
HAL Id: hal-02073854
https://inria.hal.science/hal-02073854

Submitted on 20 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning URI Selection Criteria to Improve the
Crawling of Linked Open Data

Hai Huang, Fabien Gandon

To cite this version:
Hai Huang, Fabien Gandon. Learning URI Selection Criteria to Improve the Crawling of Linked
Open Data. ESWC2019 - 16th Extended Semantic Web Conference, Jun 2019, Portoroz, Slovenia.
�hal-02073854�

https://inria.hal.science/hal-02073854
https://hal.archives-ouvertes.fr

Learning URI Selection Criteria to Improve the
Crawling of Linked Open Data

Hai Huang1[0000−0003−1412−0567] and Fabien Gandon1[0000−0003−0543−1232]

Inria, Université Côte d’Azur, CNRS, I3S, France
{Hai.Huang,Fabien.Gandon}@inria.fr

Abstract. As the Web of Linked Open Data is growing the problem
of crawling that cloud becomes increasingly important. Unlike normal
Web crawlers, a Linked Data crawler performs a selection to focus on
collecting linked RDF (including RDFa) data on the Web. From the
perspectives of throughput and coverage, given a newly discovered and
targeted URI, the key issue of Linked Data crawlers is to decide whether
this URI is likely to dereference into an RDF data source and therefore
it is worth downloading the representation it points to. Current solutions
adopt heuristic rules to filter irrelevant URIs. Unfortunately, when the
heuristics are too restrictive this hampers the coverage of crawling. In
this paper, we propose and compare approaches to learn strategies for
crawling Linked Data on the Web by predicting whether a newly discov-
ered URI will lead to an RDF data source or not. We detail the features
used in predicting the relevance and the methods we evaluated including
a promising adaptation of FTRL-proximal online learning algorithm. We
compare several options through extensive experiments including exist-
ing crawlers as baseline methods to evaluate their efficacy.

Keywords: Linked Data · Crawling Strategy · Machine Learning · On-
line Prediction

1 Introduction

Linked Data extends the principles of the World Wide Web from linking docu-
ments to that of linking pieces of data to weave a Web of Data. This relies on
the well-known linked data principles [10,1] including the use of HTTP URIs
that can be dereferenced and the provision of useful and linked description upon
access so that we can discover more things.

Recently, a large amount of data are being made available as linked data
in various domains such as health, publication, agriculture, music, etc., and
the Web of Linked Data is growing exponentially [8]. In order to harvest this
enormous data repository, crawling techniques for Linked Data are becoming
increasingly important. Different from conventional crawlers, crawling for Linked
Data is performed selectively to collect structured data connected by RDF links.
The target of interest makes it distinct from focused crawlers which select the
collection of Web pages to crawl based on their relevance to a specific topic.

2 Huang, Gandon

The design objective of Linked Data crawlers is to fetch linked RDF data in
different formats – RDF/XML, N3, RDFa, JSON-LD, etc. – as much as possible
within a reasonable time while minimizing the download of irrelevant URIs – i.e.
leading to resources without RDF content. Therefore our challenge is to identify
as soon as possible the URIs referencing RDF sources without downloading
them. The research question here is: can we learn efficient URI selection criteria
to identify sources of Linked Open Data?.

To solve this problem, in this paper we propose and compare methods on real
data to predict whether a newly discovered URI will lead to RDF data source or
not. We extract information from the targeting and referring URI and from the
context (RDF data graph) where URIs and their links were discovered in order
to produce features fed to learning algorithms and in particular to an FTRL-
proximal online method employed to build the prediction model. FTRL-proximal
is a time efficient and space efficient online learning algorithm, which can handle
significantly larger data sets. It is also effective at producing sparse models which
is important when the feature space is huge. FTRL-proximal outperforms the
other online learning algorithms in terms of accuracy and sparsity.

The contributions of this work include: 1) we identify the features to predict
whether a target URI will lead to some RDF data or not; 2) we adapt the FTRL-
proximal algorithm to our task and build an online prediction model; and 3) we
implement a Linked Data crawler with the online prediction model and evaluate
its performance.

The paper is organized as follows. Section 2 introduces related work, followed
by preliminary knowledge in Section 3. Section 4 describes feature extraction
and online prediction model. In Section 5 we present the implementation of the
proposed crawler. The experimental setup and results are described in Section
6. We conclude our work in Section 7.

