M. Faouzi, A. , and P. Ganty, Approximating Petri net reachability along context-free traces, FSTTCS 2011, vol.13, pp.152-163, 2011.

R. Bonnet, The reachability problem for vector addition system with one zerotest, MFCS 2011, vol.6907, pp.145-157, 2011.

R. Bonnet, A. Finkel, J. Leroux, and M. Zeitoun, Model checking vector addition systems with one zero-test, Logical Methods in Computer Science, vol.8, issue.2, p.11, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722324

W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, and F. Mazowiecki, The reachability problem for Petri nets is not elementary, 2018.

J. Dassow and S. Turaev, Petri net controlled grammars: the case of special Petri nets, J. UCS, vol.15, issue.14, pp.2808-2835, 2009.

S. Demri, M. Jurdzi´nskijurdzi´nski, O. Lachish, and R. Lazi´clazi´c, The covering and boundedness problems for branching vector addition systems, Journal of Computer and System Sciences, vol.79, issue.1, pp.23-38, 2012.

A. E. , F. Seghrouchni, and S. Haddad, A recursive model for distributed planning, ICMAS 1996, pp.307-314, 1996.

A. Finkel and P. Schnoebelen, Well-structured transition systems everywhere! Theor, Comput. Sci, vol.256, issue.1-2, pp.63-92, 2001.

S. Haddad and D. Poitrenaud, Decidability and undecidability results for recursive Petri nets, vol.6, 1999.

S. Haddad and D. Poitrenaud, Theoretical aspects of recursive Petri nets, ICATPN 1999, vol.1639, pp.228-247, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01574369

S. Haddad and D. Poitrenaud, Modelling and Analyzing Systems with Recursive Petri Nets, WODES 2000, vol.569, pp.449-458, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01573071

S. Haddad and D. Poitrenaud, Checking linear temporal formulas on sequential recursive Petri nets, TIME 2001, Civdale del Friuli, pp.198-205, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01571067

S. Haddad and D. Poitrenaud, Recursive Petri nets, Acta Inf, vol.44, issue.7-8, pp.463-508, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01574369

J. Lambert, A structure to decide reachability in Petri nets, Theor. Comput. Sci, vol.99, issue.1, pp.79-104, 1992.

R. Lazic, The reachability problem for vector addition systems with a stack is not elementary, 2013.

R. Lazic and S. Schmitz, Non-elementary complexities for branching vass, mell, and extensions, CSL-LICS, vol.61, pp.1-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076694

R. Lazi´clazi´c and S. Schmitz, The Complexity of Coverability in ?-Petri Nets, LICS 2016, pp.467-476, 2016.

R. J. Lipton, The reachability problem requires exponential space, 1976.

G. Mavlankulov, M. Othman, S. Turaev, M. Hasan-selamat, L. Zhumabayeva et al., Concurrently controlled grammars. Kybernetika, vol.54, issue.4, pp.748-764, 2018.

E. W. Mayr, An algorithm for the general petri net reachability problem, SIAM J. Comput, vol.13, issue.3, pp.441-460, 1984.

C. Rackoff, The covering and boundedness problems for vector addition systems, Theoretical Computer Science, vol.6, issue.2, pp.223-231, 1978.

K. Reinhardt, Reachability in Petri nets with inhibitor arcs, Electr. Notes Theor. Comput. Sci, vol.223, pp.239-264, 2008.

P. Schnoebelen, Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets, MFCS 2010), vol.6281, pp.616-628, 2010.

G. Zetzsche, The emptiness problem for valence automata or: Another decidable extension of Petri nets, RP 2015, vol.9328, pp.166-178, 2015.