K. K. Ade, M. J. Janssen, P. I. Ortinski, and S. Vicini, Differential tonic GABA conductances in striatal medium spiny neurons, J Neurosci, vol.28, pp.1185-1197, 2008.

B. E. Alger and J. Kim, Supply and demand for endocannabinoids, Trends Neurosci, vol.34, pp.304-315, 2011.

C. A. Altar, N. Cai, T. Bliven, M. Juhasz, J. M. Conner et al., Anterograde transport of brain-derived neurotrophic factor and its role in the brain, Nature, vol.389, pp.856-860, 1997.

M. D. Amaral and L. Pozzo-miller, TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation, J Neurosci, vol.27, pp.5179-5189, 2007.

A. Araque, P. E. Castillo, O. J. Manzoni, and R. Tonini, Synaptic functions of endocannabinoid signaling in health and disease, Neuropharmacology, vol.124, pp.13-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01826136

A. E. Autry and L. M. Monteggia, Brain-derived neurotrophic factor and neuropsychiatric disorders, Pharmacol Rev, vol.64, pp.238-258, 2012.
DOI : 10.1124/pr.111.005108

URL : http://europepmc.org/articles/pmc3310485?pdf=render

A. Bahi and J. Dreyer, Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption, Eur J Neurosci, vol.38, pp.2328-2337, 2013.

Z. C. Baquet, J. A. Gorski, and K. R. Jones, Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor, J Neurosci, vol.24, pp.4250-4258, 2004.

M. Baydyuk, T. Russell, G. Liao, K. Zang, J. J. An et al., TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons, Proc Natl Acad Sci, vol.108, pp.1669-1674, 2011.

M. Baydyuk and B. Xu, BDNF signaling and survival of striatal neurons, Front Cell Neurosci, vol.8, p.254, 2014.

M. R. Bennett, J. Arnold, S. N. Hatton, and J. Lagopoulos, Regulation of fear extinction by longterm depression: The roles of endocannabinoids and brain derived neurotrophic factor, Behav Brain Res, vol.319, pp.148-164, 2017.

D. Besusso, M. Geibel, D. Kramer, T. Schneider, V. Pendolino et al., BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior, Nat Commun, vol.4, p.2031, 2013.

P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, and M. D. Filippo, Direct and indirect pathways of basal ganglia: a critical reappraisal, Nat Neurosci, vol.17, pp.1022-1030, 2014.

A. L. Carvalho, M. V. Caldeira, S. D. Santos, and C. B. Duarte, Role of the brain-derived neurotrophic factor at glutamatergic synapses, Br J Pharmacol, vol.153, pp.310-324, 2008.

P. E. Castillo, T. J. Younts, A. E. Chávez, and Y. Hashimotodani, Endocannabinoid signaling and synaptic function, Neuron, vol.76, pp.70-81, 2012.
DOI : 10.1016/j.neuron.2012.09.020

URL : https://doi.org/10.1016/j.neuron.2012.09.020

V. Chevaleyre, K. A. Takahashi, and P. E. Castillo, Endocannabinoid-mediated synaptic plasticity in the CNS, Annu Rev Neurosci, vol.29, pp.37-76, 2006.

J. M. Conner, J. C. Lauterborn, Q. Yan, C. M. Gall, and S. Varon, Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport, J Neurosci, vol.17, pp.2295-2313, 1997.

Y. Cui, V. Paillé, H. Xu, S. Genet, B. Delord et al., Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity, J Physiol (Lond), vol.593, pp.2833-2849, 2015.
DOI : 10.1113/jp270324

URL : https://hal.archives-ouvertes.fr/hal-01141205

Y. Cui, I. Prokin, A. Mendes, H. Berry, and L. Venance, Robustness of STDP to spike timing jitter, Sci Rep, vol.8, p.8139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788826

Y. Cui, I. Prokin, H. Xu, B. Delord, S. Genet et al., Endocannabinoid dynamics gate spike-timing dependent depression and potentiation. Elife. 5:e13185. deCharms RC, Zador A. 2000. Neural representation and the cortical code, Annu Rev Neurosci, vol.23, pp.613-647, 2016.
DOI : 10.7554/elife.13185

URL : https://hal.archives-ouvertes.fr/hal-01279901

K. Deinhardt and M. V. Chao, Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure, Neuropharmacology, vol.76, pp.603-609, 2014.