2 Related Work

Semantic Web/Linked Data Crawlers. Semantic web crawlers differ from
traditional web crawlers in only two aspects: the format of the source (RDF
format) it is traversing, and the means to link RDF across data sources. There
exist some work [6,13,12] in the field of Semantic Web/Linked Data crawling.
The two main representative crawlers for Linked Data are LDSpider [13] and
SWSE crawler [12]. They crawl the Web of Linked Data by traversing RDF links
between data sources and follow the Linked Data principles [10,1]. They offer
different crawling strategies such as breadth-first and load-balancing traversal.

In order to reduce the amount of HTTP lookups and downloading wasted on
URIs referencing non-RDF resources, these previous works apply heuristic rules
to identify relevant URIs [13,12]. The URIs with common file extensions (e.g.,
html/htm, jpg, pdf, etc.) and those without appropriate HTTP Content-Type
Header (such as application/rdf+xml) are classified as non-RDF content URIs.
The content of these URIs would not be retrieved by these crawlers. Although
this heuristic-based method is efficient, it impairs the recall of the crawling.

Learning URI Selection Criteria 3

This method makes the assumption that data publishers have provided correct
HTTP Content-Type Header but this is not always the case. It can happen
that the server does not provide the desired content type. Moreover, it may
happen that the server returns an incorrect content type. For example, Free-
base does not provide any content negotiation or HTML resource representation
[9], and only text/plain is returned as content type. In [11], it is reported that
17% of RDF/XML documents are returned with a content-type other than ap-
plication/rdf+xml. As a result, a huge volume of RDF data is missed by these
methods.

Focused Crawlers on the Web. Traditional focused crawlers on the Web
aim to crawl a subset of Web pages based on their relevance to a specific topic
[4,5]. These methods build a relevancy model typically encoded as a classifier to
evaluate the web documents for topical relevancy. Our work here is different in
the sense that we do not filter on the topics but on the type of content. Meusel
et al. [17] proposed a focused crawling approach to fetch microdata embedded
in HTML pages. Umbrich et al. [18] built a crawler focused on gathering files of
a particular media type and based on heuristics.

Online Prediction. Our problem is also related to the classic online binary
prediction in which data becomes available in a sequential order and the learner
must make real-time decisions and continuously improve performance with the
sequential arrival of data. Some methods have been developed such as Stochastic
Gradient Descent (SGD) [3], RDA [20], FOBOS [7] and FTRL-Proximal [16,15].
Among them, FTRL-Proximal which is developed by Google has been proven to
work well on the massive online learning problem of predicting ad click–through
rates (CTR). We adapt the FTRL-Proximal to our prediction task in this work.

3 Preliminary Knowledge

In this section, we introduce some basic definitions and notations used through-
out the paper. The Linked Data crawler targets a kind of structured data repre-
sented in RDF format on the Web. The Resource Description Framework (RDF)
provides a structured means of publishing information describing entities and
their relationships in RDF triples. The main concepts of RDF and Linked Data
we need here are:

Definition 1. (RDF Triple) A triple t = (s, p, o) ∈ (U ∪B)× U × (U ∪B)×
(U ×B × L) is called an RDF triple where U denotes the set of URI, B the set
of blank nodes and L the set of literals. In such a triple, s is called subject, p
predicate, and o object.

Definition 2. (RDF Graph) An RDF graph G = (V,E) is a set of RDF
triples such that V is the node set and E is the edge set of G.

4 Huang, Gandon

Definition 3. (HTTP Dereferencing) The act of retrieving a representation
of a resource identified by a URI is known as dereferencing that URI. We define
HTTP dereferencing as the function deref : U → R which maps a given URI
to the representation of a resource returned by performing the HTTP lookup
operations upon that URI and following redirections when needed.

4 Prediction Model for Crawling Criteria

In this section, we present the prediction task, the feature sets extracted for
the task of prediction and then describe the prediction model based on FTRL-
proximal online learning algorithm.

4.1 Task description

Since the task of Linked Data crawler is to fetch RDF data on the Web we are
interested in a kind of URIs that we call RDF-relevant URIs:

Definition 4. (RDF-Relevant) Given a URI u, we consider that u is RDF-
relevant if the representation obtained by dereferencing u contains RDF data.
Otherwise, u is called non RDF-relevant. We note UR the set of RDF relevant
URIs and U I the set of non RDF-relevant URIs with U = UR∪̇U I .

