N

N

A Statistically Principled and Computationally Efficient
Approach to Speech Enhancement using Variational
Autoencoders: Supporting Document

Manuel Pariente, Antoine Deleforge, Emmanuel Vincent

» To cite this version:

Manuel Pariente, Antoine Deleforge, Emmanuel Vincent. A Statistically Principled and Compu-
tationally Efficient Approach to Speech Enhancement using Variational Autoencoders: Supporting
Document. [Research Report] RR-9268, INRIA. 2019, pp.1-8. hal-02089062

HAL Id: hal-02089062
https://inria.hal.science/hal-02089062
Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-02089062
https://hal.archives-ouvertes.fr

A Statistically Principled
and Computationally

Efficient Approach to
Speech Enhancement
using Variational
Autoencoders :
Supporting document

Manuel Pariente, Antoine Deleforge, Emmanuel Vincent

RESEARCH
REPORT

N° 9268

April 2019

Project-Team MULTISPEECH

ISSN 0249-6399 ISRN INRIA/RR--9268--FR+ENG







V4

: in]armulics/mathematics

A Statistically Principled and
Computationally Efficient Approach to Speech
Enhancement using Variational Autoencoders :

Supporting document

Manuel Pariente, Antoine Deleforge, Emmanuel Vincent
Project-Team MULTISPEECH

Research Report n° 9268 — April 2019 — [§] pages

Abstract: Recent studies have explored the use of deep generative models of speech spectra
based of variational autoencoders (VAEs), combined with unsupervised noise models, to perform
speech enhancement. These studies developed iterative algorithms involving either Gibbs sampling
or gradient descent at each step, making them computationally expensive. This paper proposes
a variational inference method to iteratively estimate the power spectrogram of the clean speech.
Our main contribution is the analytical derivation of the variational steps in which the encoder of
the pre-learned VAE can be used to estimate the variational approximation of the true posterior
distribution, using the very same assumption made to train VAEs. Experiments show that the pro-
posed method produces results on par with the aforementioned iterative methods using sampling,
while decreasing the computational cost by a factor 36 to reach a given performance.

Key-words:  Speech enhancement, variational autoencoders, variational Bayes, non-negative
matrix factorization
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1 Model

This document provides the details of the analytical derivation of the algorithm presented in |1].
We first remind the statistical model used in [1].

We use f to denote the frequency index and ¢ to denote the time frame index. Independently for
(f,t) € {0,...., F — 1} x {0,..., N — 1}, the single channel observation of the mixture is modeled
by

Tge = Sfe + Nyt + €fe, (1)

where zf;, sy and ny are the short term Fourier transform (STFT) coefficients of the mixture,
the speech source and the noise source respectively, and e ~ N.(0,02) is introduce to prevent
p(2ft|sfe, bpe) from being a Dirac, we have

Tpelsprbpe ~ Ne(spe +bpi, 02), (2)

where N, denotes the univariate proper complex Gaussian defined in Section 3| o2 will be set to
0, once the variational updates are obtained.

The noise STFT coefficients are modelled using Non-Negative Matrix Factorization (NMF) [2] :

nge ~ Ne(0, (WH) ). (3)
with W € RE*F | H € RE*YN | K being the rank of the NMF model.

We define s; = [slt,...,sm]T7 s = [s1,..,8N], B = [nlt,...,npt]T7 ng = [ng,..,nyl,
Ty = [T14, ...,th}T, x = [x1,...,xy]| and H; = [Hyy, ...,HKt]T, where (.)7 denotes the transpose
operator.

The speech STFT coefficients are modeled using a variational autoencoder (VAE) [3|, we have

z ~N(0,1), (4)
spelze; 0 ~ Ne(0,07(z4)), ()
tlse; & ~ N (u(lsel?), 7 (|se*)), (6)

where z; = [z1¢4, .., th]T is the latent variable and L < F.

We remind that O'J%; fu and 67, are non-linear functions implemented by deep neural networks
(DNNs) with parameters 6 and ¢ respectively. They are learned by maximizing the marginal
log-likelihood log pg(s). All the STFT frames are considered to be independent, we have

logpo(s) =Y _logpa(st). (7)

We can then maximize the marginal likelihoods of individual STFT frames, we write

log pg(s:) = Drr(qe(2¢|st)||pe(zt]se)) + L(O, @; s¢), (8)

L(0,; 81) = Eqy (2,15, [l0g po(si|20)] = Dreras(ze]s0)l[p(21)), 9)
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where D (q|[p) = —Eq[log(p/q)] denotes the Kullback-Leibler (KL) divergence. Based on (),
and @, we rewrite £(0, ¢; sy):

L6,9) =Y Bzl [drs(Issel, 07 (20)] Zlog (Isel*) = fii (Ise]*) = &7 (Ise ),

f

where d;5(z;y) = x/y—log(z/y)—1 denotes the Itakura-Saito divergence, and = denotes equality
up to a constant.

2 Inference

Given an observation X = {z:}(s1)e(B), our goal is now to maximize the log-likelihood of X
given the mixture model . the generative model of speech ( and . and the noise’s NMF

model ( .