D. Filippo, M. Picconi, B. Tantucci, M. Ghiglieri, V. Bagetta et al., Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory, Behav Brain Res, vol.199, pp.108-118, 2009.

E. Edelmann, V. Lessmann, and T. Brigadski, Pre-and postsynaptic twists in BDNF secretion and action in synaptic plasticity, Neuropharmacology, vol.76, pp.610-627, 2014.

K. Eldeeb, S. Leone-kabler, and A. C. Howlett, CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function, J Basic Clin Physiol Pharmacol, vol.27, pp.311-322, 2016.

E. Fino, J. Glowinski, and L. Venance, Bidirectional activity-dependent plasticity at corticostriatal synapses, J Neurosci, vol.25, pp.11279-11287, 2005.
DOI : 10.1523/jneurosci.4476-05.2005

URL : http://www.jneurosci.org/content/25/49/11279.full.pdf

E. Fino, V. Paille, Y. Cui, T. Morera-herreras, J. Deniau et al., Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity, J Physiol (Lond), vol.588, pp.3045-3062, 2010.

A. Foncelle, A. Mendes, J. J?drzejewska-szmek, S. Valtcheva, H. Berry et al., Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models, Front Comput Neurosci, vol.12, p.49, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809075

A. Y. Freeman, J. Soghomonian, and R. C. Pierce, Tyrosine kinase B and C receptors in the neostriatum and nucleus accumbens are co-localized in enkephalin-positive and enkephalin-negative neuronal profiles and their expression is influenced by cocaine, Neuroscience, vol.117, pp.147-156, 2003.

F. Fumagalli, D. Pasquale, L. Caffino, L. Racagni, G. Riva et al., Repeated exposure to cocaine differently modulates BDNF mRNA and protein levels in rat striatum and prefrontal cortex, Eur J Neurosci, vol.26, pp.2756-2763, 2007.

G. Gangarossa, J. Espallergues, P. Mailly, D. Bundel, D. De-kerchove-d'exaerde et al., Spatial distribution of D1R-and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum, Front Neural Circuits, vol.7, p.124, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01578449

C. R. Gerfen and D. J. Surmeier, Modulation of striatal projection systems by dopamine, Annu Rev Neurosci, vol.34, pp.441-466, 2011.

M. Glass and C. C. Felder, Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor, J Neurosci, vol.17, pp.5327-5333, 1997.

A. M. Graybiel and S. T. Grafton, The striatum: where skills and habits meet, Cold Spring Harb Perspect Biol, vol.7, p.21691, 2015.

Y. Hashimotodani, T. Ohno-shosaku, H. Tsubokawa, H. Ogata, K. Emoto et al., Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal, Neuron, vol.45, pp.257-268, 2005.

Y. Hashimotodani, T. Ohno-shosaku, M. Watanabe, and M. Kano, Roles of phospholipase Cbeta and NMDA receptor in activity-dependent endocannabinoid release, J Physiol (Lond), vol.584, pp.373-380, 2007.

S. L. Hawes, R. C. Evans, B. A. Unruh, E. E. Benkert, F. Gillani et al., Multimodal Plasticity in Dorsal Striatum While Learning a Lateralized Navigation Task, J Neurosci, vol.35, pp.10535-10549, 2015.

B. D. Heifets and P. E. Castillo, Endocannabinoid signaling and long-term synaptic plasticity, Annu Rev Physiol, vol.71, pp.283-306, 2009.
DOI : 10.1146/annurev.physiol.010908.163149

URL : http://europepmc.org/articles/pmc4454279?pdf=render

Y. Huang, H. Yasuda, A. Sarihi, and T. Tsumoto, Roles of endocannabinoids in heterosynaptic long-term depression of excitatory synaptic transmission in visual cortex of young mice, J Neurosci, vol.28, pp.7074-7083, 2008.

H. Im, J. A. Hollander, P. Bali, and P. J. Kenny, MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212, Nat Neurosci, vol.13, pp.1120-1127, 2010.
DOI : 10.1038/nn.2615

URL : http://europepmc.org/articles/pmc2928848?pdf=render

T. Inagaki, T. Begum, R. F. Horibe, S. Inaba, M. Yoshimura et al., Brainderived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons, Neurosci Res, vol.61, pp.192-200, 2008.