For the URIs that have certain file extensions such as *.rdf/owl or HTTP
Content Types Headers such as application/rdf+xml, text/turtle, etc., it is trivial
to know the RDF-relevance of them. In this work, we focus on a knid of URIs
called hard URIs whose RDF-relevance cannot be known by these heuristics.

Definition 5. (Hard URI) We call u a hard URI if the RDF relevance of u
cannot be known straightforwardly by its file extension or HTTP Content-Type
Header.

For example, URI u with HTTP Content-Type header text/html is a hard
URI since RDFa data could be embedded in u. As reported in [9], the URIs with
HTTP Content-Type Header text/plain may contain RDF data so they are hard
URIs too.

Then, for our prediction task, we consider four types of URIs involved in the
prediction we want to make: the target URI, the referring URI, direct property
URIs and sibling URIs.

Definition 6. (Target URI) We call target URI and note ut the URI for which
we want to predict if the deref(ut) will lead to a representation that contains
RDF data i.e. if ut is RDF-Relevant.

Definition 7. (Context RDF Graph) Given an RDF relevant URI ur con-
taining the RDF graph Grt , we define Grt = (V,E) as the context RDF graph of
URI ut if ut appears in Grt as a node, i.e., ut ∈ V .

Learning URI Selection Criteria 5

Definition 8. (Referring URI) Given a target URI ut, we call “referring
URI” and note ur the RDF-relevant URI that was dereferenced into a represen-
tation deref(ur) containing the context RDF graph Grt in which we discovered
the target URI ut.

Definition 9. (Sibling Set) The sibling set of ut in the context RDF Graph Grt
denoted by Sibut

is the set of all other URIs that have common subject-property
or property-object pair with ut in Grt . Sibut is formally defined as:

Sibut = {s|∃p, o ∈ Grt , s.t.(ut, p, o) ∈ Grt ∧ (s, p, o) ∈ Grt}
∨ {o|∃s, p ∈ Grt , s.t.(s, p, ut) ∈ Grt ∧ (s, p, o) ∈ Grt}

(1)

Definition 10. (Direct property Set) The direct property set PSt is the set
of properties that connect ut in the context graph Grt :

PSt = {p|∃s, o ∈ Gct , s.t.(ut, p, o) ∈ Grt ∨ (s, p, ut) ∈ Grt} (2)

Prediction Task. Using these definitions we can now define our prediction
task. Suppose that a hard URI ut is discovered from the context graph Grt
obtained by dereferencing a referring URI ur. We want to predict if ut is RDF-
relevant based on some features extracted from ut, ur, PSt and Sibut

. Our task
is to learn the mapping Relevant : U → {0, 1} with Relevant(u) equals 1 if
u is RDF-relevant (Relevant|UR 7→ 1) and equals 0 if u is not RDF-relevant
(Relevant|UI 7→ 0)

4.2 Feature Extraction

We distinguish between two kinds of features that can be exploited for the pre-
diction intrinsic and extrinsic.

Definition 11. (intrinsic URI features) The intrinsic features of a URI u
are features obtained by an extraction Fint : U → F that relies exclusively on the
URI identifier itself.

An example of an intrinsic feature is the protocol used e.g. http.

Definition 12. (extrinsic URI features) The extrinsic features of a URI u
are features obtained by performing some network call on the URI Fext : U → F .

The URI generic syntax consists of a hierarchical sequence of several compo-
nents1. An example of URI is shown in Fig.1.

The intrinsic features Fint(u) consider that the different components of a
URI u are informative and contain helpful information for prediction. The com-
ponents include: scheme, authority, host, path, query, fragment information. We
generate the intrinsic features of u based on these components.

For example, the features Fint(u) when u equals the URI shown in Fig.1 are
described as follows:
1 RFC 3986, section 3(2005).

6 Huang, Gandon

Fig. 1. Example of a URI with component parts.

– feature u scheme=‘https’
– feature u authority=‘john.doe@www.example.com:123’
– feature u host=‘www.example.com’
– feature u userinfo=‘john.doe’
– feature u path=‘forum/questions’
– feature u query=‘?tag=networking&order=newest’
– feature u fragment=‘top’

We further distinguish two kinds of extrinsic features:

Definition 13. (URI header features) These extrinsic features of a URI u
are obtained by an HTTP HEAD call Fhead : U → F and do not require to download
the representation of the resource identified by u.

