oBbm HHv M HvxBM; aim/2Mibo : x2 QM *Y
aMBTT2ib
*QH2 S2i2°bQM-CQM i? Ma //H2-h MD "H b+?2+

hQ +Bi2 i?Bb p2 ' bBQM,

*QH2 S2i2°’bQM-CQM i? Ma //H2-h MD "H b+?2+F-"QMBi a? 'B7X ol
QM *YY *Q/2 aMBTT2ibX 1JASKyRN @ ei? AMi2 M iBQM HgQ Fb?QT QM
JVvKYRN-JQMi"2 H-* M/ X ? H@yky39R93

> G A/, 2 H@dyky39R93
?2i1iTbh,ff? HXBM B X7 f? H@yky39R93
am#KBii2/ QM kN J * kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/hal-02084148
https://hal.archives-ouvertes.fr

Visually Analyzing Students' Gaze
on C++ Code Snippets

Cole S. Peterson Jonathan A. Saddler Tanja Blaschedkand Bonita Sharif
Department of Computer Science, and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA 68588
YInria, Saclay, France
Emails: cole.scott.peterson@huskers.unl.edu, saddler@huskers.unl.edu, tanja.blascheck@inria.fr, bsharif@unl.edu

Abstract—The paper presents an eye tracking study with 17 researchers to use. To bridge this gap, we leverage two
students (12 novices, 5 non-novices) reading C++ methods. Theyjsualization techniques namely radial transition graghs [6]
novices were students who participated in the study during the and parallel scanpaths|[7] introduced in prior work to help us

last week of their semester learning C++. The non-novices were .
senior students who had been exposed to programming before."’m""Iyze the data from the eye tracking study presented here

We report on the reading behavior of three C++ methods that and show the viability of using visualizations for eye tracking
use different language constructs. We analyze xations at the line analysis in program comprehension.
level of the code using visualizations to derive insights into code The research questions we seek to answer in this paper are:

reading. Results show that most transitions were made to code . . .
lines that are close to the current line read. We observe that a RQ1: How do students transition their gaze between

large percentage of the total xation duration is made on a small different lines of Sho_rt code snippets?_ _
number of lines and that related lines are often viewed together RQ2: How can we visually compare differences in scan-
in a series of short xations. path patterns between several students?

Index Terms—eye tracking, visual analysis, program compre-

hension, C++ source code, scanpaths, transitions The main contribution of this paper is using existing visual-

ization techniques to qualitatively explain transitions between
source code lines and comparing scanpaths among various

o participants over time.
Program comprehension is a subarea of software engi-

neering with a history of contributions towards theory and Il. RELATED WORK
experiments that bring us closer to understanding how pro-In this section, we present selected related work on program
grammers actually read and understand code [1]. Howevesmprehension and eye tracking visualizations.
we still do not have a theory that can completely model how Program Comprehension StudieBusjahn et al.[[8] intro-
novices and experts read code. Reading code ef ciently dsice linearity metrics based on xation counts and saccades
an essential skill to have. It is a precursor to many softwate determine if people read source code the same way as they
engineering activities such as bug xing, code reviewing, aead natural language text. They found that experts read source
new feature additions. Since 1990 and more so after 20@@de in a less linear way when compared to novices. They
eye tracking researchers in software engineering have bedso found novices read source code less linearly than natural
working towards conducting studies to build on the body d¢énguage text. Crosby et dl|[9] were one of the rst researchers
knowledge of program comprehension in a systematic vay [29, study comprehension using an eye tracker in 1990. They
[3]. We only expect this trend to continue as eye trackers geted Il in the blank tasks in Pascal programs to determine
more accessible and are more suitable for the communitygmgram comprehension. Rodeghero et al.| [10] report on
adopt as support infrastructute [4] improves. reading patterns of programmers during summarization tasks.
In this paper, we present an eye tracking study conductétey found that on average programmers read from top to
with three short C++ code snippets at the end of a semedbettom 49% of the time. Begel et al. [11] report on eye
long programming course. Because eye movement data amvements during code review and attempt to classify which
pears to have many individual differencé$ [5] it is sometime®de elements trigger deliberation and how long reviewers take
dif cult to quantitatively assess signi cance of differencego verify their hypotheses. They also report on code skimming
between eye movements. Eye movement data is a sigmsl careful reading. However, none of the above mentioned
produced over time as the participant progresses with a tastudies use visualizations in a systematic manner to help with
Understanding and analyzing similarities and differences obmparisons between participants' transitions between areas
eye movement data over time is not as easy as using aggregédtmterest (AOIs) and scanpaths.
measurements such as the total number of xations and theirEye Tracking Visualizationd.here is not much work in the
corresponding durations. To make it easier to nd trends ardea of visualizing eye movement data. Blascheck ef al. [12]
patterns in the data, we believe that visualizations should &ee one of the few researchers that focus on various aspects of
used to quantify patterns in time and space. However, thefisualizing eye movements. Researchers can use visualizations
are not many visualization tools available for eye trackingf eye movement data to build and verify hypotheses in

