A. Abraham, M. P. Milham, A. D. Martino, R. C. Craddock, D. Samaras et al., Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example, NeuroImage, vol.147, pp.736-745, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01398867

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093971

S. Amari and H. Nagaoka, Methods of information geometry, 2007.

Y. Behzadi, K. Restom, J. Liau, and T. T. Liu, A component based noise correction method (CompCor) for BOLD and perfusion based fMRI, Neu-455 roImage, vol.37, pp.90-101, 2007.

P. Bellec, P. Rosa-neto, O. C. Lyttelton, H. Benali, and A. C. Evans, Multilevel bootstrap analysis of stable clusters in resting-state fMRI, NeuroImage, vol.51, pp.1126-1139, 2010.

C. M. Bishop, Pattern recognition and machine learning, 2006.

M. R. Brier, A. Mitra, J. E. Mccarthy, B. M. Ances, and A. Z. Snyder, Partial covariance based functional connectivity computation using ledoit-wolf covariance regularization, NeuroImage, vol.121, pp.29-38, 2015.

E. Challis, P. Hurley, L. Serra, M. Bozzali, S. Oliver et al., Gaussian process classification of alzheimer's disease and mild cognitive impairment from resting-state fMRI, NeuroImage, vol.112, pp.232-243, 2015.

Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, Shrinkage algorithms for 470 MMSE covariance estimation, IEEE Transactions on Signal Processing, vol.58, p.5016, 2010.

G. L. Colclough, S. M. Smith, T. E. Nichols, A. M. Winkler, S. N. Sotiropoulos et al., The heritability of multi-modal connectivity in human brain activity, 2017.

J. H. Cole, S. J. Ritchie, M. E. Bastin, M. C. Hernández, S. M. Maniega et al., Brain age predicts mortality. Molecular Psychi-480 atry, 2017.

A. Crimi, Maximum a posteriori estimation of linear shape variation with application to vertebra and cartilage modeling, IEEE Trans on Med Imag, 2011.

K. Dadi, A. Abraham, M. Rahim, B. Thirion, and G. Varoquaux, Comparing functional connectivity based predictive models across datasets, 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01319131

M. J. Daniels and R. E. Kass, Shrinkage estimators for covariance matrices, Biometrics, vol.57, pp.1173-1184, 2001.

D. K. Dey and C. Srinivasan, Estimation of a covariance matrix under stein 495 loss, The Annals of Statistics, vol.13, pp.1581-1591, 1985.

B. Efron and C. Morris, Stein Estimation Rule and Its Competitors. An Empirical Bayes Approach, Journal of the American Statistical Association, vol.68, p.2284155, 1973.

B. Efron and C. Morris, Stein paradox in statistics, Scientific American, vol.236, pp.577-119, 1977.

M. Ercsey-ravasz, N. T. Markov, C. Lamy, D. C. Essen, K. Knoblauch et al., A predictive network model of cerebral cortical connectivity based on a distance rule, Neuron, vol.80, pp.184-197, 2013.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, pp.432-441, 2007.

M. Hinne, L. Ambrogioni, R. J. Janssen, T. Heskes, and M. A. Van-gerven, Structurally-informed bayesian functional connectivity analysis, NeuroImage, vol.86, pp.294-305, 2014.

W. James and C. Stein, Estimation with Quadratic Loss, 4th Berkeley 530 Symposium on Maths Statistics and Probability, 1961.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, FSL. NeuroImage, vol.62, pp.782-790, 2012.

O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, J. of Empirical Finance, vol.10, 2003.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, pp.365-411, 2004.

E. L. Lehmann and G. Casella, Theory of point estimation, 2006.

C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing, Journal of Mathematical Imaging and Vision, vol.25, pp.423-444, 2006.

F. Liem, G. Varoquaux, J. Kynast, F. Beyer, S. K. Masouleh et al., Predicting brain-age from multimodal imaging data captures cognitive impairment, NeuroImage, vol.148, pp.179-188, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01403005

N. T. Markov, M. Ercsey-ravasz, A. Ribeiro-gomes, C. Lamy, L. Magrou et al., A weighted and directed interareal connectivity matrix for macaque cerebral 555 cortex, Cerebral cortex, vol.24, pp.17-36, 2012.