Definition 14. (URI representation features) These extrinsic features of
a URI u are obtained by an HTTP GET call Fget : U → F and characterize the
content obtained after a complete download of the representation of the resource
identified by u.

We distinguish Fhead and Fget because they have different costs in terms of
network access time. The URI header feature we will consider in this paper is
the content type e.g. feature ut contentType=‘text/html’.

URI representation features come from the content of the referring URI ur,
namely the context graph Grt of ut which include the direct properties and
siblings information of ut.

Definition 15. (URI similarity features) The similarity between two URIs
us and ut denoted by simV alue(us, ut) is defined using the Levenshtein distance[14]
between the two strings representing these URIs. In order to reduce the feature
space, a threshold τ is set for the similarity value and if the similarity value
is larger than τ , we discretize the similarity as simV alue(ut, us) = high and
otherwise simV alue(ut, us) = low.

Definition 16. (RDF relevance features) The boolean characteristic of being
RDF-relevant for a URI u is noted FRDFrel(u) and returns true if u is RDF-
revelant and false otherwise.

With the types of features explained above we can now define four atomic
feature sets based on the sources the features come from to explore and evaluate
when training and predicting the RDF-relevance of a target URI ut:

Learning URI Selection Criteria 7

– F+t = Fint(ut) + Fhead(ut) is a feature set considering the intrinsic and
header features of the target URI ut.

– F+r = Fint(ur) is a feature set considering the intrinsic features of the
referring URI ur.

– F+p =
⋃
p∈PSt

Fint(p) is a feature set including the intrinsic features of each
direct property of the target URI ut.

– F+x =
⋃

us∈Sibut

Fx(us) is a feature set including feature crosses that combine

the intrinsic, header, similarity and relevance features of the sibling URIs of
ut. This supports predictive abilities beyond what those features can provide
individually and can be interpreted as using a logical conjunction ‘AND’
to combine these features Fx(us) = Fint(us)× Fhead(us) × Fsim(us, ut) ×
FRDFrel(us)

With these definitions we can now consider and evaluate any combination
of feature sets. We note F+a the feature set with a being a combination of
the atomic feature sets as defined above. For instance an experiment using the
feature set F+t+r will only consider as inputs the intrinsic and header features
of the target URI ut and the intrinsic feature of referring URI ur. In Section 6.1,
the predictive abilities of different combinations of the feature sets are examined.

4.3 Feature Hashing

During the process of crawling, the crawler will encounter URIs belonging to mil-
lions of domains, and the number of properties could be tens of thousands. Obvi-
ously, the potential feature space will be huge. Thus, we use feature hashing[19]
technique to map high-dimensional features into binary vectors. Feature hashing
uses a random sparse projection matrix A : Rn → Rm(where n � m) in order
to reduce the dimension of the data from n to m while approximately preserving
the Euclidean norm. In this work, hash function MurmurHash32 is adopted to
map the feature vectors into binary vectors. By hashing the features we can gain
significant advantages in memory usage since we can bound the size of generated
binary vectors and we do not need a pre-built dictionary.

4.4 Online Prediction

We now present our prediction method. In this paper we assume that data be-
comes available in a sequential order during the crawling process. The predictor
makes a prediction at each step and can also update itself: it operates in an on-
line style. Compared to batch methods, online methods are more appropriate for
the task of crawling since the predictor has to work in a dynamic learning envi-
ronment. FTRL-Proximal [16,15] developed by Google has been proven to work
well on the massive online learning problems. FTRL-proximal outperforms the
other online learning algorithms in terms of accuracy and sparsity, and has been

2 https://github.com/aappleby/smhasher/wiki/MurmurHash3

8 Huang, Gandon

widely used in industry, e.g., recommender systems and advertisement systems.
We adopt this learning algorithm in our work.

We use xt to denote the feature vector of URI ut and yt ∈ {0, 1} the true
class label of ut. Given a sequence of URIs u1, u2, · · · , ur, · · · , ut, the process of
online prediction based on FTRL-Proximal algorithm is shown in Algorithm 1.
We adapted the original algorithm to make it output binary values by setting a
decision threshold τ . If the predicted probability pt is greater than the decision
threshold τ ∈ [0, 1], it outputs prediction ŷt = 1; otherwise ŷt = 0.

