical
analysis using confidence intervals, which was not available at
the time of publishing the challenge results.

The remainder of this paper is organized as follows. Section II
introduces sound event detection in general terms before detailing
each task. There is one subsection dedicated to each of the three
sound event detection tasks of DCASE 2017, which presents
the task definition, the dataset, the experimental setup and the
evaluation procedure. The challenge schedule, the submission
statistics and the common baseline system for all tasks are
presented in Section III. Section IV presents and analyzes the
results of submitted systems, including confidence intervals
calculation using a jackknife procedure. Finally, Section VI
presents conclusions and future work related to sound event
detection tasks within the DCASE Challenge series.

I I . S O U N D E V E N T D E T E C T I O N

Sound event detection is a complex problem, with few
different specific situations that differ in interpretation. Detection
of the most prominent sound event implies a single label
at a time associated with the most prominent sound event,
even though there may be other overlapping sounds in the
background. As such, prominent event detection was the first
approach to sound event detection in multisource environments
in the CLEAR Evaluation in 2007 [15]. Later, the detection of
overlapping events has become of interest, being referred to as
polyphonic sound event detection in contrast to monophonic
sound event detection [16] that only provides one label at each
time regardless of the overlapping degree; from this point of view,
prominent event detection is equivalent to monophonic sound
event detection when there are overlapping sounds, because the
system detects only one.

Early methods for detection of sound events were adapted
from the field of speech recognition, with the use of GMM
and HMM providing state of-the art results for a few years
[17]. Later, nonnegative matrix factorization was employed
for overlapping sound event detection, exploiting the additive
properties of signal components in complex mixtures [18], [19].
With DCASE 2016, deep neural networks became the method of
choice for sound event detection [14]. One clear reason for the
choice of deep learning for polyphonic sound event detection
is that the structure and training of neural networks directly
allow multi-label classification, with multiple neurons in the
output layer being trained and allowed to fire at the same time.
In comparison, setting up a system based on GMMs or HMMs
to provide multiple labels at the same time requires additional
effort such as binary per-class setup [20] or multiple Viterbi
passes to decode multiple sequences [17].

1http://dcase.community/challenge2017/

Fig. 1. Sound event detection in a general case, as required in Tasks 3 and 4.

Fig. 2. Sound event detection with rare target sounds, as defined by Task 2.

The sound event detection tasks provided to participants
in DCASE 2017 presented three slightly different problems
in terms of system training and system output requirements:
strongly-labeled training and test data where target sound events
are rare, strongly-labeled training and test data with unbalanced
classes, and weakly-labeled training data with strongly-labeled
test data, as will be explained in the following.

The sound event detection setup familiar from previous
DCASE challenges deals with audio material containing target
sound events and a reference annotation containing the labels,
onset, and offset times of all sound events belonging to the
target sound classes. These are referred to as strong labels,
and usually the training of systems exploits this property for
building class models. Target sound events may be overlapping
or not, and there may be other overlapping sounds present that
are not part of the target classes and are disregarded in the
detection setup. An example of system output is illustrated in
Fig. 1. This case was the subject of Task 3 and used as training
data recordings from everyday environments in which the target
sound events have been manually annotated.

Task 2 provided a slightly different setup as detection of rare
sound events. In this case, the target sound events were present
in about half of the training and test material; the reference
annotation contained strong labels and the class models could be
trained based on the available instances. Additionally, systems
had to cope with large amount of what is considered background
audio, which may contain non-target sound events. The task
was presented as a binary detection problem, where the target
sound class was known. In this case, detection implied finding
the onset and offset if the target sound was present in the test
audio, similar to the system output illustrated in Fig. 2.

Task 4 presented a third setup for sound event detection. It
consisted of sound event detection using weakly labeled training
audio from web videos in the context of smart cars; such topics
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were introduced for the first time in the DCASE series. In
this setup, the requirement for system output was to produce
the onset and offset too, as illustrated in Fig. 1. However, the
reference annotation for the training audio had only class labels
and no onset and offset information. This means that the sound
could be present in any portion of the recording while other
multiple unlabeled sounds may be overlapping or occurring in
the other portions. Hence, some of the recordings corresponded
to more than one label. Moreover, web videos, shared in social
media, are typically generated by non-professionals, unstructured,
and capturing their every day lives, hence resembling real-world,
non-curated audio recordings. The challenge was to train reliable
detectors with these recordings and their weak labels. The test
part of the development data contained also material having
strong labels, to allow benchmarking the methods during the
development.

The specific details for each task will be presented in the
remainder of this section.

A. Rare sound event detection

The audio material used in Task 2 consists of generated
mixtures of background acoustic scenes and target rare sound
events. The rareness here stands for the events occurring at most
once per 30-second audio instance. Additionally, the event classes
were selected to be relevant in potential acoustic surveillance
and smart home application scenarios, where they would occur
rarely: baby cry, glass break, and gun shot. For each target
event class, a separate set of mixtures was provided, and the
task was to detect the temporal occurrences of the target events
in a single-class detection scenario.

1) Dataset: The dataset consists of the source material for
creating mixtures: background scene and target sound event
recordings, as well as a set of pre-created mixtures and the
software scripts (so-called recipes), according to which they
were created. Generation of additional training mixtures with
the same source material was permitted, and a software package
was provided for such generation, with support for among others
arbitrary event-to-background ratios (EBR).

The sound event recordings of the source material were
collected from freesound.org using the API and external python
tool2. There were 209 unique events of baby cries, 197 glass
breaks and 263 gun shots in total. The mean duration of the
recordings was 2.25 s (baby cry), 1.16 s (glass break), and
1.32 s (gun shot). The material was provided in a form of
freesound.org recordings in their original form accompanied by
the strong labels of the temporal occurrences of the events.

Due to the uncontrolled nature of the crowdsourced material,
the freesound.org recordings included both target sound events,
silence regions and other, non-target sounds. The strong labels of
the target sound event occurrences in the original recordings were
obtained using a semi-automated procedure, with an automatic
segmentation followed by a refinement of the timing and valid
sample selection performed by a human annotator. For the
details of the procedure, see [9].

For the backgrounds of the generated mixtures of the
development and evaluation subsets, the TUT Acoustic Scenes

2https://github.com/xavierfav/freesound-python-tools

2016 development and evaluation datasets [20] were used. They
include recordings of acoustic scenes of 15 classes such as
bus, city center, office, library etc. Prior to mixture generation,
manual screening was performed, in which recordings with the
naturally occurring sounds similar to the target sound events
(mostly, baby cries and shouts) were discarded.

The parameters of the mixture generation were the following.
For each target event class in the experimental subsets, 500
signals were created, out of which 250 included target events
and 250 were purely the background recordings. The EBRs
were selected uniformly randomly from the list of values -6,
0, 6 dB for each mixture. The EBR was calculated in terms
of average RMSE values computed over the duration of the
event and the corresponding background segment, onto which
the event signal would be added. The instances of backgrounds
and sound events, as well as the timing of the events in the
mixtures were selected randomly and uniformly with a fixed
seed of the random generator, thus allowing reproducibility.

