S. R. Abdel-misih and M. Bloomston, Liver anatomy, Surgical Clinics, vol.90, issue.4, pp.643-653, 2010.

J. Allard, S. Cotin, F. Faure, P. J. Bensoussan, F. Poyer et al., SOFA -an open source framework for medical simulation, MMVR 15-Medicine Meets Virtual Reality, vol.125, pp.13-18, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00319416

A. Amundarain, D. Borro, A. García-alonso, J. J. Gil, L. Matey et al., Virtual reality for aircraft engines maintainability, Mechanics and Industry, vol.5, issue.2, pp.121-127, 2004.

S. Cotin, H. Delingette, and N. Ayache, Real-time elastic deformations of soft tissues for surgery simulation, IEEE transactions on Visualization and Computer Graphics, vol.5, issue.1, pp.62-73, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00615032

J. Barbic and D. L. James, Six-dof haptic rendering of contact between geometrically complex reduced deformable models, IEEE Transactions on Haptics, vol.1, issue.1, pp.39-52, 2008.

S. Bhattacharjee and K. Matous, A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials, Journal of Computational Physics, vol.313, pp.635-653, 2016.

O. Comas, Z. A. Taylor, J. Allard, S. Ourselin, S. Cotin et al., Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA, International Symposium on Biomedical Simulation, pp.28-39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00841568

. Springer,

B. Fetene, N. Rajkumar, S. , U. S. , and D. , FEMbased neural network modeling of laser-assisted bending, Neural Computing and Applications, vol.29, pp.69-82, 2018.

O. Goury and C. Duriez, Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction, IEEE Transactions on Robotics, issue.99, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01834483

R. Haferssas, P. Jolivet, and F. Nataf, An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method, SIAM Journal on Scientific Computing, vol.39, issue.4, pp.1345-1365, 2017.

N. Haouchine, J. Dequidt, M. O. Berger, and S. Cotin, Deformation-based augmented reality for hepatic surgery, Studies in health technology and informatics, p.184, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00768372

S. F. Johnsen, Z. A. Taylor, M. J. Clarkson, J. Hipwell, M. Modat et al., NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. International journal of computer assisted radiology and surgery, vol.10, pp.1077-1095, 2015.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

D. Kourounis, A. Fuchs, and O. Schenk, Toward the next generation of multiperiod optimal power flow solvers, IEEE Transactions on Power Systems, vol.33, issue.4, pp.4005-4014, 2018.

D. Lorente, F. Martínez-martínez, M. J. Rupérez, M. A. Lago, M. Martínez-sober et al., A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning, Expert Systems with Applications, vol.71, pp.342-357, 2017.

R. Luo, T. Shao, H. Wang, W. Xu, K. Zhou et al., DeepWarp: DNN-based Nonlinear Deformation, 2018.

F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier et al., Towards Fast Biomechanical Modeling of Soft Tissue Using Neural Networks, 2018.

K. Miller, G. Joldes, D. Lance, and A. Wittek, Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in numerical methods in engineering, vol.23, pp.121-134, 2007.

S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta, Real-time deformable models of non-linear tissues by model reduction techniques. Computer methods and programs in biomedicine, vol.91, pp.223-231, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00290481

S. Niroomandi, D. Gonzalez, I. Alfaro, F. Bordeu, A. Leygue et al., Real-time simulation of biological soft tissues: a PGD approach, International journal for numerical methods in biomedical engineering, vol.29, issue.5, pp.586-600, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01007231

S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta, Model order reduction for hyperelastic materials, International Journal for Numerical Methods in Engineering, vol.81, issue.9, pp.1180-1206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01007059

C. J. Paulus, R. Maier, D. Peterseim, and S. Cotin, An Immersed Boundary Method for Detail-Preserving Soft Tissue Simulation from Medical Images, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.55-67, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578447

F. Roewer-despres, N. Khan, and I. Stavness, Towards finite element simulation using deep learning, 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 2018.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

G. Runge, M. Wiese, and A. Raatz, FEM-based training of artificial neural networks for modular soft robots, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.

D. Ryckelynck, A priori hyperreduction method: an adaptive approach, Journal of computational physics, vol.202, issue.1, pp.346-366, 2005.

J. R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.

M. Tonutti, G. Gauthier, and Y. Guang-zhong, A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artificial intelligence in medicine, vol.80, pp.39-47, 2017.