Algorithm 1: Online prediction with the FTRL-Proximal algorithm

Input: URIs u1, u2, · · · , uT
Result: ŷ1, · · · , ŷT

1 for t = 1 to T do do
2 get feature vector xt of ut;
3 probability pt= sigmoid(xt ·wt);
4 if pt > τ then
5 output ŷt=1;
6 else
7 output ŷt=0;
8 end
9 observe real label yt ∈ {0, 1};

10 update wt+1 by equation (3);

11 end

At round t+ 1, the FTRL-Proximal algorithm uses the update formula (3):

wt+1 = argminw(

t∑
s=1

w · gs +
1

2

t∑
s=1

σs ‖ w −ws ‖22 +λ1 ‖ w ‖1). (3)

In equation (3), wt+1 is the target model parameters to be updated in each
round. In the first item of equation (3), gs is the gradient of loss function for
training instance s. The second item of equation (3) is a smoothing term which
aims to speed up convergence and improve accuracy, and σs is a non-increasing
learning rate defined as

∑t
s=1 σs =

√
t. The third item of equation (3) is a convex

regularization term, namely L1-norm which is used to prevent over-fitting and
induce sparsity.

Subsampling. Not all URIs are considered as training instances since we
are interested in hard URIs. We exclude from training URIs with the extensions
such as *.rdf/owl. Inversely, URIs with the file extension *.html/htm are included
in the training set since they may contain RDFa data.

The true class label yt is required to update the predictor online. In our sce-
nario, to observe the true class label of a URI we have to download it and check
whether it contains RDF data or not. We cannot afford to download all URIs
because of the network overhead, and our target is to build a prediction model
that avoids downloading unnecessary URIs. There, an appropriate subsampling
strategy is needed. We found that the positive URIs are rare (much less than

Learning URI Selection Criteria 9

50%) and relatively more valuable. For each round, if URI ut is predicted pos-
itive namely ŷt = 1, we retrieve the content of ut and observe the real class
label yt. Then the predictor can be updated by new training instance (yt, xt).
For those URIs predicted negative, we only select a fraction ε ∈]0, 1] of them to
download and observe their true class label. Here ε is a balance between online
prediction precision (which requires as many URIs as possible for online train-
ing) and downloading overhead (which requires as few non-RDF relevant URIs
downloaded as possible). To deal with the bias of this subsampled data, we as-
sign an importance weight 1

ε to these examples. In our experiment (Section 6.2),
we set ε as the ratio of the number of positive URIs to the number of negative
URIs in the training set.

5 Implementation of Crawler

We now detail the prototype we tested for the Linked Data crawler and explain
the Algorithm 2 it implements.

Initialization. As shown in Algorithm 2, the proposed crawler starts from
a list of seed URIs and operates an breadth-first crawling since this often leads
to a more diverse dataset instead of traversing deep paths within some given
sites. The maximum crawl depth d max is set for crawling. The Frontier data
structure is initialized by the seed URI list S.

Politeness. At the beginning of each round, a naive crawler obtains a URI
from Frontier to retrieve. However, it would lead to the problem that the crawler
issues too many consecutive HTTP requests to a server and is considered “im-
polite” by the server. Thus, we group the URIs in Frontier into different sets
pld0..n based on their Pay Level Domains(PLDs). URIs are polled from PLD sets
in a round-robin fashion, which means in a round each set pldi has one chance to
select a URI to retrieve (Line 6). We also set a minimum time delay min delay
for each round. If the minimum crawl time of a round is less than min delay, the
crawler will sleep until the condition of minimum time delay is satisfied (Line 36
- Line 39).

Prediction. This is the core of crawling (Line 8 - Line 29). Once a URI ut
with feature vector xt is polled, the predictor predicts the class label ŷt of ut,
ŷt ∈ {0, 1}. If ŷt = 1, we retrieve the content of ut and get the real class label yt,
and the predictor can be updated by the new training example (yt, xt). If the
prediction is correct (ut is RDF relevant), the RDF graph Gt of ut is written
to local storage and the child URIs in Gt with their feature vector are added to
Frontier for future rounds (Line 9 - Line 17). However, as discussed in Section
4.4, naively training on this subsampled data would lead to significantly biased
predictions. To deal with this bias (Line 19- Line 28), the crawler downloads a
fraction ε of URIs that are predicted negative (Line 19 -Line 21). For the case of
false negative (Line 22 - Line 26), the RDF graph is written to local storage and
the child URIs with their feature vector are added in Frontier. The predictor
is updated by the example (yt, xt) with importance weight 1

ε (Line 27).