I. INTRODUCTION

addition to a more quantitative approach. Spakov et/ al. [13]
developed another approach to analyze reading activity of
people. They integrate several visualization techniques to
analyze eye movement data collected in a reading study. Clark
et al. [14] present iTraceVis which is built into the Eclipse
IDE and based on iTracg|[4]. These two visualizations are not
conducive to compare multiple participants because they do
not compare transitions between AOIs and scanpaths visually.
In this paper, we use state-of-the-art visualization techniques
to analyze our eye movement data. We compare participants'
line viewing behavior using radial transition graphs$ [6] and
parallel scanpaths [7] to inspect the eye movement data over

1. #include <string>
2. #include <iostream>

3. using namespace std;

4. intmain () {

5. for (inti=1;i<=3;i++){
6 for(intj=0;j<i;j++){
7. cout<<"*":

8 }

9. cout<<" .. ";

10. }

il return 0 ;

12.}

#include <string>
#include <iostream

using namespace std;

int main () {

for (inti=1;i<=3;i++){
for (intj=0;j<i;j++){
}cou‘«“*",
b

cout<<" " ;‘

time. The radial transition graphs allow us to investigate thyg. 1. PrintPatternR program, which prints a pattern of stars and dots (left)
distribution of xation duration for muItipIe lines as well asand the line-level AOIs used in our analysis to map xations to lines (right).
inspect transitions between individual lines in a compact man-

ner. In contrast, the parallel scanpaths represent the sequence

of transitions in a linear fashion, keeping the order of the
source code lines, to nd common lines that are focused on
the most and allow us to see speci c reading patterns.

IlIl. STUDY DESIGN

The goal of this study is to determine how students intro-
duced to C++ programming read and comprehend programs.
In particular, we are interested in how students read and
transition between lines and how they compare with each other
in terms of the line reading patterns.

A. Participants

We recruited a total of 17 students to participate in this
study. Of these, 12 students were enrolled inlrdroduction
to C++ course. We label these 12 students as novices because
prior to this class they had not been exposed to programming.
The remaining 5 students were considered non-novices. They
were also students but were exposed to programming before.
These two groups, novices and non-novices were determined
by the number of years each participant completed in the uni-
versity's 4-year program and graduate program. Those students
in the graduate program, along with those who completed 3
of 4 years of the undergraduate program, were given the title
non-novices to separate them from the novices with less than
3 years of experience in institutionalized coding. The novices
in our study had not taken any programming prior to the C++
class they were investigated in.

B. Stimuli and Comprehension Tasks

We investigated three C++ programs, which are shown in
Fig. [1,[2, and B. Participants were given as much time as
needed to read each of the three programs. After each program,
participants were assigned one of three randomly chosen com-
prehension questions: a question about the program's output,
a short answer question, or a multiple choice question. The
accuracy of answers to these questions is not within the sc
of this paper. We leave this as part of our ongoing futu
analysis.

1. #include
2. #include
3. using namespace std;

class Street |
private :
int number ;
public :
Street (int) ;
9. int getNumber () ;
10. void setNumber (int);
"o

12. Street::Street (int nr) { setNumber (nr) ; }

13. int Street::getNumber () { return number ; }

14. void Street::setNumber (int number)

15. int main () {
16. Street streetl (5)

{ this->number = number ;

17. streetl.setNumber (15) ;
18. cout << streetl.getNumber () :

19. return 0 ;

1. #include <iostream>
2. #include <string>
3. using namespace std;

4. class SignChecker {
5. private :

6. int number ;
7. public :

8 SignChecker (int) ;
9 string check () ;

10. %

11. SignChecker::SignChecker (int currentNumber) { number = currentNumber ; }

12. string SignChecker::check () {

13. string theSign =" ;

14. if (number <0) {

15. theSign = "negative” ;
16. } else if (number > 0) {

17. theSign = "positive" ;
18. }else{

19. theSign = "null" ;

20. }

24 return theSign ;

22.}

23. int main () {
24. signChecker number1 (10);

25. cout << "Actual: " << number1.check () << "Expected: positive" << endl ;

26. SignChecker number2 (0) ;

g. 2. StreetH program, which creates and sets an integer eld value of class
Object Street. The AOIs are not shown, however, they are similar td Fig. 1.