J. N. Jovanovic, A. J. Czernik, A. A. Fienberg, P. Greengard, and T. S. Sihra, Synapsins as mediators of BDNF-enhanced neurotransmitter release, Nat Neurosci, vol.3, issue.4, pp.323-332, 2000.

A. Jarrahian, V. J. Watts, and E. L. Barker, D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor, J Pharmacol Exp Ther, vol.308, pp.880-886, 2004.

J. Jeanblanc, D. He, S. Carnicella, V. Kharazia, P. H. Janak et al., Endogenous BDNF in the dorsolateral striatum gates alcohol drinking, J Neurosci, vol.29, pp.13494-13502, 2009.

Y. Jia, C. M. Gall, and G. Lynch, Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum, J Neurosci, vol.30, pp.14440-14445, 2010.

D. Jing, F. S. Lee, and I. Ninan, The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum, Neuropharmacology, vol.112, pp.84-93, 2017.

M. Kano, T. Ohno-shosaku, Y. Hashimotodani, M. Uchigashima, and M. Watanabe, Endocannabinoid-mediated control of synaptic transmission, Physiol Rev, vol.89, pp.309-380, 2009.

C. S. Kearn, K. Blake-palmer, D. E. Mackie, K. Glass, and M. , Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk?, Mol Pharmacol, vol.67, pp.1697-1704, 2005.

L. G. Khaspekov, B. Verca, M. S. Frumkina, L. E. Hermann, H. Marsicano et al., Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity, Eur J Neurosci, vol.19, pp.1691-1698, 2004.

K. Kirmse, A. Dvorzhak, S. Kirischuk, and R. Grantyn, GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum, J Physiol, vol.586, pp.5665-5678, 2008.

K. Kolodziejczyk, M. P. Parsons, A. L. Southwell, M. R. Hayden, and L. A. Raymond, Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease, PLoS ONE, vol.9, p.94562, 2014.

J. W. Koo, M. K. Lobo, D. Chaudhury, B. Labonté, A. Friedman et al., Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition, Neuropsychopharmacology, vol.39, issue.11, pp.2646-53, 2014.

A. C. Koralek, J. X. Long, J. D. Costa, R. M. Carmena, and J. M. , Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills, Nature, vol.483, pp.331-335, 2012.

Y. Kovalchuk, E. Hanse, K. W. Kafitz, and A. Konnerth, Postsynaptic Induction of BDNFMediated Long-Term Potentiation, Science, vol.295, pp.1729-1734, 2002.

S. B. Lang, V. Stein, T. Bonhoeffer, and C. Lohmann, Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites, J Neurosci, vol.27, pp.1097-1105, 2007.

F. Lemtiri-chlieh and E. S. Levine, BDNF evokes release of endogenous cannabinoids at layer 2/3 inhibitory synapses in the neocortex, J Neurophysiol, vol.104, pp.1923-1932, 2010.

D. M. Lovinger, Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum, Neuropharmacology, vol.58, pp.951-961, 2010.

H. Lu, P. Cheng, B. K. Lim, N. Khoshnevisrad, and M. Poo, Elevated BDNF after cocaine withdrawal facilitates LTP in medial prefrontal cortex by suppressing GABA inhibition, Neuron, vol.67, pp.821-833, 2010.

H. Lu, H. Park, and M. Poo, Spike-timing-dependent BDNF secretion and synaptic plasticity, Philos Trans R Soc Lond, B, Biol Sci, vol.369, 2014.
DOI : 10.1098/rstb.2013.0132

URL : http://rstb.royalsocietypublishing.org/content/369/1633/20130132.full.pdf

L. Luongo, S. Maione, D. Marzo, and V. , Endocannabinoids and neuropathic pain: focus on neuron-glia and endocannabinoid-neurotrophin interactions, Eur J Neurosci, vol.39, pp.401-408, 2014.
DOI : 10.1111/ejn.12440

T. Ma, Y. Cheng, R. Hellard, E. Wang, X. Lu et al., Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD, Nat Neurosci, vol.21, pp.373-383, 2018.