10 Huang, Gandon

Algorithm 2: Crawling on Linked Data

Data: A seed list of URIs S, maximum crawl depth d max, minimum time
delay min delay

Result: A collection of RDF triples
1 initialize Frontier=S, pld0..n = ∅;
2 while depth < d max do
3 add URIs in Frontier to pld0..n;
4 startT ime=current time();
5 foreach pldi do
6 get uri ut from pldi;
7 if ut = dref(ut) then
8 ŷt ∈ {0, 1} = predict(xt,w);
9 if ŷt=1 then

10 download the content of ut;
11 observe class label yt ∈ {0, 1};
12 if yt = 1 then
13 write RDF graph Gt contained in ut to the local storage;
14 generate feature vectors for URIs in Gt;
15 add URIs with their feature vectors in Frontier;

16 end
17 update the predictor by the new example (yt,xt) ;

18 else
19 if random[0,1] < ε then
20 download the content of ut;
21 observe class label yt ∈ {0, 1};
22 if yt = 1 then
23 write RDF graph Gt contained in ut to the local storage;
24 generate feature vectors for URIs in Gt;
25 add URIs with their feature vectors in Frontier;

26 end
27 update the predictor by the new example (yt,xt) with

important weight 1
ε
;

28 end

29 end

30 else
31 if dref(ut) is unseen then
32 add uri dref(ut) in Frontier ;
33 end

34 end

35 end
36 timeSpan=current time()- startT ime;
37 if timeSpan < min delay then
38 wait(min delay − timeSpan);
39 end

40 end

Learning URI Selection Criteria 11

Reducing HTTP Lookup. To generate the feature vector of a URI ut, the
crawler has to send HTTP header requests to get the content type of ut. There
exists a large number of redundant HTTP lookups during crawl. To overcome
this issue, we build a bloom filter [2] for each kind of MIME types. Bloom filter is
a space-efficient probabilistic data structure which is able to fit a billion of URIs
in main memory. Once the content type of a URI is known by HTTP lookup,
the URI is added to the corresponding bloom filter. For a newly discovered URI
u, we submit u to each bloom filter. If a bloom filter reports positive, it indicates
that u has the corresponding content type3. If no bloom filter reports positive,
we have to get the content type of u by sending HTTP request and then store
u in the corresponding bloom filter based on its content type.

6 Evaluation

In this section, we firstly evaluate the predictive ability of different combinations
of atomic feature sets introduced in Section 4.2 and then compare the perfor-
mance of the proposed crawler with some baseline methods including offline
methods. Lastly, we report on experiments on the processing time to evaluate
the efficiency of the proposed method.

6.1 Feature Set Evaluation

In this experiment, we evaluate the predictive ability of different combinations
of feature sets introduced in Section 4.2 by several offline/batch classifiers. We
firstly introduce the dataset, metrics and offline classifiers used in the experiment
and then discuss the results of the experiment.

Dataset. The dataset used in the experiment is generated by operating a
Breadth-First Search (BFS) crawl. The crawl starts a set of 50 seed URIs which
are RDF relevant and randomly selected from 26 hosts. During the crawl, we
only keep the hard URIs whose RDF relevance cannot be known straightfor-
wardly. Finally we generate a dataset with 103K URIs. The dataset includes
9,825 different hosts. For each URI, we generate features and the class label. To
check RDF relevance for each URI, we use the library Any23 4.

Static classifiers and metrics. The static classifiers including SVM, KNN
and Naive Bayesian are used to examine the performance of different combina-
tions of feature sets. We use accuracy and F-measure as metrics to measure the
performance, which are defined as:

accuracy =
#correct predictions

#predictions

3 Bloom filter may report false positive results (but not false negatives) with a low
chance. Thus it is possible that a URI has a wrong content type feature.

4 https://any23.apache.org/

12 Huang, Gandon

F −measure = 2 · precision · recall
precision+ recall

Evaluation of combinations of feature sets. The aim of the experiment
is to explore the predictive performance of the combinations of feature sets. As
described in Section 4.2, the feature sets include F+t derived from the target
URI ut, F+r derived from the referring URI ur, F+p derived from the direct
properties of ut and F+x derived from the siblings of ut.