The event signals collected from freesound.org had sampling
rates of 44.1 kHz and above. Prior to summing, the signals
of higher sampling rates were downsampled to 44.1 kHz. The
mixtures were saved in 24 bit format in order to minimize
quantization noise. The dataset is highly unbalanced due to the
temporal rareness of the events within the mixture instances—a
problem which might need to be addressed with custom methods.

2) Experimental setup: The dataset included a development
subset, which included training and test partitions and was
released at the beginning of the challenge, as well as the
evaluation subset, used in the final evaluation and released at a
later stage. The split of the generated mixtures into development-
training, development-test and evaluation sets was performed in
terms of underlying source data. In order to evaluate the systems
on truly unseen data, it was crucial to ensure that no sound
event or background noise would be shared across the subsets.
To further enhance this restriction, the background recordings
were split by location ID as provided in the original dataset.
The sound events were split by freesound.org user names, so
that no recordings from the same user would be present in
more than one subset. The meta data indicating the subset to
which the source events and backgrounds belong were provided,
so that further generated data would be split according to the
same rules. The class-wise counts of unique events were the
following: baby cry (106 + 42 + 61 instances in training, test
and evaluation sets, respectively), glass break (96 + 43 + 58
instances) and gun shot (134 + 53 + 76 instances).

3) Evaluation: The submissions were evaluated for each
target event class separately using the event-based error rate
(ER) with onset-only condition and a collar of 500 ms [16].
Additionally, the event-based F1-score with the same conditions
was calculated but not used in ranking. The systems were then
ranked using the average event-based error rate over the three
classes.

B. Sound event detection in real-life audio

Task 3 of the challenge was the sound event detection setup
illustrated in Fig. 1, evaluating performance of sound event
detection systems in multisource conditions similar to our
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TABLE I
E V E N T I N S TA N C E S P E R C L A S S I N TA S K 3 A N D AV E R A G E L E N G T H

O F S O U N D E V E N T S C A L C U L AT E D O V E R T H E E N T I R E D ATA S E T

Event label Dev. set Eval. set Avg. length (s)
brakes squeaking 52 23 2.18
car 304 106 7.64
children 44 15 6.48
large vehicle 61 24 12.89
people speaking 89 37 7.31
people walking 109 42 10.38
total 659 247

everyday life, with the aim of recognizing overlapping events.
As in real-life, there is no control over the number of overlapping
sound events at each time, nor the number of sound instances
present.

1) Dataset: The dataset used for this task is TUT Sound
Events 2017, consisting of audio recordings of street scenes
with various levels of traffic and human activity. The street
environment is of interest for the detection of sound events
related to human activities and hazard situations, with wide
applicability for personal safety. Audio was recorded in different
locations on streets in residential areas and city center, with 3-5
minutes of recording per location, and the recordings were then
manually annotated. Individual sound events in each recording
were annotated using a noun to describe the source of the sound
and a verb to describe the action that produces the sound. The
nouns and verbs were chosen from WordNet [21]. The noun-verb
pair was used whenever possible, otherwise it was acceptable
to use either one of them. The annotator was instructed to
annotate all audible sound events, decide the start and end times
of the sounds as he sees fit, and choose event labels. A detailed
description of the annotation process and more data statistics
are provided in [20].

The sound event classes for the TUT Sound Events 2017
dataset were selected based on the resulting annotations, by
choosing sounds related to human presence and traffic. The
selected sound event classes were: brakes squeaking, car, children,
large vehicle, people speaking, and people walking. A mapping
was performed between the labels resulting from the initial
annotation procedure to these classes, merging sounds into
classes described by their source. For example “car passing by”,
“car engine running”, “car idling”, etc were all included into
the target class “car”, sounds produced by buses and trucks
were included into the target class “large vehicle”, “children
yelling” and “children talking” were included into the target class
“children”, etc. Due to the high level of subjectivity inherent to
the annotation process, a verification of the mapped classes in the
reference annotation was done as follows; three persons (other
than the annotator) listened to each audio segment annotated as
belonging to one of these classes, marking agreement about
the presence of the indicated sound within the segment. Event
instances confirmed by at least one person were kept, resulting
in elimination of about 10% of the original event instances.

2) Experimental setup: The dataset was partitioned randomly
into development and evaluation subsets by assigning the
available recordings into either set such that the majority of event
instances for each class was in the development subset. Event
instances for different classes are distributed unevenly within

the recordings, therefore the development/evaluation distribution
of examples can be controlled only to a certain extent. The
resulting number of instances per event class is presented in
Table I. Within the development set, a cross-validation setup
was also provided for allowing comparison of submissions.

3) Evaluation: Evaluation of submissions was done by
calculating the segment-based error rate (ER) and segment-
based F1-score with a segment length of one second. In the
development set, the metrics are calculated by accumulating error
counts (insertions, deletions, substitutions) over all folds before
calculating the final values, instead of averaging the individual
folds or individual class performance [16]. This method of
calculating performance is referred to as micro-averaging and
gives equal weight to each individual sound instance in each
segment, as opposed to being influenced by class balance and
error types [22]. Ranking of submitted systems was done by
ER, calculated on the evaluation dataset with micro-averaging.

C. Large-scale detection of sound events using weakly labeled
audio recordings from videos

Task 4 evaluated systems for weakly supervised sound event
detection in audio recordings from videos in the context of
smart cars. The topic of weak labels was chosen due to the
abundance and challenge on this type of annotations. This was
the first task in DCASE to evaluate audio from videos, which
are the main source of recorded sounds. The context of smart
cars was chosen due to its industry relevance and the under use
of audio. The results of this task helped define new grounds
for sound event detection and how it can benefit self-driving
cars in smart cities and urban soundscapes. Task 4 consisted of
two subtasks, Audio Tagging and Sound Event Detection. We
discuss here the latter as illustrated in Fig. 2.

1) Dataset: The task employed a subset of AudioSet [23].
AudioSet consists of an ontology of 587 sound event classes and
a collection of 2 million human-labeled 10-second sound clips
drawn from YouTube videos. The clips are mono-channel and
sampled at 44.1 kHz. The ontology is specified as a hierarchical
graph of event categories, covering a wide range of human and
animal sounds, musical instruments and genres, and common
everyday environmental sounds. To collect the dataset, Google
worked with human annotators who listened, analyzed, and
verified the sounds they heard within the YouTube 10-second
clips. To facilitate faster accumulation of examples for all classes,
Google relied on available YouTube metadata and content-based
search to nominate candidate video segments that were likely
to contain the target sound. Note that AudioSet does not come
with precise time boundaries for each sound class within the
10-second clips and thus annotations are considered weak labels.
Also, one clip may correspond to more than one sound event
class. The numbers of positive labels between classes were
imbalanced ranging between 180 for Car Alarm to 25,077 for
Car. Task 4 relied on a subset of 17 sound events divided into
two categories: Warning and Vehicle.