L. E. Maglio, J. A. Noriega-prieto, M. J. Maraver, F. De-sevilla, and D. , EndocannabinoidDependent Long-Term Potentiation of Synaptic Transmission at Rat Barrel Cortex, Cereb Cortex, vol.28, pp.1568-1581, 2018.

P. Maison, D. J. Walker, F. S. Walsh, G. Williams, and P. Doherty, BDNF regulates neuronal sensitivity to endocannabinoids, Neurosci Lett, vol.467, pp.90-94, 2009.

P. C. Maisonpierre, L. Belluscio, B. Friedman, R. F. Alderson, S. J. Wiegand et al., NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression, Neuron, vol.5, issue.4, pp.501-510, 1990.

M. Maltese, J. Stanic, A. Tassone, G. Sciamanna, G. Ponterio et al., Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum, Elife, vol.7, p.33331, 2018.

B. N. Mathur and D. M. Lovinger, Endocannabinoid-dopamine interactions in striatal synaptic plasticity, Front Pharmacol, vol.3, p.66, 2012.

M. H. Mohajerani, S. Sivakumaran, P. Zacchi, P. Aguilera, and E. Cherubini, Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3 CA1 connections in the hippocampus, Proc Natl Acad Sci, vol.104, pp.13176-13181, 2007.

V. Paille, E. Fino, K. Du, T. Morera-herreras, S. Perez et al., GABAergic circuits control spike-timing-dependent plasticity, J Neurosci, vol.33, pp.9353-9363, 2013.
DOI : 10.1523/jneurosci.5796-12.2013

URL : http://www.jneurosci.org/content/33/22/9353.full.pdf

H. Park, Cortical Axonal Secretion of BDNF in the Striatum Is Disrupted in the Mutanthuntingtin Knock-in Mouse Model of Huntington's Disease. Exp Neurobiol, vol.27, pp.217-225, 2018.

H. Park and M. Poo, Neurotrophin regulation of neural circuit development and function, Nat Rev Neurosci, vol.14, pp.7-23, 2013.

H. Park, A. Popescu, and M. Poo, Essential role of presynaptic NMDA receptors in activitydependent BDNF secretion and corticostriatal LTP, Neuron, vol.84, pp.1009-1022, 2014.

A. Patapoutian and L. F. Reichardt, Trk receptors: mediators of neurotrophin action, Curr Opin Neurobiol, vol.11, pp.272-280, 2001.

V. Pawlak and J. Kerr, Dopamine receptor activation is required for corticostriatal spiketiming-dependent plasticity, J Neurosci, vol.28, pp.2435-2446, 2008.

E. Perrin and L. Venance, Bridging the gap between striatal plasticity and learning, Curr Opin Neurobiol, vol.54, pp.104-112, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055666

D. Piomelli, G. Astarita, and R. Rapaka, A neuroscientist's guide to lipidomics, Nat Rev Neurosci, vol.8, pp.743-754, 2007.

J. L. Plotkin, M. Day, J. D. Peterson, Z. Xie, G. J. Kress et al., Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease, Neuron, vol.83, pp.178-188, 2014.

N. Puente, Y. Cui, O. Lassalle, M. Lafourcade, F. Georges et al., Polymodal activation of the endocannabinoid system in the extended amygdala, Nat Neurosci, vol.14, pp.1542-1547, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01160051

L. F. Reichardt, Neurotrophin-regulated signalling pathways, Philos Trans R Soc Lond, B, Biol Sci, vol.361, pp.1545-1564, 2006.
DOI : 10.1098/rstb.2006.1894

URL : http://europepmc.org/articles/pmc1664664?pdf=render

A. M. Roloff, G. R. Anderson, K. A. Martemyanov, and S. A. Thayer, Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity, J Neurosci, vol.30, pp.3072-3081, 2010.

P. E. Rothwell, S. J. Hayton, G. L. Sun, M. V. Fuccillo, B. K. Lim et al., Input-and Output-Specific Regulation of Serial Order Performance by Corticostriatal Circuits, Neuron, vol.88, pp.345-356, 2015.

V. Santhakumar, R. T. Jones, and I. Mody, Developmental regulation and neuroprotective effects of striatal tonic GABAA currents, Neuroscience, vol.167, pp.644-655, 2010.