27. cout << "Actual: " << number2.check () << "Expected: null" << endl ;

28. return O ;
29.}

ope
FFi)g. 3. SignCheckerClassMR program, which returns the sign of an integer
'&ssed to the SignChecker constructor.

C. Eye Tracking Apparatus process, both authors performing the corrections had to agree

We used the Tobii X60 eye tracker with the Tobii Studi®€fore moving xations. If no agreement could be reached,
environment that supports recording of eye movement data §§ Points were not moved. In addition, corrections were not
images and AOI mapping of xations to lines. Each of thé:herry-plcked_ xat|0ns_. T_he xations were move<_j only if t_hey
programs was shown as an image (using Tobii Studio) on tfggloweq a trajectory similar t.o the source code line near it and
screen, after which a comprehension question appeared vi@¥4ays in groups of ten xations per line.

Google form for the participants to answer. We ran a xation 1he authors set the dif culty rating of programs based on
lter (IV-T) on the raw gazes. All analyses conducted are oH'€ types of constructs used. For example, the SignChecker-

the xations the Iter generated. ClassMR program and PrintPatternR program were considered
to be dif cult because they involved nested if's and nested for-
D. Procedure loops. In addition, one of the programs (StreetH) was used

On the day of the study, participants rst signed an informedith syntax highlighting (in Courier New font) with the rest
consent form and were given a pre-questionnaire to gad@@-ng black and white shown in Arial font. This was because
their level of expertise. After they read initial instructions ofhe three programs analyzed in this paper were part of a larger
what was required of them, they began the study. They we?agoing study with different research questions. We do not
shown each program for as |ong as they needed until th@?ﬂSider syntax hlghllghtlng to be a factor in the current StUdy
clicked next, at which point they were required to answer Recause we only directly compare eye movements on the same
comprehension question via a Google form. They did this féPde snippet to each other.
all three programs. Note, that the study was done in the lasfAnother possible threat could be the programs used because
week of the semester. The class instructor of the C++ cldéds possible that students might not be familiar with the

(not a paper author) had covered all concepts in the progra@ncepts. We argue, however, that all constructs shown in
the programs were covered multiple times during the course,

E. Data Correction and Mapping the novice participants attended, which means students should
Steps were taken to engineer a consistent dataset of Ixave had time to get acquainted with those constructs.
ations that properly capture what participants were viewing
throughout the study. We used an in-house tabtmanip
to visually locate strands of ten xations that had drifted We report on the results to each of the two research
away from the program's line. Two correctors had to agreguestions posted in the introduction. Of the 17 participants, we
that the group of ten xations needed correction before thegathered viable eye movement data from 15 participants. We
were adjusted. We needed to account for drift that occusse lines as the unit of analysis because a transition between
during an eye tracking study. The source code of the tddtes can be represented by a change in height which lends
we used to apply corrections to our data can be found itgelf to visualizations.
https://github.com/SERESLab/ xation-correction-vizmanip. . .
Even though Tobii Studio allows us to map xations to lines”> RQ1 Results: Transitions Between Lines
it does not allow us to correct xations. For this purpose, we Before we analyze eye movement patterns using visualiza-
needed to export all the data out of Tobii Studio, correct tHi®ns, it is helpful to understand the meaning of the visual-
data using our Vizmanip tool and map lines to xations usinigations used and how they are constructed. In the following
another tool namedyeCoddhttps://github.com/synesthesiamAection, we analyze two types of visualizations which are
eyecode), a Python data-processing library. We @es@Code called distribution graphs and transition graphs. For both
to map our corrected xations to their line-numbered locatiorypes of visualizations, the colored sectors are arranged in a
in each program. We used eyeCode's special AOI data forngd@ckwise manner. The rst line is always the top most sector
to encode the information. The software also comes wighd subsequent lines are placed clockwise. Lines that are next
a special AOI image recognition tool that can be used te each other in the program, for example, line 6 and 7, are
automatically generate AOIls for source code snippets. \Wkced next to each other in the visualization graphs. Some
had to make a few consistent modi cations to the proceséctors in the graph are represented by the same color because
to get this mechanism parsing to behave properly, such ragny lines were used, however they can still be distinguished
consistently ensuring a set amount of padding (12 px to tdy remembering that the sectors are arranged sequentially and
and bottom) of every returned AOI to account for vertical linglockwise and looking at the previous and subsequent sectors.
gaps. In about six cases, the authors were forced to manuallyrhe distribution graphs have the sectors take up an amount
create AOIs because the generation algorithm failed to provide space proportional to the amount of total duration of
the correct AOIs for the lines in the program. Three authorsations on the line. The transition graphs have lines con-