• Warning sounds: Train horn, Air horn Truck horn, Car
alarm, Reversing beeps, Ambulance (siren), Police car
(siren), Fire engine fire truck (siren), Civil defense siren,
Screaming.
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TABLE II
E V E N T I N S TA N C E S P E R C L A S S I N TA S K 4 ’ S S U B C AT E G O R I E S . D E V E L O P M E N T I N C L U D E S T R A I N I N G A N D T E S T I N G S E T S . L A S T C O L U M N

I S T H E AV E R A G E L E N G T H O F T H E S O U N D S I N D I C AT E D B Y T H E S T R O N G L A B E L .

Vehicle sounds Train Test Dev Eval Avg. length (s) Warning sounds Train Test Dev Eval Avg. length (s)
Truck 6,885 60 6,945 122 5.59 Train horn 345 30 375 108 2.05
Train 2,075 80 2,155 294 5.36 Truck horn 313 30 343 97 2.78
Skateboard 1,516 30 1,546 89 3.38 Car alarm 180 30 210 73 3.95
Motorcycle 3,162 30 3,192 68 7.22 Reversing beeps 245 30 275 63 3.10
Car 25,077 122 25,199 482 5.86 Ambulance siren 524 32 556 62 6.28
Car passing by 3,598 32 3,630 85 3.39 Police car siren 2,364 35 2,399 69 7.79
Bus 3,617 31 3,648 64 6.77 Fire truck siren 2,288 35 2,323 67 6.11
Bicycle 1,897 30 1,927 67 3.09 Civil defense siren 1,409 31 1,440 61 8.57

Screaming 636 30 666 101 2.54
Total 47,827 415 48,242 1,271 Total 8,304 283 8,587 701

TABLE III
P H A S E S A N D D E A D L I N E S O F T H E D C A S E 2 0 1 7 C H A L L E N G E .

Release of development datasets 21 Mar 2017
Release of evaluation datasets 30 June 2017
Challenge submission 31 July 2017
Publication of results 15 Sept 2017
DCASE 2017 Workshop 16-17 Nov 2017

• Vehicle sounds: Bicycle, Skateboard, Car, Car passing by,
Bus, Truck, Motorcycle, Train.

2) Experimental setup: The data was divided in two main
partitions: development and evaluation. The development data
was itself divided into training and test. Training had 51,172
clips, which are class-unbalanced and had at least 30 clips per
sound event. Test had 488 clips, with at least 30 clips per class.
A 10-second clip may have corresponded to more than one
sound event class. The evaluation set had 1,103 clips, with
at least 60 clips per sound event. The sets had weak labels
denoting the presence of a given sound event within the audio,
but with no onset and offset annotations. For test and evaluation,
strong labels (onset and offset annotations) were provided for
the purpose of evaluating performance. The strong labels were
collected from the agreement of three human labelers to probe
the presence of specific sound event classes in the 10 second
clips. The number of instances per class can be seen in Table II.

3) Evaluation: The evaluation metric was segment-based
error rate (ER) and F1-score, where ranking of submitted systems
was based on ER.

I I I . D C A S E 2 0 1 7 C H A L L E N G E

The DCASE 2017 Challenge comprised four tasks. In addition
to three tasks outlined above, there was an acoustic scene
classification task, and the task dealing with weak labels also
had an audio tagging subtask [9]. The phases of the challenge
are presented in Table III.

A. Submission statistics

Each team was allowed to submit the results of a maximum
of four systems. The sound event detection tasks received a fair
amount of attention, with over 30 systems submitted to each
task. Table IV presents the number of participating teams, the
total number of submitted systems, and the number of unique
authors for each task.

TABLE IV
S U B M I S S I O N S TAT I S T I C S F O R A L L F O U R TA S K S I N T H E

D C A S E 2 0 1 7 C H A L L E N G E .

Teams Systems Authors

Task 1 39 96 129
Task 2 13 32 38
Task 3 13 35 32
Task 4 9 55 25

B. Baseline system

The baseline system provided with the data consisted of a
common implementation for all tasks. The approach was based
on a multilayer perceptron (MLP) [9] and it was provided to
serve as a reference point during development, while offering
flexibility in building different DNN architectures on top of it.

The audio features used in the baseline system were log
mel-band energies calculated in frames of 40 ms with 50%
overlap, using 40 mel bands covering the frequency range
from 0 to 22,050 Hz. Using a context window of five frames
resulted in a feature vector of length 200. The MLP consisted
of two dense layers of 50 hidden units each, with 20% dropout,
and was trained using the Adam algorithm for gradient-based
optimization [24] for maximum 200 epochs using a learning
rate of 0.001 and early stopping.

The output layer of the network differs depending on the
task. For Task 2 (detection of rare sound events), a separate
binary classifier was used for each class, with the output layer
consisting of a single neuron with sigmoid activation, indicating
the activity of the target class. Detection was done by applying
binary classification frame-wise, and integrating the classification
decisions into event activity indicator by median filtering with
a 0.54 s sliding window with a 20 ms hop. For Tasks 3 and 4,
the output layer contained 6 and 17 sigmoid units, respectively,
that can be active at the same time, so they could indicate
activity of overlapping sound classes. A multi-class multi-label
classification was applied frame-wise, and the detection was
performed by integrating the classification decision for each
class with the same sliding median window of 0.54 s length
and with a 20 ms hop.

To obtain the development set performance, the baseline
system was trained using the training portion of the development
set for each task. Likewise, for each task, the evaluation set
performance was obtained by training the baseline system on
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the full development set and testing it on the evaluation set.
For Task 2, the baseline system was trained using the default
provided mixtures with no additional data generation. The
system performed with ER of 0.53 and an F1-score of 72.7%
on the development set, and an ER of 0.64 and an F1-score of
64.1% on the evaluation set. For Task 3, the baseline system
had an ER of 0.69 and F1-score of 56.7% on the development
set, and an ER of 0.93 and F1-score of 22.8% on the evaluation
set. For Task 4, the baseline system had an ER of 1.02 and
F1-score of 13.8 % on development set; for the evaluation set
the system achieved an ER of 0.93 and an F1-score of 28.4%.

I V. C H A L L E N G E R E S U LT S A N D A N A LY S I S

This section presents the challenge results and a detailed
analysis of the submissions for the three sound event detection
tasks. For the statistical analysis of the results, we use confidence
intervals for ER and F1-score, calculated using the jackknife
estimate. Jackknife approximated confidence intervals result
in a rather coarse approximation compared to asymptotic
methods; however, asymptotic methods require knowledge of the
underlying distribution of the parameter to be estimated, while
the jackknife method can be used in cases when the underlying
distribution is unknown. By using the jackknife method, we
make no assumption on the distribution of our metrics, as for
example ER depends on the individual combinations of active
sounds at each time within the evaluation segments.