In Table 1 we report the results for the 4-element combination of feature
sets (F+t+r+p+x), all 3-element combinations and the 2-element combinations
(F+t+x, Fr+p, F+p+x) which have the best performance in their class.

Table 1. Performance of the combinations of feature sets

Combination
of Feature Sets

KNN Naive Bayes SVM

F-measure Accuracy F-measure Accuracy F-measure Accuracy

F+t+r+p+x 0.6951 0.7407 0.7154 0.7462 0.7944 0.7722

F+t+p+x 0.6261 0.6832 0.7094 0.7413 0.7801 0.7643

F+t+r+x 0.6773 0.7121 0.7111 0.7448 0.7829 0.7650

F+t+r+p 0.7592 0.7731 0.7660 0.7701 0.8216 0.7902

F+r+p+x 0.6015 0.7010 0.6328 0.7075 0.6839 0.7074

F+t+x 0.5582 0.6912 0.6012 0.6172 0.6828 0.6277

Fr+p 0.3953 0.5810 0.4874 0.6097 0.6790 0.6424

F+p+x 0.4392 0.5739 0.6086 0.6238 0.6689 0.6269

Generally speaking, from Table 1 we can see the feature sets are helpful to
the prediction task. Among all combinations, the 3-element combination F+t+r+p

outperforms the other combinations with F-measure 0.8216 and accuracy 0.7902.
The 4-element combination F+t+r+p+x as the second best combination scores F-
measure 0.7944 and accuracy 0.7722. We found that augmenting sibling features
to F+t+r+p is not helpful to improve the performance in the cases of three clas-
sifiers. We also found that the performance of F+r+p+x which is derived by
excluding feature set F+t from F+t+r+p+x decreases a lot (the worst in all 3-
element combinations) compared to the performance of F+t+r+p+x. It indicates
that the features from target URI ut are important.

Although the batch classifiers performs well in the experiment, it does not
mean they are suited for the task nor that they work well too in an online
scenario. We show the performance of crawlers with offline classifiers and the
proposed crawler with online classifier in the next section.

6.2 Online Versus Offline

In this experiment, we evaluate the performance of the proposed online predic-
tion method against several baseline methods.

Learning URI Selection Criteria 13

Metrics. The aim of the Linked Data crawler is to maximize the number of
RDF-relevant URIs collected while minimizing the number of irrelevant URIs
downloaded during the crawl. For our proposed method, the crawler has to
download a fraction ε of URIs even though they are predicted negative. To
better evaluate the performance of our approach, we use a percentage measure
that equals the ratio of retrieved RDF-relevant URIs to the total number of
URIs5 crawled:

percentage =
#Retrieved RDF relevant URIs

#All retrieved URIs

Methods. We implemented the proposed crawler denoted by LDCOC (Linked
Data Crawler with Online Classifier). The decision threshold τ in Algorithm 1 is
set to 0.5 and the parameter ε of LDCOC is set to 0.17 according to the ratio of
the number of positive URIs to the number of negative URIs in the training set
used in Section 6.1. As baselines, we also implemented three crawlers with offline
classifiers including SVM, KNN and Naive Bayes to select URIs. The classifiers
are pre-trained with two training sets (with size 20K and 40K). The BFS crawler
is another baseline method to be compared to. As suggested in Section 6.1, we
use the feature set F+t+r+p for the experiment.

Table 2. Percentage of retrieved RDF relevant URIs by different crawlers

Crawler Percentage

BFS 0.302

crawler NB (20K) 0.341
crawler NB (40K) 0.345

crawler SVM (20K) 0.402
crawler SVM (40K) 0.413

crawler KNN (20K) 0.331
crawler KNN (40K) 0.324

LDCOC (τ = 0.5, ε = 0.17) 0.655

Results. Table 2 shows the percentage of retrieved RDF relevant URIs by differ-
ent crawlers after crawling 300K URIs. The results show that the crawlers with
offline classifiers perform slightly better than BFS crawler. Considering that the
Linked Data Web is a dynamic environment, the crawlers with offline classifiers
pre-trained by a small size training set would not improve the performance a
lot. This is the reason why we developed the crawler with an online classifier.
The results show that our proposed crawler LDCOC outperforms crawlers based
on static classifiers.