IV. STUDY RESULTS

veri ed the AOIs over the course of four total hours. necting different sectors. The black dot on the sector rep-
o resents outgoing transitions and the white dot on the sector
F. Threats to Validity represents incoming transitions. The width of the transition

The eye movement data was corrected manually to ensline is based on the frequency of the transition from one
mapping to lines was accurate. To mitigate any issues with thiise to another with a more frequent transition resulting in

https://github.com/SERESLab/fixation-correction-vizmanip
https://github.com/synesthesiam/eyecode
https://github.com/synesthesiam/eyecode

line 01 @ line 02 line 03 line 04 line 05 @B line 06 @ line 07

line 08 @@ line 09 line 10 @D line 11 line 12 @B line 13 @ line 14
line 15 @D line 16 line 17 line 18 @D line 19 line 20 line 21
line 22 @I line 23 line 24 @D line 25 @ line 26 line 27 line 28

/4 |
2 7%
. Y4

P05 P16
SignCheckerClassMR SignCheckerClassMR

46.8s 37.3s

Fig. 4. Comparison of distributions of xations on lines based on duration
between P05, a non-novice (shown on the left), and P16, a novice (shown
on the right), with line 1 at the top of the graph and subsequent lines being

placed in a clockwise manner. Fig. 5. Comparison of transitions between lines for P05, a non-novice (shown

on the left), and P16, a novice (shown on the right), with line 1 at the top of
the graph and subsequent lines being placed in a clockwise manner.

a thicker line. These graphs are generated via the online tool
at|http://www.rtgct.fbeck.corn/.

We chose this radial representation despite its drawbaéRnsition spanned up to half of the lines in the program.
of placing the rst and last line of the source code next to This representation makes the last and rst line appear next
each other because it allows us to analyze the transitidaseach other. Because of this factor, transitions between the
between AOIs. For example, the graphs show if the transitiott section and bottom section of the code may appear like
are mostly from lines that are next or close to each oth#ansitions that are between lines that are close together. An
(e.g., Fig.[5 right) in contrast to transitions that go acrosxample of this would be the transition from line 24 to line 5
the complete graph (e.g., Fifj] 5 left), which indicates thé& PO5's transition graph, which appear like a transition over
the transitions span a long range of line in the source codesmaller span than the neafly3 of the program’s lines that
stimulus. This gives us rst hints about the reading behavior ¢ifie transition occurs over. Knowing this pattern, we have to
participants and which different reading strategies are presgray closer attention to transitions that occur between the top

SignCheckerClassMROne component of eye movementeft and top right quarters of the transition graphs.
analysis is the distribution of time spent in various AOls. In PrintPatternR. This is a short and simple code snippet
Fig.[4, we can see the distribution of xation duration over theelative to the other snippets that we analyze. Fig. 6 shows
lines in SignCheckerClassMR between two participants PGbg distribution of xations on lines based on the duration for
a non-novice, and P16, a novice. We can see that P05 loolkihtPatternR. We can see that only a few lines make up the
more at line 24 and line 25 than P16. In fact, we can see thagjority of the xation duration for both PO6 and P17. Line 6
the main method's body from line 24 to 27 take up almost hadind 7, the inner for-block and print statement, are the most
of the total xation duration of P05, whereas it takes only &aiewed lines in the PrintPatternR. We can see that P06 did
quarter of the total xation duration of P16. not look at many lines outside of line 6 and 7. They looked