J. M. Schulz, P. Redgrave, and J. Reynolds, Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways, Front Synaptic Neurosci, vol.2, p.23, 2010.

M. D. Sepers, A. Smith-dijak, J. Ledue, K. Kolodziejczyk, K. Mackie et al., Endocannabinoid-Specific Impairment in Synaptic Plasticity in Striatum of Huntington's Disease Mouse Model, J Neurosci, vol.38, pp.544-554, 2018.

Q. Shan, M. Ge, M. J. Christie, and B. W. Balleine, The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum, J Neurosci, vol.34, pp.9196-9201, 2014.

X. Shen, X. Lin, D. Wilde, and P. , Oscillations and spiking pairs: behavior of a neuronal model with STDP learning, Neural Comput, vol.20, pp.2037-2069, 2008.

S. Sivakumaran, M. H. Mohajerani, and E. Cherubini, At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA, J Neurosci, vol.29, pp.2637-2647, 2009.

A. D. Strand, Z. C. Baquet, A. K. Aragaki, P. Holmans, L. Yang et al., Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration, J Neurosci, vol.27, pp.11758-11768, 2007.

T. Timmusk, N. Belluardo, H. Persson, and M. Metsis, Developmental regulation of brainderived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain, Neuroscience, vol.60, issue.2, pp.287-91, 1994.

E. M. Unterwald, M. E. Page, T. B. Brown, J. S. Miller, M. Ruiz et al., Behavioral and transcriptome alterations in male and female mice with postnatal deletion of TrkB in dorsal striatal medium spiny neurons, Mol Neurodegener, vol.8, p.47, 2013.

S. Valtcheva, V. Paillé, Y. Dembitskaya, S. Perez, G. Gangarossa et al., Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum, Neuropharmacology, vol.121, pp.261-277, 2017.

E. G. Waterhouse and B. Xu, New insights into the role of brain-derived neurotrophic factor in synaptic plasticity, Mol Cell Neurosci, vol.42, pp.81-89, 2009.

Q. Xiong, P. Znamenskiy, and A. M. Zador, Selective corticostriatal plasticity during acquisition of an auditory discrimination task, Nature, vol.521, pp.348-351, 2015.

H. Xu, S. Perez, A. Cornil, B. Detraux, I. Prokin et al., Dopamine-endocannabinoid interactions mediate spike-timing-dependent potentiation in the striatum, Nat Commun, vol.9, p.4118, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865929

H. Yano, I. Ninan, H. Zhang, T. A. Milner, O. Arancio et al., BDNF-mediated neurotransmission relies upon a myosin VI motor complex, Nat Neurosci, vol.9, issue.8, pp.1009-1027, 2006.

R. Yasuda, E. A. Nimchinsky, V. Scheuss, T. A. Pologruto, T. G. Oertner et al., Imaging Calcium Concentration Dynamics in Small Neuronal Compartments, Sci. STKE, p.5, 2004.

M. L. Yeh, R. Selvam, and E. S. Levine, BDNF-induced endocannabinoid release modulates neocortical glutamatergic neurotransmission, p.71, 2017.
DOI : 10.1002/syn.21962

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086135

H. H. Yin, S. P. Mulcare, M. Hilário, E. Clouse, T. Holloway et al., Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill, Nat Neurosci, vol.12, pp.333-341, 2009.

C. Yu, C. H. Li, S. Chen, H. Yoo, X. Qin et al., Decreased BDNF Release in Cortical Neurons of a Knock-in Mouse Model of Huntington's, Disease. Sci Rep, vol.8, p.16976, 2018.

R. Yuste, Electrical compartmentalization in dendritic spines, Annu. Rev. Neurosci, vol.36, pp.429-449, 2013.

Z. Zhang, J. Fan, Y. Ren, W. Zhou, and G. Yin, The release of glutamate from cortical neurons regulated by BDNF via the TrkB/Src/PLC-?1 pathway, J Cell Biochem, vol.114, issue.1, pp.144-51, 2013.

L. Zhao and E. S. Levine, BDNF-endocannabinoid interactions at neocortical inhibitory synapses require phospholipase C signaling, J Neurophysiol, vol.111, pp.1008-1015, 2014.
DOI : 10.1152/jn.00554.2013

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949235/pdf

L. Zhao, M. Yeh, and E. S. Levine, Role for Endogenous BDNF in EndocannabinoidMediated Long-Term Depression at Neocortical Inhibitory Synapses, 2015.