A. F. Mejia, M. B. Nebel, A. D. Barber, A. S. Choe, and M. A. Lindquist, Effects of Scan Length and Shrinkage on Reliability of Resting-State Functional Connectivity in the Human Connectome Project, 2016.

K. L. Miller, F. Alfaro-almagro, N. K. Bangerter, D. L. Thomas, E. Yacoub et al., Multimodal population brain imaging in the UK biobank prospec-565 tive epidemiological study, Nature Neuroscience, vol.19, pp.1523-1536, 2016.

B. Ng and M. Dressler, Transport on riemannian manifold for functional connectivity-based classification, pp.405-412, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058521

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., , p.570

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas et al., Scikitlearn: Machine learning in Python, Journal of Machine Learning Research, vol.12, p.2825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

X. Pennec, P. Fillard, and N. Ayache, A riemannian framework for tensor 575 computing, International Journal of Computer Vision, vol.66, pp.41-66, 2006.

A. Qiu, A. Lee, M. Tan, and M. K. Chung, Manifold learning on brain functional networks in aging, Medical Image Analysis, vol.20, pp.52-60, 2015.

J. Richiardi, M. Gschwind, S. Simioni, J. M. Annoni, B. Greco et al., Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity, Neuroimage, vol.62, pp.2021-2033, 2012.

J. Schäfer and K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Statistical Applications in Genetics and Molecular Biology, vol.4, 2005.

S. M. Smith and K. L. Miller, Network modelling methods for FMRI, Neuroimage, vol.54, p.875, 2011.

S. M. Smith, T. E. Nichols, D. Vidaurre, A. M. Winkler, T. E. Behrens et al., A positive-negative mode of population covariation links brain connectivity, demographics and behavior, Nature Neuroscience, vol.18, pp.1565-1567, 2015.

S. M. Smith, D. Vidaurre, C. F. Beckmann, M. F. Glasser, M. Jenkinson et al., Functional connectomics from resting-state fMRI, Trends in Cognitive Sciences, vol.17, pp.666-682, 2013.

C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, 3rd Berkeley Symposium on Maths Statistics and Probability, 1956.

J. R. Taylor, N. Williams, R. Cusack, T. Auer, M. A. Shafto et al., , p.605

L. K. Tyler, -. Cam, and R. N. Henson, The cambridge centre for ageing and neuroscience (cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample, NeuroImage, vol.144, pp.262-269, 2017.

D. Van-essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens et al., , p.615

S. Smith, A. Snyder, J. Xu, and E. Yacoub, The human connectome project: A data acquisition perspective, NeuroImage, vol.62, pp.2222-2231, 2012.

D. C. Van-essen and S. M. Smith, The WU-minn human connectome 620 project: An overview, NeuroImage, vol.80, pp.62-79, 2013.

G. Varoquaux and R. C. Craddock, Learning and comparing functional connectomes across subjects, NeuroImage, vol.80, pp.405-415, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812911

G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion, Multi-subject dictionary learning to segment an atlas of brain spontaneous 625 activity, Biennial International Conference on Information Processing in Medical Imaging, pp.562-573, 2011.

G. Varoquaux and A. Gramfort, Brain covariance selection: better individual functional connectivity models using population prior, p.2334, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00512451

G. Varoquaux, Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00512417

C. H. Xia, Z. Ma, R. Ciric, S. Gu, R. F. Betzel et al., , p.635

D. R. Ruparel, K. Wolf, D. H. Davatzikos, C. Gur, R. C. Gur et al., Linked dimensions of psychopathology and connectivity in functional brain networks, 2017.

L. L. Zeng, H. Shen, L. Liu, L. Wang, B. Li et al., , p.640

D. Hu, Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis, Brain, vol.135, pp.1498-1507, 2012.