Another large component of eye movement analysis & the outer for-loop (line 5) and the second print statement
investigating transitions between different AOls, in this cadéne 9) for a small amount of time and the rest of the lines
lines. We can see a visual representation of these transitiongig barely visible on the chart indicating that these four lines
Fig.[§. If we examine P16, we can see that most transitions avere almost all that was needed to understand the program.
to a line that is relatively close by. The transitions that occie can see these trends for P17 to a lesser extent. It appears
to lines farther away pass closer to the center of the circkéatline 6 and 7 made up a majority of the xation duration for
In P16's transition graph, we can see transitions occurrifiiL7, but that this participant xated on line 3 and 4 much more
between line 16 and line 25 and between line 25 and line Ahan PO6. These lines, the using namespace and main method
In contrast, PO5's transition graph shows us that while théjgnature, are boilerplate and do not provide any additional
still read the code in a subsequent manner (e.g., the chilformation about the PrintPatternR.
of transitions between line 11 and line 21), they have more The transition graph for PrintPatternR can be seen in[Fig. 7.
transitions between lines of code that are farther away. We dafe can see that the transitions between the lines are fairly
see that PO5's transition graph has more lines in the censémilar between these two participants. There is a large amount
indicating that several transitions occurred between lines tladttransitions between line 5, 6, and 7 for both P06 and PO7.
are at opposite ends of the graph, which means that thile P06 has more transitions to lines that are farther away;, it

http://www.rtgct.fbeck.com/

)) o) . . Fig. 8. Comparison of distributions of xations on lines based on duration
Fig. 6. Comparison of distributions of xations on lines based on duratiofetyween PO1, a non-novice (shown on the left), and P17, a novice (shown
between P06, a non-novice (shown on the left), and P17, a novice (shoyithe right), with line 1 at the top of the graph and subsequent lines being
on the right), with line 1 at the top of the graph and subsequent lines be'ﬁ%ced in a clockwise manner.
placed in a clockwise manner.

Fig. 7. Comparison of transitions between lines for P06, a non-novice (shown
on the left), and P17, a novice (shown on the right), with line 1 at the top of
the graph and subsequent lines being placed in a clockwise manner.

Fig. 9. Comparison of transitions between lines for P01, a non-novice (shown
on the left), and P17, a novice (shown on the right), with line 1 at the top of

is not as stark of a difference as seen in SignCheckerClassMR.graph and subsequent lines being placed in a clockwise manner.
We can see that there are no transitions to or from both line 6
and 8 for P06, which supports the distribution of xation
duration we saw in the previous paragraph. P06 and P17 @iehstructors for the Street class account for over a quarter of
not look at the rst few lines of PrintPatternR, which havéhe total xation duration for both PO1 and P17.
only some amount of transitions between these earlier lines. Looking at the transition graph for these two participants in
StreetH. This program is a longer program than PrintPafig.[g, we can see that only a few transitions occurred between
ternR. We can see the distribution graph of StreetH in [Hig. the top half of the program including the boilerplate and class
We presented StreetH to the participants with syntax higtle nitions and the bottom half of the program including the
lighting and unlike the previous two examples, there is notraethod implementations and main method. PO1 has more
clearly visible similarity between the two participant's xationof these transitions but does not have as many transitions
duration distributions. However, we can see there are commgpanning a large amount of lines as was seen in some of the
lines that both participants xated on. Some of these moteansition graphs for SignCheckerClassMR. While P01 does
common lines are lines 5 and 7 and lines 12 to 16. Linesn®t have many transitions spanning a large amount of the
and 7 correspond to the private and public access modi ggsogram, the remaining transitions are not all transitions to
in the Street class respectively. Line 12 to 14 correspond d¢onsecutive lines. There is still a number of transitions to lines
the various constructors and method implementations for ttiet are several lines away. We can see that P17 does not have
Street class. Line 15 corresponds to the main method signatasemany transitions made to the lines that are further away.
and line 16 corresponds to the initialization of a variable dafhe transition graph for this program looks similar to P16's
type Street. Of these groups, the xations on line 12, 13ansition graph for SignCheckerClassMR with regards to the
and 14 corresponding to the implementations of methods anansitions made in the rst half of the program that appear to