The jackknife is a resampling technique used for estimating
a parameter from a random sample of data for a population,
based on partial estimates. Using these partial estimates, a bias-
corrected jackknife estimate of the parameter of interest can be
calculated, as well as its variance and confidence intervals [25].
Calculation starts with estimating the parameter from the whole
sample, in our case the ER and the F1-score being measured
from all the evaluation data. Then the partial estimates are
calculated with a leave-one-out method, leaving out in turns one
observation in the calculation—in our case excluding in turn
each file or 1 s segment from the calculation of the ER and the
F1-score, depending on the evaluation method. Pseudo-values
are calculated as the difference between the whole sample
estimate and the partial estimates, and these pseudo-values
are further used for calculating the jackknife estimate of the
parameter, which is bias-corrected, and its standard deviation. In
this procedure, the observations are assumed to be independent
of each other, i.e. independent and identically distributed (i.i.d.).

For a given quantity θ, the sample estimate θ̂ based on a
sample of N observations is a function of the observations:

θ̂ = f(X1, X2, ..., XN ). (1)

The estimators obtained by leaving out sample Xi are:

θ̂(i) = f(X1, X2, ..., Xi−1, Xi+1, ..., XN ) (2)

and
θ̂(.) =

1

N

∑
i

θ̂(i). (3)

The n pseudo-values are:

θ̃i = Nθ̂ − (N − 1)θ̂(i). (4)
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Fig. 3. Scatter plot of submitted systems for Task 2 accompanied by the the
95% confidence intervals. Systems were ranked by ER (the smaller the better).

The jacknife estimate θ̂jack is obtained as the mean of the
pseudo-values:

θ̂jack =
1

N

∑
i

θ̃(i). (5)

With the pseudo-values considered to be independent random
variables, the standard error of the parameter estimate can be
obtained from the variance of the pseudo-values as the standard
error of the mean:

σ̂θ̃jack
=

√
σ̂2
θ̃

N
=

√∑
i(θ̂(i) − θ̂(.))2

N(N − 1)
. (6)

For i.i.d. observations, this estimation follows a Student’s t
distribution with (N − 1) degrees of freedom, and the (1− α)
confidence interval can be computed as:

θ̂jack ± tα,ν σ̂θ̃jack
(7)

For each task, we used this method to compute the jackknife
estimate and 95% confidence intervals for the ER and the F1-
score as used for evaluation (event-based for the rare sound
events detection, segment-based for the others).
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TABLE V
S U M M A RY O F S Y S T E M S S U B M I T T E D F O R R A R E S O U N D E V E N T D E T E C T I O N ( TA S K 2 ) , B E S T P E R T E A M .

System Features Classifier F1 (%) F1JK ± 95% CI (%) ER ERJK ± 95% CI

Lim COCAI 1 log-mel energies CRNN 93.14 93.15± 1.42 0.1307 0.1306± 0.0261
Çakır TUT 2 log-mel energies CRNN 90.97 90.98± 1.74 0.1733 0.1732± 0.0326
Phan UniLuebeck 1 log Gammatone cepstral coef. DNN+CNN 85.34 85.36± 2.15 0.2773 0.2771± 0.0394
Zhou XJTU 1 spectrogram NMF 84.16 84.18± 2.12 0.3133 0.3129± 0.0422
Liping CQU 3 spectrogram CNN 82.00 82.02± 2.36 0.3173 0.3172± 0.0400
Vesperini UNIVPM 1 log-mel energies MLP 83.92 83.94± 2.28 0.3267 0.3262± 0.0471
Dang NCU 2 log-mel energies CRNN 79.07 79.09± 2.48 0.4107 0.4102± 0.0515
Ravichandran BOSCH 4 log-mel spectrograms, MFCC MLP, CNN, RNN 78.55 78.57± 2.62 0.4267 0.4263± 0.0525
Wang BUPT 1 log-mel energies DNN 73.40 73.44± 2.86 0.4320 0.4318± 0.0422
Wang THU 1 MFCC, log-mel energies DNN, HMM 72.57 72.60± 2.91 0.4973 0.4970± 0.0503
Li SCUT 4 MFCC FC+Bi-LSTM 69.80 69.81± 2.80 0.6000 0.5997± 0.0628
Baseline log-mel energies MLP 64.12 64.14± 3.12 0.6373 0.6371± 0.0588
Jeon GIST 1 log-mel energies from NMF MLP 65.78 65.77± 3.27 0.6773 0.6768± 0.0759

A. Task 2 - Rare sound events detection

A total of 13 teams participated in Task 2 producing 32
submitted systems. The statistical analysis (see the F1-score
and ER estimates and confidence intervals in Fig. 3 and Table
V) was performed for the top system of each team. The two
top teams (Lim [26] and Çakır [27]) submitted systems whose
error rate estimates are within the 95% confidence interval of
each other, while being clearly non-overlapping from the rest of
the submissions. This suggests more confidently that these two
systems are indeed best among all submissions. The overall
relatively moderate range of the confidence intervals of all the
analyzed systems indicate that the size and diversity of the
provided dataset was adequate for the task.

Out of the 32 submitted systems, 13 generated additional
mixtures using the provided source data and mixture generation
software. The authors of the winning system (Lim et al. [26])
performed this most extensively, generating four different training
sets of 5000 mixtures each (4×10 times the size of the original
dataset). Vesperini et al. [28] performed additional mixture
generation only for the class “gun shot”, motivated by the
relative short duration of the sounds of this class. To address
this, they created 500 additional gun shot mixtures, yielding
the full development set 1.2 larger than the original one. Çakır
et al. [27] generated a training dataset 2.2 times larger than
the original one, while addressing the class imbalance problem
by adjusting the parameters of the mixture generation. They
increased the event occurrence rate from 0.5 to 0.99, producing
almost all the mixtures in the training set with the event present
and thus doubling its frame-wise occurrence.

In addition to the aforementioned technique of generating
mixtures with higher target event occurrence rates, other methods
for addressing the imbalance issue were applied. Phan et al. [29]
performed resampling and used a weighted loss, penalizing false
negatives ten times more than false positives. Wang and Li [30]
tackle the imbalance problem with a dynamic decision threshold
computed from the average system output value. Finally, Wang
et al. [31] use differently weighted update rules based on the
event presence in each frame.

Log-mel energies were the mostly used features (20 systems),
followed by MFCCs (9 systems). The frame-blocking parameters
were similar across the systems, with the frame length values
of 40 ms with 50% overlap being used by 10 systems. Most

of the systems (19) used stacking of consecutive frames, with
the context size of 5 frames being the most popular, while
some participants optimised this hyperparameter extensively.
The winning system by Lim et al. [26]) used a different kind
of context processing by segmenting the feature sequences in a
sliding manner into short “macroblocks” of 5 to 100 frames
(class-specific hyperparameter), performing the inference on
those signals and averaging the outputs over multiple overlapping
excerpts. Almost all the classifiers were neural network based,
with most popular architectures being CRNNs (12) and CNNs
(9). Ten systems used ensemble technique to obtain final outputs.