5 We only consider hard URIs.

14 Huang, Gandon

6.3 Processing Time of of Per Selection

The processing time of selecting a URI is important since it affects the through-
put of the crawling. The time to select one URIs mainly includes two parts: (1)
feature generation; (2) prediction and predictor updating. Table 3 shows the av-
erage processing time per selection. LDCOC performs better than the other three
crawlers with respect to processing time. Different from LDCOC crawlers with
offline classifiers do not have to update during the crawl and only the prediction
time is counted. LDCOC is based on FTRL-proximal algorithm which has been
proven to work efficiently on the massive online learning problem of predicting
ad click–through rates. The online efficiency of LDCOC can be guaranteed.

Table 3. Avg. processing time per selection

Crawler Avg. processing time

crawler NB 52.98 ms

crawler SVM 66.62 ms

crawler KNN 70.22 ms

LDCOC 49.78 ms

7 Conclusion

We have presented a solution to learn URI selection criteria in order to im-
prove the crawling of Linked Open Data by predicting their RDF-relevance.
The prediction component is able to predict whether a newly discovered URI
contains RDF content or not by extracting features from several sources and
building a prediction model based on FTRL-proximal online learning algorithm.
The experimental results demonstrate that the coverage of the crawl is improved
compared to baseline methods. Currently, this work focuses on crawling linked
RDF (RDFa) data. Our method can now be generalized to crawl other kinds of
Linked Data such as JSON-LD, Microdata, etc. For future work, we are inves-
tigating more features such as the subgraphs induced by URIs and additional
techniques such as graph embedding to further improve the predictions.

Acknowledgement

This work is supported by the ANSWER project PIA FSN2 N◦P159564-2661789/
DOS0060094 between Inria and Qwant.

References

1. Berners-Lee, T.: Linked data - design issues (2006), https://www.w3.org/

DesignIssues/LinkedData.html

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

Learning URI Selection Criteria 15

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Math. Program. 95(2), 329–357
(2003)

4. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: A new approach
to topic-specific web resource discovery. Computer Networks 31(11-16), 1623–1640
(1999)

5. Diligenti, M., Coetzee, F., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling
using context graphs. In: VLDB. pp. 527–534 (2000)

6. Dodds, L.: Slug : A Semantic Web Crawler (2006)
7. Duchi, J.C., Singer, Y.: Efficient learning using forward-backward splitting. In:

NIPS. pp. 495–503 (2009)
8. Ermilov, I., Lehmann, J., Martin, M., Auer, S.: Lodstats: The data web census

dataset. In: International Semantic Web Conference (2). Lecture Notes in Com-
puter Science, vol. 9982, pp. 38–46 (2016)

9. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of db-
pedia, freebase, opencyc, wikidata, and YAGO. Semantic Web 9(1), 77–129 (2018)

10. Heath, T., Bizer, C.: Linked Data: Evolving the Web Into a Global Data Space,
vol. 1. Morgan & Claypool Publishers (2011)

11. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic
web. In: LDOW (2010)

12. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching
and browsing linked data with SWSE: the semantic web search engine. J. Web
Sem. 9(4), 365–401 (2011)

13. Isele, R., Umbrich, J., Bizer, C., Harth, A.: Ldspider: An open-source crawling
framework for the web of linked data. In: Proceedings of the ISWC 2010 Posters
& Demonstrations Track (2010)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Sov. Phys. Dokl. 6, 707–710 (1966)

15. McMahan, H.B.: Follow-the-regularized-leader and mirror descent: Equivalence
theorems and L1 regularization. In: AISTATS. pp. 525–533 (2011)

16. McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,
Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M.,
Hrafnkelsson, A.M., Boulos, T., Kubica, J.: Ad click prediction: a view from the
trenches. In: SIGKDD. pp. 1222–1230 (2013)

17. Meusel, R., Mika, P., Blanco, R.: Focused crawling for structured data. In: CIKM.
pp. 1039–1048 (2014)

18. Umbrich, J., Harth, A., Hogan, A., Decker, S.: Four heuristics to guide structured
content crawling. In: ICWE. pp. 196–202 (2008)

19. Weinberger, K.Q., Dasgupta, A., Langford, J., Smola, A.J., Attenberg, J.: Feature
hashing for large scale multitask learning. In: ICML. pp. 1113–1120 (2009)

20. Xiao, L.: Dual averaging method for regularized stochastic learning and online
optimization. In: NIPS. pp. 2116–2124 (2009)

	Learning URI Selection Criteria to Improve the Crawling of Linked Open Data