be made to lines that were close together. Even though Stre®tHiile StreetH has syntax highlighting, we did not observe any
had syntax highlighting, we did not observe overall trends faoroticeable differences in trends in the participant's scanpaths
duration distribution or transitions that differed from the othezompared to the other two les.
two programs at the line level. SignCheckerClassMRn Fig. [13, we see the scanpaths of
SignCheckerClassMR for all participants. The rst observation
we see is that the if statements (line 14 to 20, purple) are
The parallel scanpath visualization (F{g.] 10) shows timenly viewed for a short time, but they are viewed together
on the y-axis and AOIs on the x-axis. The scanpath is thevthout a large number of transitions. We also see that the
shown as a line through the different AOIs. This visualizatioscanpath inside these highlighted areas of the if block is in
technique allows us to compare the different completion timesn almost straight line indicating that participants read the
i.e., which participants were faster or took longer, which AOlknes roughly from the top of the chunk to the bottom of the
were focused on when, as well as nding speci c patterns (sehunk. We also see that there was little interaction between
of lines highlighted in varied colors in Fif. [10). the lines we highlighted: the constructor (line 11, green), the
PrintPatternR.Fig. [IQ shows the parallel scanpath for allrst usage of the constructor (line 24, yellow), and the second
participants for PrintPatternR. In this comparison we can sasage of the constructor (line 26, orange). While there are still
that all participants focused at least once on lines 5 tosBort transitions made to and from the lines we highlight, the
(highlighted parts in Fid. 30), which are the important lines tother line involved in the transition were ones that we did
understand what this program is doing. However, we can alsot highlight. Similar to the previous scanpaths of StreetH,
observe that some participants also focused on other partsmef observe that most transitions were made to lines that were
the program, which are not so relevant (e.g., P05, P10, Ptlose by. We see only few sharp lines in the scanpath that
P17). The green (lines 5 and 6) and purple highlights (line 7@present transitions to lines that were far away, which is
show the areas in PrintPatternR that many participants xatednsistent with what is seen in StreetH.
on the most in all our examples. These lines correspond to the
inner (line 5) and outer (line 6) control loops and their content.
We can see that most participants xated on the inner andWe found several common observations between the three
outer for-loops (lines 5 and 6, green) closer to the beginnipgograms about the lines being xated on and the differences
of the session. For many, it is the rst important line thaand similarities between novices and non-novices. The rst
they xated on and was often followed by xating on the rst observation is that boilerplate code such as includes and the
print statement on line 7 (purple). While we also see mamsing namespace are not focused on as much as the other lines
xations on line 9 (yellow), the second print statement, thein the code snippets. We also observed that a large percentage
seem secondary to line 7 because line 9 is not focused onoésxation duration is distributed over a small number of
frequently and is often between other xations of line 7 whictines with this being more pronounced for the non-novices we
indicate that it is normally being viewed within the context oanalyzed. The nal observation is that most transitions were
the rst print statement. to lines that were close to the current line being xated on.
StreetH.For the StreetH program, we nd similar behaviotWhile non-novices have more transitions that span multiple
(see Fig[I]1). The main method (lines 16 to 19, pink) receivéides, most of their transitions were to lines that were close.
few xations. Instead we see the method and class declarationdVhen analyzing the parallel scanpaths of multiple partici-
make up most of the xation time. We can see that thpants we made several common observations. We found that
constructor (line 12, purple), the getNumber method (line 18)e scanpaths showed the same trend that most transitions were
yellow), and the setNumber method (line 14, orange) receivallines that were close to the current line. We can see sharp
more attention. We see that these three related lines dnes representing transitions to lines farther away break up
viewed close together. For most participants, they looked at theriods of transitions over shorter distances. We also observed
constructor (line 12, purple) rst, then the getNumber methaithat the single lines we highlighted were involved in series of
(line 13, yellow), and then transitioned to the setNumbeshort transitions at some point. However, when we grouped
method (line 14, orange). However, these are clean transitiossveral related lines together we noticed they were less often a
Often there is a period of transitions between two of thegart of a series of short transitions. This hints that developers
lines. The method prototypes (line 8 to 10, green) are oftexate on code not based on lines alone, but on chunks of
viewed separately from the implementations of the methodslated lines. We were able to observe these trends purely
They were most often xated on toward the beginning of ththrough analysis of several visualizations. We were able to
session and before the participants looked at the implemengasily compare pairs of participants and nd common trends
tions of the methods on lines 12 to 14. We also see in thasd observations using existing visualizations techngiues.
visualization that most transitions made are to lines that are
close to the current line. While we see some sharp transitions
covering a large amount of distance in the x-axis, which showIn this paper we present a visual analysis of eye movement
that a large amount of lines were covered, the more commdata on three short C++ code snippets. Two kinds of visu-
type of transitions are to lines that are only a few lines awaglizations were used leveraging different aspects of the eye

B. RQ2 Results: Parallel Scanpath Comparisons

V. DISCUSSION

VI. CONCLUSIONS ANDFUTURE WORK

Fig. 10. Parallel scanpath visualization of PrintPatternR for all participants. We have highlighted in green lines 5 and 6, in purple line 7, and in yellow line 9.
These highlights shown when participants focused on these speci c lines.