We consider y, = {s¢, nt, z¢} to be the set of latent variables, ®; = {W, H;} the parameters of
the model. We introduce a variational distribution r(y,) and write the following decomposition:

log p(z1; ©1) — DrL(r(y)lp(ys|we; ©1)) = L(r, ©y), (10)
where L(r, ©;) follows

(e, Yy Qs)} _ (11)

—E log %0 Yt: )
£ @) T(y“@”{og r(y,: ©y)

We suppose that the variation distribution r(y,) factorizes as

r(sy, Ny, z¢) = (8¢, ne)7r(2) = Hr(sft,nft) HT(th)~ (12)
! 1

Given the independence of s; and n;, and n; and z;, we can write the complete data likelihood
as

P(xe, Yy Or) = p(@e| 8¢, me)p(S¢e|20)p(21)p(Ny; ). (13)

We can then iteratively maximize L£(r, ®,;) with respect to the factorized distributions r(s;, b;)
and r(z¢), and the NMF parameters @; = {W, H,;}. As given by the equation (10.9) in [4], the
variational distributions r(s,nys) and r(z;) can be updated using

log r(sfe,nye) = Bz, [logp(x e, s, mpe, 205 ©4)], (14)
log 7(211) = Er(s, mo)llog p(, st e, 2105 ©4)]. (15)

W and H can be updated by maximizing the following

Q0,0 £E 4 . g logp(x, 5,b,2 )]
== E, s logp(b; )], (16)

where @ = {W ,H}.

Inria
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2.1 E-(s,n) step

We define 2 = (WH ) s+ to make the notation less cluttered. Removing the terms independent
from sy and Ny in , we have

logr(sft,nft) = logp(xft|sft7nft) + Er(zt)[logp(sft|zt)] + 10gp(nft;0721,ft)
<

1
logp(@silspe, npe) — Bz, lgz(%)} |spel* +logp(nse; 07 f,). (17)
¥

We can define 73, as

%:Er(zt) [0? ] i[l/gf ), (18)

¥ d=1

¢¢¢

We recognize r(sf:,n¢:) to be a product of Gaussian, up to the normalization constant. We have

r(sgempe) ~ Ne(@pes spe 4 g, 02)Ne(nge; 0,00 1) Ne(sp50,7%,) (19)
NNC(Ift;Sft+nft,03)-/\/c([5ft7nft]§0a \I,)v (20)

with ¥ defined as

2
vy 0
W, = |'ft } . 21
v 1)
Finally, with Sy = [sp,npe]T and ()% denoting the Hermitian transpose, we can rewrite
(s, ns¢) using Bayes’ theorem, as in [5]
F(Sp0) = = exp (—(Sp1 — 1) " S7M (S s — pge) (22)
ft |7r2| p ft — MKyt e \Oft = Hyge) )

where, using M = [1, 1], p;, and Xy, are defined as

~1
. M'M
B = <‘I’ft1 + 02) (23)
> RT

Hypp = ];_2 Lt (24)

With A = ‘Il;tl, U=M" C=1/0? and V =M, we can use the Woodbury matrix identity :
(A+Ucv)yt=A'—A U (CT +vATU) T vaAT (25)

to rewrite X as
_ Vi st Ui.;;{:U? -1 Vhomp [1 -1
Yn=m o | 2, 20 A2 402 |-1 1| (26)
P)Ift On,ft T 0¢ -1 'thoz o= ’th O, ft
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Using (24)), we have
77% 'Y}%t
_ V3etol peto? Y3etoo e 27
l’l’ft § U?Z,ft ‘Tft o_?_)o 2ai,f2t xft’ ( )
’th+0n,ft+aé2 V5 ton e
in which we recognize the Wiener filter applied to x 4.
We define p, and ¥, with
(8¢, M) ~ HNC(Hfta ) = Ne(py, o). (28)
f
We note [p; ¢, py ] = p, and define X o and X 5., to be the diagonal terms of 3;.
2.2 E-z step
After removing the terms independent from z; from , we can update r(z¢) using
log(2¢) = logp(21) + Er(s, m,) log p(se|z:)] (29)
c 1 ‘IJ‘ t,ss|2 + Eft,ss
= logp(z¢) — 3 Z [10g(27m?(zt)) + L o2(20) (30)
f A
(31)

< logp(z¢) +p (St = /1y s* + Dt ss |Zt> )

where p(s¢|z:) =[], p(sye|2e).
We can invert using Bayes’ theorem to obtain
(32)

r(z¢) =p (Zt‘st = ‘/J’t,s|2 + Et,SS) :

As maximizing (8) minimizes Dxr,(q4(2|s)||pe(2|s)), we can use the probabilistic encoder ¢, (z|s)
as an approximation of the true posterior pg(z|s). We further assume that this still holds for s

of the form s; = /|y, |* + Xy 5. Finally, we have
7(2t) = qp(2e|st = \[ |y s|* + Bt ss) (33)

~ N (i o[ + B ,ss), 67 (| 6| + B s))- (34)
2.3 M-step
We now maximize L(r, ©®;) with respect to ©; with fixed r(y,) using :
Q(®7 G)Old) = ET(S}b;@"ld) [logp(ba 9)]
(35)

ZdIS (‘“‘ftm|2 + Xt nn, (WH>ft)
Tt

Inria



Supporting document 7

We obtain classic NMF’s multiplicative updates as in [6] :

WT((WH)Q*Q ® V)

H+ HO®
wT(WH)o-1

; (36)

((WH)Q*Q ® V) HT
(WH)o-1H”

W« Wo , (37)

where V' = {|p 5, o[> + Zpenn b (r)-

3 Distribution definitions

Proper complex Gaussian: The complex proper Gaussian distribution with mean p and covari-
ance X, noted N, ((z; p, X) is defined as:

Nb(iﬂ,M,Z) = exp (_(m_p’)Hzil(m_ll')) ) (38)

mdet X

where H denotes the Hermitian transpose. In the univariate case, it simplifies to

1 _ 2
Ne(xs p,0) = ) €xXp <M> . (39)

o2

Real-valued Gaussian The real-valued multivariate distribution with mean p and covariance X,
noted N ((x; i, X) is defined as:

N (s 1, 3) - (—;cc WS (e m) , (40)

1
= ————%¢
vdet 21X

which, in the univariate case, simplifies to

N(a;p,0) =

RR n° 9268
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