Systems in the top ranks managed to generalize well to
the unseen evaluation data. Out of the top ten systems, nine
had less than 0.1 difference between the error rates on the
development-test and the evaluation sets. Three systems out of
top ten had error rate differences of less than 0.05.

The submitted systems showed a consistent difference in
class-wise performance, with glass break being the easiest class
in terms of F1-score and error rate for all the submitted systems.
The average class-wise F1-scores over top ten systems were
90.02% for baby cries, 93.82% for glass breaks and 85.42%
for gun shots.

Additional insight can be gained by analysing the performance
of the systems with a varying degree of temporal tolerance of
onset detection — the so-called time collar. In the challenge
ranking, a value of 0.5 s was used as the maximum temporal
mismatch between the predicted and ground truth onsets for the
events to be deemed detected correctly. In Fig. 4, we perform
the evaluation with a varying collar value. For the baby cry
class, we see that the systems show similar sensitivity to the
value of time collar. For the other two classes, we observe
certain peculiarities.

With the glass break class, most of the systems reach their
peak performance already at very small values of time collar (70-
160 ms), while in the cases of systems Ravichandran BOSCH 4
and Li SCUT 4, the error rate saturates much later (250 and
400 ms, respectively). This indicates that in most cases when
the systems are capable of classifying the highly impulsive
signal correctly, their onset detection is extremely accurate.

With the gun shot signals, which are also impulsive, but might
include longer reverberation tail, certain systems show similar
properties. For instance, the error rate of Çakır TUT 2 saturates
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already at collar values of 110-180 ms and is the best across
all the systems in the low-collar range. The overall winning
system Lim COCAI 1, however, appears to improve gradually
with increasing collar value, which can be explained by the fact
that it uses ensembling over much larger number of consecutive
macroblocks (of sizes 10, 14, 20 and 50 frames) than in the case
of glass breaks (macroblocks of 5 frames only). If accurate onset
detection of impulsive signals is preferred, Çakır’s approach of
incorporating neighbouring frame information using a simple
median filtering of the frame-wise predictions is more successful
than class-specific hyperparameter-optimised ensembling of
networks operating with different time resolutions.

Similarly to the glass break class, systems Ravichan-
dran BOSCH 4 and Li SCUT 4 are outliers in terms of their
performance over different time collars with the gun shot class
as well. Li SCUT 4 improves mostly linearly. This can be
attributed to the system being developed jointly for Tasks 1-3
and not extensively optimised for the current task or class.
Additionally, it is one of the few systems to use MFCC features
fed into a fully-connected network as opposed to the predominant
log-mel energies fed into a CNN. Ravichandran BOSCH 4
shows an interesting rapid improvement at around 310 ms. This
can be explained by the unusually large frame lengths and
context sizes used by this system: it consists of an ensemble of
an RNN fed with frames of 120 ms length and 50% overlap
and an CNN operating on 16-frame blocks (frame length 100
ms, overlap 80%).

The lessons learnt from this analysis are that optimising the
systems for the task and event classes is reasonable when the
events are of different nature (harmonic vs. percussive) while
complex ensembling and overly extensive optimisation leads to
good results at the expense of robustness to the parameters of
the evaluation metric.

B. Task 3 - Sound event detection in real-life audio
For Task 3 there were 35 submitted systems, originating

from 12 different teams. Table VI presents a summary that
includes only the best system of each team. The visualization
of the systems’ ranking, including 95% confidence intervals, is
presented in Fig. 5.

The systems were evaluated and ranked using the segment-
based error rate (ER) in one-second segments.3 Overall, there
were 19 systems that outperformed the provided baseline
performance in terms of ER, which was 0.93 on the evaluation
dataset. Several of these top systems were submitted by the same
team: in terms of teams, eight different teams outperformed better
baseline on the evaluation dataset, with the top performance
being 0.79. The F1-score was also calculated in one-second
segments to provide a more complete characterization of the
systems’ performance. In terms of F1-score, the baseline system
had the best performance on the evaluation set, at 42.8%,
together with one submitted system. The top-ranked system by
Adavanne et al. [32] (with smallest ER) had the second-highest
F1-score of 41.7%.

Confidence intervals are presented in Table VI and Fig. 5
for the top system of each team. For this task, the leave-one-
out partial estimates were calculated in accordance with the
evaluation process, by considering each one-second segment
as a separate sample. The independence assumption for these
segments is used implicitly in the metrics, by determining the
number of true positives, deletions, insertions and substitutions
separately for each segment before the final metric calculation
[16]. Based on the confidence intervals, we can see that the
performance of consecutively ranked systems is not significantly
different, with both the ER and the F1-score degrading gracefully

3This discussion excludes the system by Yu. The submitted system had very
low scores, attributed to a software bug. The system was resubmitted after the
deadline and yielded substantially lower overall ER, but is not included in the
official ranking.
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TABLE VI
S U M M A RY O F S Y S T E M S S U B M I T T E D F O R S O U N D E V E N T D E T E C T I O N I N R E A L - L I F E A U D I O TA S K ( TA S K 3 ) .

System Features Classifier F1 (%) F1JK ± 95% CI (%) ER ERJK ± 95% CI

Adavanne TUT 1 log-mel energies CRNN 41.7 41.7± 2.3 0.7914 0.7914± 0.0268
Lee SNU 3 log-mel energies CNN 40.8 40.8± 2.2 0.8080 0.8079± 0.0275
Lu THU 1 MFCC, pitch RNN, ensemble 39.6 39.6± 2.3 0.8251 0.8250± 0.0294
Zhou PKU 1 log-mel energies LSTM 39.1 39.1± 2.2 0.8526 0.8525± 0.0310
Chen UR 1 log-mel energies CNN 30.9 30.9± 2.5 0.8575 0.8575± 0.0231
Xia UWA 3 log-mel energies CNN 41.7 41.7± 2.1 0.8740 0.8738± 0.0340
Kroos CVSSP 2 scattering transf, clustering Neuroevolution 41.6 41.6± 2.2 0.8911 0.8909± 0.0355
Hou BUPT 2 raw audio BGRU 34.1 34.1± 2.3 0.9248 0.9246± 0.0334
Baseline log-mel energies MLP 42.8 42.8± 2.0 0.9358 0.9355± 0.0404
Dang NCU 2 log-mel energies CRNN 42.8 42.8± 2.1 0.9468 0.9465± 0.0429
Li SCUT 2 DNN(MFCC) Bi-LSTM 41.0 41.0± 2.0 0.9523 0.9520± 0.0415
Wang NTHU 1 MFCC, TDOA RNN 40.8 40.8± 2.1 0.9749 0.9746± 0.0458
Feroze IST 2 PLP NN 39.7 39.7± 2.1 1.0312 1.0309± 0.0489
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Fig. 5. Scatter plot of systems in Table VI. Systems were ranked by ER.

with the top four systems. In terms of F1-score, the overlaps are
much more prominent, with 10 of the 12 considered systems
being within 4% average performance of each other and also very
close to the baseline system. The top four systems are, however,
performing significantly better than the baseline in terms of ER,
while there is also one system performing significantly worse.
At the same time, the submission by Chen et.al. [33], ranked
fifth, while having significantly better performance than the
baseline in ER, has significantly lower in F1-score than other
systems.