P. Zhong, Y. Liu, Y. Hu, T. Wang, Y. Zhao et al., BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons, J Neurosci, vol.35, pp.4469-4481, 2015.

N. E. Zlebnik and J. F. Cheer, Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions, J Neurosci, vol.36, pp.10230-10238, 2016.

C. Zuccato and E. Cattaneo, Brain-derived neurotrophic factor in neurodegenerative diseases, Nat Rev Neurol, vol.5, pp.311-322, 2009.

, baseline: 159±5pA, decreased by 56.7%, to 69±3pA, one hour after pairings, Example of tLTD induced by 100 pre-post pairings (?t STDP =-13±0.1ms)

, Example of the lack of plasticity after 100 pre-post pairings (?t STDP =8±0.1ms) with

. K252a, the mean baseline EPSC amplitude was 119.2±2.62 pA before pairings and a lack of plasticity was observed one hour after pairings: 117.6±2.99 pA). Bottom, time course of Ri (baseline: 213±1M? and 50-60 min after pairings: 209±2M?

, Example of the lack of plasticity after 100 pre-post pairings (?t STDP =13±0.1ms) in presence of ANA12 (10µM) (the mean baseline EPSC amplitude was 187.2±3.73 pA before pairings and was not significantly altered one hour after pairings, 184.4±3.32 pA)

, Bottom, time course of Ri (baseline: 114±1M? and 50-60 min after pairings: 116±1M?; change of 1%). (E) Example of the lack of plasticity after 10 post-pre pairings (?t STDP =-12±0.2ms) with K252a (200nM) (the mean baseline EPSC amplitude was 147±5pA before pairings and a tLTD induction was observed one hour after 10 post-pre pairings: 106±3pA). Bottom, time course of Ri (baseline: 64±1 M? and 50-60 min after pairings: 59±1M?; change of 8%). (F) Example of the lack of plasticity after 10 post-pre pairings (?t STDP =-13±0.3ms) in presence of ANA12 (10µM) (the mean baseline EPSC amplitude was 198±4pA before pairings and was not significantly altered one hour after pairings, 186±4pA), Example of tLTP induced by 10 post-pre pairings (?t STDP =-11±0.1ms) (the mean baseline EPSC amplitude was 230±6pA before pairings and was increased by ~67% to 383±5pA one hour after pairings)

, Insets correspond to the average EPSC amplitude during baseline (1, black trace) and the last 10 min of recording after STDP pairings (2, grey trace). Statistics (student t-test

*. ,

, Supplementary Figure 2: Calcium transients in dendritic spines remain unchanged upon ANA12 and DMSO applications

, ANA12 and ANA12 followed by DHF application did not change the time course of Ca2+ elevations triggered by somatic current injections eliciting two bAPs in dendritic spines and shafts. (B) Two consecutive applications of DMSO (DMSO1 and DMSO2, 0.04% final concentration), to mimic successive applications of DHF and DHF+ANA12, did not change the time course of Ca2+ elevations in dendritic spines and shafts, triggered by two bAPs. (C) ANA12 and ANA12 followed by DHF application did not change the time course of Ca 2+ elevations triggered by pre-post paired corticostriatal stimulations in dendritic spines and shafts

, Supplementary Figure 3: Amplitudes of calcium evoked-events in dendritic spines and shafts

, Amplitudes of Ca 2+ evoked-events (normalized to control) were not different upon DHF, ANA12 and DMSO bath-application, in dendritic spines and shafts, triggered by (A) two bAPs (post-stimulation only), or by (B) pre-post pairings, consisting in single evoked corticostriatal EPSP paired with two bAPs with ?t ~+15-20 ms

, Supplementary Figure 4: Long-duration bath-applied DHF did not promote tLTP for 25 post-pre pairings

, Averaged time-courses showing an overall absence of plasticity observed after 25 post-pre pairings with DHF bath-applied during the whole recording (2/5 cells showed tLTP). Error bars represent the SEM. Statistics (student t-test, first vs last 10 min of recording): ns