Fig. 11. Parallel scanpath visualization of StreetH for all participants. We have highlighted in green lines 8-10, in purple line 12, in yellow line 13, in orange
line 14, and in pink lines 16 to 19. These highlights shown when participants focused on these speci c lines.

Fig. 12. Parallel scanpath visualization of SignCheckerClassMR for all participants. We have highlighted in green line 11, in purple lines 14-20, in yellow
line 24, and in orange line 26. These highlights shown when participants focused on these speci c lines.

movement data. We found that most transitions between lingsg
in code were to lines that were close to the current line, a
large percentage of xation duration is distributed over a small
number of lines, and related lines are viewed together and]
often in a series of short xations. As part of future work, we
plan on extending such visualizations to incorporate xations

D. T. Guarnera, C. A. Bryant, A. Mishra, J. |. Maletic, and B. Sharif,
“itrace: Eye tracking infrastructure for development environments,” in
Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications ser. ETRA '18, 2018, pp. 105:1-105:3.

H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing
individual performance of source code review using reviewers' eye
movement,” inProceedings of the 2006 symposium on Eye tracking
research & applicationsser. ETRA '06. ACM, 2006, pp. 133-140.

generated on larger code snippets encompassing more methglist. Blascheck, M. Schweizer, F. Beck, and T. Ertl, “Visual comparison

and les. In addition, we plan on analyzing line chunks that

could resemble beacons to see if other trends are noticeal?}?

between chunks.

8l
ACKNOWLEDGMENT

We are grateful to all the participants who took part in
this study. This work is supported in part by grants from thd®]
National Science Foundation under grant numbers CCF 1§
55756 and CCF 15-53573.

REFERENCES [11]

[1] M. D. Storey, “Theories, tools and research methods in program

comprehension: past, present and futuBgftware Quality Journal [12]

vol. 14, no. 3, pp. 187-208, 2006. [Online]. Availablz: hitps:

//doi.org/10.1007/s11219-006-9216-4

U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey on the usagd 3]

of eye-tracking in computer programmin@CM Comput. Suryvol. 51,

no. 1, pp. 5:1-5:58, Jan. 2018.

[3] Z.Shara, Z. Soh, and Y.-G. Gehéneuc, “A systematic literature review [14]
on the usage of eye-tracking in software engineerihgfrmation and
Software Technology (IST2015.

(2]

of eye movement patternsComputer Graphics Forumvol. 36, no. 3,

pp. 87-97, 2017.

M. Raschke, D. Herr, T. Blascheck, M. Burch, M. Schrauf, S. Will-
mann, and T. Ertl, “A visual approach for scan path comparison,” in
Proceedings of ETRA ACM, 2014, pp. 135-142.

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. Paterson, C. Schulte,
B. Sharif, and S. Tamm, “Eye movements in code reading: Relaxing the
linear order,” inProceedings of International Conference on Program
Comprehension IEEE Computer Society Press, 2015, pp. 255-265.
M. Crosby and J. Stelovsky, “How do we read algorithms? A case study,”
Computer vol. 23, no. 1, pp. 25-35, 1990.

P. Rodeghero and C. McMillan, “An empirical study on the patterns of
eye movement during summarization tasks 2015 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM) vol. 00, 2015, pp. 1-10.

A. Begel and H. Vrzakova, “Eye movements in code review,” in
Proceedings of the Workshop on Eye Movements in Programmérg
EMIP '18, 2018, pp. 5:1-5:5.

T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and
T. Ertl, “Visualization of eye tracking data: A taxonomy and survey,”
Computer Graphics Forupmvol. 36, no. 8, pp. 260-284, 2017.

O. Spakov, H. Siirtola, H. Istance, and K.-JaiRa, “Visualizing the
reading activity of people learning to readdurnal of Eye Movement
Researchvol. 10, no. 5, pp. 1-12, 2017.

B. Clark and B. Sharif, “iTraceVis: Visualizing eye movement data
within eclipse,” inlEEE Working Conference on Software Visualization
IEEE Computer Society Press, 2017, pp. 22-32.

	Introduction
	Related Work