There is not very much diversity in the characteristics of
the submitted systems, with many submissions using similar
features and classifiers among other processing steps. Among all
36 systems, 21 used the single-channel audio input as provided
in the baseline system (averaging the two channels), while 8
systems used the binaural audio and few others used audio in
mixed ways (difference, mean, right channel only). Most of
these cases used the two channels and their combinations as a
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Fig. 6. Deletions and insertions contribution to ER for systems in Table VI.

method for data augmentation, given that the audio recorded
by the two microphones is slightly different. Only two teams
used established data augmentation methods such as channel
swapping (4 systems of one team) and pitch shifting and time
stretching (4 systems of one team).

The most popular features were mel-based representations,
with 19 systems (including [34], [35]) using log mel energies,
including multiscale versions, and 9 systems using mel-frequency
cepstral coefficients (MFCC); in some cases, MFCCs were used
in combination with other features such as pitch [36], or TDOA.
One system used raw audio as input, while three systems
belonging to the same team used scattering transform and
clustering as feature representation.

In terms of classifiers, deep learning based methods were
the most popular, with 24 systems being based on various
architectures such as CNN (7 systems), CRNN (8 systems),
RNN (5 systems), including LSTM (2 systems) and BLSTM (3
systems). There was not so much use of ensemble classifiers as
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in the previous DCASE sound event detection task, nor was
there any use of classical pattern recognition methods such as
GMMs, SVMs and such. Neuroevolution stands out within this
challenge as a novel method [37], combining genetic algorithms
with an artificial neural network for evolving the weights and
topology of neural networks, with the aim of obtaining a small-
size model. The evolved small networks performed relatively
well on the development data, but significantly worse on the
evaluation set.

As we see in this overview, there are not many differences
between systems’ characteristics; it often seems to be a matter
of finding a good operation point for achieving the desired
outcome, and optimization of the system following a criteria
linked to the evaluation metric. We analyze more closely the
contribution of insertions and deletions to the error rate for the
systems in Table VI, illustrated in Fig. 6.

We observe that all leading systems have much higher deletion
than insertion rates (w.r.t. number of reference events, as part
of ER). Due to the specifics of its calculation, minimizing ER
can be achieved first of all by making as few errors as possible,
secondly by making about the same number of insertions as
deletions (therefore counting them as substitution errors). From
Fig. 6, we observe that most systems are situated on one side
of the diagonal, which means that according to the optimization
functions used for training them, it is optimal to output a small
amount of positives (producing deletions, but output mostly
correct events) rather than a high amount of positives (producing
insertions, but also correct events). This behavior is also reflected
in other metrics, with systems having generally a high precision
(they output mostly correct positives) but a small recall (they
miss many of the positives).

Class-wise detection results reveal large differences between
the target classes, as illustrated in Fig. 7 by the F1-scores
(contains only systems from Table I). The figure reveals that
“car” class was easiest to detect, while “brakes squeaking” and
“children” were rather difficult. For many systems, some classes
go completely undetected (e.g. “children” not detected by 25 of
36 systems).4 Another notable aspect is the systems’ behavior
with regard to the class-wise balance of detection performance,
observable in the columns of Fig. 7. Interestingly enough, top
systems only detect 3 or 2 of the 6 classes, which is reflected in
the macro-average F1-score (average of class-wise F1-scores, as
opposed to micro-average where the number of true positives,
etc. is accumulated across all classes [16]). On the other hand,
the system by Kroos (neuroevolution) [37] has a macro F1-score
of 29%, compared to Adavanne et.al. [38] at 23%, while the
most balanced output class-wise is a variant of the Dang NCU
submission (not the one in Fig. 7), having the highest macro
F1-score among all submissions (37%). Unfortunately, it also
has a very high false positive rate that ranks it very low among
submissions (rank 30).

The top ranked system by Adavanne et al. [32] with an ER
of 0.79 achieves an overall F1-score of 41.7%. The difference
between its performance on the development set and evaluation
set is the extremely large ER of 0.25 vs. 0.79 and F1-score of

4Detailed class-wise ER and F1-scores for all systems can be accessed on
the challenge website, http://dcase.community/challenge2017/task-sound-event-
detection-in-real-life-audio-results.
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Fig. 7. Class-wise F1-score of top system per team, according to Table VI.
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79.3% vs 41.7%–possibly indicating overfitting. The system
actually does not detect at all one of the six target classes
(brakes squeaking), and detects only few instances of children
and people speaking, but erroneously (F1 = 0, ER > 1).

An important observation based on this analysis is the
preference of deep learning methods to output a small amount of
positives, with this phenomenon affecting mostly the classes for
which there were less examples in training. Their optimization
with respect to ER as a metric therefore compensates for the
inability of learning the small classes by learning well the
larger ones, and producing a mostly correct output. As a general
conclusion, for this task and with this benchmark dataset, we
cannot state that any deep learning architecture offers superior
performance compared to others, therefore the field is still open
for investigation.

C. Task 4 - Large-scale detection of sound events using weakly
labeled audio recordings from videos

Task 4 had 55 submissions from 9 different teams as shown
in Table IV, among which 31 corresponded to Subtask A:
Audio Tagging and 24 to Subtask B: Sound Event Detection.
A summary of Subtask B systems and their performance is
provided in Table VII. A visualization of the performance and
ranking is shown in Fig. 8. The systems were evaluated and
ranked using the segment-based ER in one second segments.
All the submissions outperformed the baseline performance on
the evaluation set in terms of ER, which was 0.93, with a top
achieved ER of 0.66 [39]. The F1-score was also calculated for
each 10 seconds clip to understand better the performance of the
systems. All the submissions outperformed the F1-score baseline
of 28.4%, and the top-ranked system achieved 55.5% [39].

Confidence intervals are presented in Table VII and Fig. 8 to
statistically compare the systems’ performance. The confidence
intervals show that the systems performed significantly better
than the baseline in terms of ER and F1-score. The system
ranked first is better than the rest, but there is a cascaded overlap
between the second and the seventh place.

The overall performance of Warning sounds was better than
Vehicle sounds across all systems. The results are consistent
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with what we expect from human hearing. Warning sounds
(i.e. sirens, honks and alarms) are explicitly designed to be
heard by humans due to their properties, such as fast increase
in amplitude, high loudness and high frequencies. The classes
with highest and lowest F1-score (and ER) are the following,
Warning: Civil defense siren 85.8% (0.29) and Ambulance siren
25.7% (0.9), where 11 systems achieved less than 1% (1.0). We
concluded that although there were 4 types of sirens, they were
typically detected as Civil defense siren, which after inspection,
seemed to be the most distinctive out of all; Vehicle: Train
75.4% (0.51) and Car passing by, which was not detected by
15 systems and was mostly labeled as Car. It is hard to tell
why Train performed better than other classes like Motorcycle.
After inspection, we found that in general, Train recordings did
not co-occur with other vehicles, in contrast to Bus, Truck and
Car. This explanation also applied to Skateboard.

