. Pour-le-futur, il faut encore affiner la théorie et mener une étude plus fondamentale et systématique des possibilités du biclustering dans un cadre FCA. Et surtout, il faut faire beaucoup plus d'expérimentations, en particulier sur des jeux de données réels tels qu'il en existe en biologie pour l'expression de gènes

P. Arabie and L. Hubert, Clustering and Classification, 1996.

J. Baixeries, M. Kaytoue, and A. Napoli, Characterizing functional dependencies in formal concept analysis with pattern structures, Annals of Mathematics and Artificial Intelligence, vol.72, pp.129-149, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101107

V. Codocedo and A. Napoli, Lattice-based biclustering using partition pattern structures, Proceedings of the Twenty-first European Conference on Artificial Intelligence, pp.213-218, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095865

L. Di-jorio, A. Laurent, and M. Teisseire, Mining frequent gradual itemsets from large databases, International Symposium on Intelligent Data Analysis, pp.297-308, 2009.

B. Ganter and S. O. Kuznetsov, Pattern structures and their projections, International Conference on Conceptual Structures, pp.129-142, 2001.

B. Ganter and . Et-r.-wille, Formal Concept Analysis : Mathematical Foundations, 1999.

M. Kaytoue, S. O. Kuznetsov, A. Napoli, and E. S. Duplessis, Mining Gene Expression Data with Pattern Structures in Formal Concept Analysis, Information Science, vol.181, issue.10, pp.1989-2001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00541100

G. Li, Q. Ma, H. Tang, A. H. Paterson, and Y. Xu, QUBIC : a qualitative biclustering algorithm for analyses of gene expression data, Nucleic Acids Research, vol.37, issue.15, pp.101-101, 2009.

S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis : a survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol.1, issue.1, pp.24-45, 2004.

A. Tanay, R. Sharan, and R. Shamir, Discovering statistically significant biclusters in gene expression data, Bioinformatics, vol.18, issue.suppl_1, pp.136-144, 2002.

, biclustering aims at simultaneously grouping similar rows and columns, i.e. to find submatrices which exhibit a correlation among their respective cells. There are many types of biclustering based on a similarity criterion, Summary Biclustering plays a crucial role in many real world applications. Related to clustering, which groups similar rows in a matrix (data table)