Classes had an imbalanced number of samples as shown
in Table II, but this was not strongly related to performance.
For example, Car and Truck with 25,077 and 6,885 training
samples had a corresponding best detection of 67% (0.73) and
46.9% (0.92) and ranked in seventh and fifteenth out of the
17 classes based on ER. Conversely, Car alarm and Reversing
beeps had 180 and 245 training samples with a corresponding
best detection of 58.6% (0.66) and 52.4% (0.74) and ranked

in fourth and eighth. Civil defense siren was first with 1,409
training samples and 85.8% (0.29). Car passing by was last
with 3,630 training samples and 24.1% (1.0). It is to be noted
that the development set includes at least and about 30 samples
per class for testing and the rest are for training. Participants
typically used the entire development set to train their systems
for evaluation. In general, there was no overfitted system to the
development set and systems performed better in the evaluation
set.

About 9% of the recordings had two or three labels which
implied overlapping sounds within the recordings. The labels
are derived from an ontology defined by the authors of AudioSet.
For example, sound classes that could naturally co-occur together,
such as Truck and Truck Horn. This is a common problem
in real-life audio where sounds rarely occur in isolation and
often overlap. Moreover, we included the class Car, which
although sometimes was the super class of, for example, Police
car siren and Car passing by, it mainly occur independently.
After inspecting the class Car, it evidenced a wide acoustic
diversity, such as the sound of the car engine but with the car
still, the sound of the car moving recorded from the inside, and
from the outside, and the sound of the car changing gears. The
case of multi labels corresponding to super classes poses an
interesting reflection on how should we define sound ontologies,
labels and how should we use them for training sound event
detectors.

The challenge of training systems using weak labels was
approached differently. The best performances came from
systems that processed the weak labels. Table II shows, for
the evaluation set, the average duration of a sound event based
on the strong labels. Note that the average duration across
classes is 5 seconds, which is 50% of the provided 10-second
clips. Hence, the importance of exploring the impact of weak
labels in this task. Lee et al. [39] used a global-input and
separated-input system to process an audio recording as a whole
and per segment. Then, the output was used to perform weak
(whole recording) and strong (per segment) predictions. Xu et
al. [40] used a neural network architecture with attention, which
ideally focused on regions where the target sound occurred.
Salomon et al. [41] used multiple instance learning, where
training data are labeled as bags of examples, a bag is positive
if any of its constituent examples are positive, and negative if
none of its examples are positive. Adavanne et al. [38] did not
pre-process the weak labels. However, they used an architecture
that branches out into both, weak and strong label outputs, hence
learning from both types of annotations and performing both
types of predictions. Lastly, there were two participants which
treated weak labels as strong labels.

All the systems were based on log-mel spectrogram features
and convolutional neural networks. Two participants prepro-
cessed the raw audio. Lee et al. [39] normalized the amplitude
of each audio signal using its corresponding absolute maximum
amplitude value and then applied background noise removal
by subtracting the median value. Salamon et al. [41] used data
augmentation in the form of pitch shifting and dynamic range
compression. The log-mel spectrogram features were extracted
with different window sizes across systems ranging from 1 to 5
seconds, with typically 50% overlap and with a range of 40
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TABLE VII
S U M M A RY O F T H E S Y S T E M S S U B M I T T E D F O R L A R G E - S C A L E D E T E C T I O N O F S O U N D E V E N T S U S I N G W E A K LY L A B E L E D A U D I O

R E C O R D I N G S ( TA S K 4 ) .

System Features Classifier F1 (%) F1JK ± 95% CI (%) ER ERJK ± 95% CI

Lee SNU 4 log-mel energies CNN, ensemble 55.5 53.92± 3.19 0.66 0.6720± 0.0319
Xu CVSSP 1 log-mel energies CRNN 51.8 51.78± 3.09 0.73 0.7337± 0.0309
Lee KAIST 4 raw waveforms CNN 47.1 47.10± 3.06 0.75 0.7527± 0.0306
Salamon NYU 4 log-mel energies ensemble 45.9 45.87± 3.21 0.77 0.7652± 0.0321
Adavanne TUT 4 log-mel energies CRNN 49.0 49.04± 4.07 0.79 0.7863± 0.040
Chou SINICA 1 spectrogram CNN 42.4 42.45± 3.02 0.83 0.8326± 0.0302
Toan NCU 4 log-mel energies DenseNet 41.6 41.59± 2.70 0.87 0.8680± 0.0270
Baseline log-mel energies MLP 28.4 28.38± 2.94 0.93 0.9264± 0.0294

to 128 mel filterbanks. Lee et al. [42] employed raw audio
signal as the input of their system, which internally used a
multi-level and multi-scale CNN to extract spectrograms with
optimal parameter values, such as hop size and window size.
The features were then passed to CNNs, which had a number of
convolutional layers that varied from 3 to 16 and the number of
filters were up to 128. Three teams [38], [41], [43] considered
temporal information by adding recursive neural networks to
their architectures. Interestingly, the top six submissions from
three different participants did not contemplate the temporal
information.

Further post-challenge research was carried by some other
authors. For example in [44], the authors used an audio-visual
approach to match co-occurrences of images and sounds to
locate the target sound from the weak labels. The authors in [45]
used a multi-level attention model to focus on the target sound
indicated by the weakly labels. Lastly, inspired by DCASE
2017’s Task 4, a similar task was organized in DCASE 2018
called Large-Scale Weakly Labeled Semi-Supervised Sound
Event Detection in Domestic Environments [46].

V. C R O S S - TA S K S U B M I S S I O N S

A few teams submitted to multiple tasks. For example Dang
et al. [43] submitted systems using the same architecture to all
four tasks (systems Dang NCU in Tasks 2 and 3, Toan NCU
in Task 4). The systems used parallel networks, one CNN and
one RNN, with the purpose of learning spatial information of
multidimensional data with the CNN, and learning temporal
sequential information with the RNN. Slightly different features
and temporal resolutions were used for the different classes and
tasks: 40 log mel energies calculated in 40 ms window size
and 20 ms hop for Baby crying and Glass breaking classes,
20 MFCCs with delta and acceleration (60-dimensional) for
the gunshot class in Task 2; 20 ms window size with 10 ms
hop for all classes and the same 60-dimensional vector of
MFCC coefficients in Task 3; 64 log mel energies calculated
with window size of 1024 and hop size of 256 (≈46 ms
and ≈12 ms for audio downsampled to 22050 Hz) in Task 4.
Regarding system optimization, they mentioned within the Task
4 description that the optimal set of parameters is determined
at the peak of F-score of the development set—which explains
their ranking in the lower half of the board; the systems being
optimized using F1-score, ranked low in terms of ER.

Another system architecture submitted to multiple tasks (Tasks
1, 2 and 3) was submitted as Li SCUT [47], and was based

on extracting bottleneck features (Deep Audio Features) using
frame-based processing, and Bi-LSTM for classification. The
authors provide no further details about parameter optimization
per task, only mention that the classification output is different
depending on the task (single or multi label). The systems
ranked in the bottom quarter in Tasks 2 and 3.

Adavanne TUT systems [38] used the same system architec-
ture for Tasks 3 and 4, with the main difference in the number
of nodes in layers to accommodate the larger amount of data in
Task 4. The method did not treat the strong labels in Task 3
and the weak labels in Task 4 any differently: for training with
weak labels, the system simply considered the annotated target
sound as being active throughout the entire training sample, a
procedure recently called strong label assumption [48] or false
strong labeling [49]. The method ranked first in Task 3, but
only 7th in Task 4, which indicates that strong labels have a
significant impact on model learning; however, in Task 4, the
system generalized much better than in Task 3 (see Sec. IV-B),
having similar performance on development and evaluation
datasets, likely as a result of sufficient amount of development
data to avoid overfitting.

Lee SNU systems [35], [39] took a completely different
approach, submitting different systems to tasks 3 and 4. For
Task 3, they used a CNN with inputs of different time length,
short-term data, corresponding to ≈4s, and long-term data,
corresponding to the entire audio file (3-5 minutes), for which
log-mel and long-term averaged log-mel are merged within the
network. The system was specifically designed to detect events
with 1 s time resolution, corresponding to the evaluation metric
segment length. One interesting detail is that their best system,
ranked second in Task 3, was an ensemble of 3 models, while
the other ones were ensembles of 4 models, with one model
calculated in each fold. The authors mention they worried that
the exceedingly poor performance in fold 1 might mean that
the fold 1 model failed learning.

For Task 4, the Lee SNU systems consist of an ensemble
of CNNs that use various analysis windows, having a global-
input model that uses the entire length of the clip, and multiple
separated-input models corresponding to segments of 1, 2,
3, 4, and 5-seconds from the audio clip, with a 1-second
sliding window. The models were optimized using F1 or ER,
corresponding to each subtask, and ensemble selection was
performed by repeating iterations and adding a model that
maximizes performance at each point. All 4 systems ranked top
(one was ranked first, 3 ranked second, with same performance),
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and had significantly better performance than the competitors
(see Fig.8 and Table VII).

These systems, along with the baseline system, show that
indeed different sound event classification and detection tasks
can be solved using the same core method. In some cases, such
approach may provide satisfactory results. However, careful
consideration of the problem and task-specific design will likely
produce better performance. When drawing inspiration from
the solution to other problems, one must not forget to adapt the
method to the problem at hand, with more than hyper-parameter
optimization.

V I . C O N C L U S I O N S

The DCASE Challenge has already become a familiar yearly
event, and continues to develop under the influence of popular
research directions and the spur of open datasets creation and
publication that it has generated.

One lesson learned from DCASE 2017 (and, implicitly,
DCASE 2016), is that sound event detection in real-life audio
based on strong labels is not a suitable task for the time being.
This is largely due to the scarcity of available strongly-labeled
data, and this problem is not likely to be solved soon due to the
difficulty of obtaining annotations for a sufficiently large dataset.
The currently available data amounts that are strongly labeled
are limiting in the size and depth of deep neural networks that
can be trained with them. The results presented in this paper
indeed show that networks trained with such small amount
of data are learning only the more common classes and have
inconsistent behavior regarding the less common ones. Emergent
approaches such as one-shot or few-shot learning might be able
to cope with the small classes; nevertheless, the datasets remain
small, unsuitable for the current trends in machine learning.

Of course it is possible to use synthetic mixtures created using
isolated sound instances, such that the reference annotation is
created at the same time with the audio mixture. One challenge
in this is that these mixtures should be created such that they
mimic real-life data, and this is not trivial. Until now, the
synthetic data used in DCASE tasks was rather simplistic —
for example the DCASE 2016 Task 2 synthetic audio dataset
used a morphological model for creating the mixtures [50], but
it was based on a very small number of event instances, while
this year’s Task 2 rare sound events dataset did not use any
specific knowledge or rules for background and target event
combinations.

Nevertheless, the topic of sound event detection attracts
a lot of interest from the scientific community, and the
DCASE 2017 Challenge offered an updated overview of the
approaches, compared to the previous editions. For the first
time, convolutional networks have dominated the methods in all
three analyzed tasks, while mel representations continued to be
the most commonly used features, and much of the difference
in the submitted systems was down to network architecture or
choice of parameters.

The role of DCASE challenge in advancing the research on
sound event detection comes through successive editions bringing
new and more realistic setups to the task. From detection of
non-overlapping sound events in DCASE 2013 [13], to detection

of overlapping sound events in synthetic mixtures and real-life
recordings in DCASE 2016 [14], the challenge has evolved
to presenting participants with problems that reflect real-life
applications. DCASE 2017 Challenge is the first that brought the
data imbalance to the task through the rare sound event detection,
and the weakly-labeled data problem, and compelled participants
to approach the detection task differently. The aftermath of
DCASE 2017 includes research directed towards dealing with
low-resource datasets, imbalanced data, and a dramatic increase
in methods based on weakly-labeled data. Also, this was the
first open public challenge for sound event detection on web
videos, which is arguably the main source of sound events. It
served as a motivation for similar tasks in following DCASE
challenges and Kaggle competitions.

Feedback collected after the challenge and workshop shows
that challenge participants were generally happy with the
challenge organization and schedule, with most of the 42
respondents rating the organizational aspects as very good.
Their motivation for participating in different tasks was diverse;
some have worked on similar topics before, others considered
the case of real-world data and overlapping sounds very
interesting and challenging. General comments include wishes
for open set classification problems, tasks geared towards wildlife
preservation and bioacoustics, sound event detection in videos,
spatial data, and unsupervised learning. One often encountered
request is for participants to have repeated feedback about their
systems in the form of a leaderboard, to use the competitive
setting as a catalyst in pushing participants to further develop
their systems.

V I I . F U T U R E W O R K

The 2018 edition marks the shift to the decentralized organi-
zation, with each task being separately coordinated by one group
of researchers, and very light overall coordination regarding
deadlines and submission formats. DCASE 2018 Challenge had
five tasks: acoustic scene classification [51], general-purpose
audio tagging of Freesound content with AudioSet labels [52],
bird audio detection [53], large-scale weakly labeled semi-
supervised sound event detection in domestic environments [46],
and monitoring of domestic activities based on multi-channel
acoustics [54]. One notable evolution in DCASE 2018 Challenge
is the absence of the strongly-labeled sound event detection
task, according to previously presented conclusion. The current
tasks reflect the interest of the individual organizer groups, and
were selected through a proposal process in which the steering
committee has reviewed, provided feedback and approved the
tasks. With each new edition, the challenge brings new active
topics and new open datasets for the research community, being
an important advocate of reproducible research.
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