
THE RELATIVE ACCURACY OF (x+y)*(x-y)

CLAUDE-PIERRE JEANNEROD

Abstract. We consider the relative accuracy of evaluating (x + y)(x− y) in

IEEE floating-point arithmetic, when x and y are two floating-point numbers
and rounding is to nearest. This expression can be used, for example, as an

efficient cancellation-free alternative to x2 − y2 and (at least in the absence of

underflow and overflow) is well known to have low relative error, namely, at
most about 3u with u denoting the unit roundoff. In this paper we propose

to complement this traditional analysis with a finer-grained one, aimed at

improving and assessing the quality of that bound. Specifically, we show that
if the tie-breaking rule is to away then the bound 3u is asymptotically optimal

(as the precision tends to ∞). In contrast, if the tie-breaking rule is to even,

we show that asymptotically optimal bounds are now 2.25u for base two and
2u for larger bases, such as base ten. In each case, asymptotic optimality is

obtained by the explicit construction of a certificate, that is, some floating-
point input (x, y) parametrized by u and such that the error of the associated

result is equivalent to the error bound as u tends to zero. We conclude with

comments on how (x+ y)(x− y) compares with x2 in the presence of floating-
point arithmetic, in particular showing cases where the computed value of

(x + y)(x− y) exceeds that of x2.

1. Introduction

In IEEE floating-point arithmetic, the evaluation of x2 − y2 in the most natu-
ral way—as the difference of two squares—is well known to be prone to damaging
cancellation: if the floating-point numbers x and y are close enough to each other
then the subtraction mostly reveals the rounding error(s) due to squaring and this
can yield a totally wrong result. This phenomenon still happens when a fused
multiply-add operation is available and used to compute x2−y2 as fma(x, x,−y∗y)
or −fma(y, y,−x ∗ x). In practice, this implies for example that when squaring the
complex number x + iy with any of these schemes, then, even in the absence of
underflow and overflow, the computed real part may be very inaccurate. A clas-
sical workaround consists in evaluating the factored form (x + y)(x − y) instead,
as suggested by Sterbenz [15, p. 118] and Kahan and Thomas [9]. This alterna-
tive formula retains the simplicity of the previous ones and, barring underflow and
overflow, now ensures high relative accuracy. Specifically, if each of the three oper-
ations +, −, × is performed with relative error at most the unit roundoff u then the
computed result r̂ has the form r̂ = (x2−y2)(1+θ) with (1−u)3 6 1+θ 6 (1+u)3

and, therefore, has its relative error |θ| bounded as

|θ| 6 (1 + u)3 − 1.
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For simplicity and assuming u is small enough, the expression (1 + u)3 − 1 can
then be approximated by 3u or rewritten as 3u + O(u2) or bounded further by
3u/(1−3u) =: γ3 or 3.03u. This kind of analysis is typical of Wilkinson’s traditional
approach [18, 19] and has been done by various authors, including Stoer [17] (see
also Stoer and Bulirsch [16]), Goldberg [2], and Higham [3].

In this paper we propose to complement this traditional analysis with a finer-
grained one, aimed at improving and assessing the quality of such error bounds in
the context of IEEE floating-point arithmetic. To do this, the implementation of
the formula (x+ y)(x− y) that we shall study can be described as follows:

(1) x, y ∈ F : r̂1 := fl(x+ y), r̂2 := fl(x− y), r̂ := fl(r̂1r̂2),

where F is a set of floating-point numbers in base β and precision p, defined as

(2) F =
{

0
}
∪
{
M · βE : M,E ∈ Z, βp−1 6 |M | < βp

}
,

and where fl denotes a round-to-nearest function from R to F, such that

(3) |fl(t)− t| = minx∈F |x− t| for all t ∈ R.

We shall assume that β is even, p > 2, and the tie-breaking rule for fl is either
to even or to away: if fl breaks ties to even, then every real number lying halfway
between two consecutive elements of F in (2) is rounded to the one whose integral
significand M is even; if fl breaks ties to away, then it is rounded to the one for
which |M | is largest. In practice these assumptions are very mild and will be enough
to cover simultaneously the possibilities offered by the IEEE standard 754-2008 [4],
where β ∈ {2, 10} and fl ∈ {roundTiesToEven, roundTiesToAway}.1 Furthermore,
since the definition of F imposes no restriction on the exponent range, our results
will hold as long as underflows and overflows do not occur.

As a first and easy step towards a fine-grained accuracy analysis of (1), we can
exploit the main consequence of (2) and (3), that says that the relative error due
to rounding is bounded as follows [10, p. 232]:

(4) for all t ∈ R, fl(t) = t · (1 + δ), |δ| 6 u

1 + u
, u :=

1

2
β1−p.

Applying this inequality three times to (1), we deduce that

(5) r̂1 = (x+ y)(1 + δ1), r̂2 = (x− y)(1 + δ2), r̂ = r̂1r̂2(1 + δ3)

for some rational numbers δi such that |δi| 6 u/(1 + u) and, writing

r̂ = (x2 − y2)(1 + θ), θ := (1 + δ1)(1 + δ2)(1 + δ3)− 1,

we can then easily check using u > 0 that the relative error of r̂ satisfies

|θ| < 3u.

This simple analysis already refines the traditional bound (1 + u)3 − 1 slightly,
showing that the O(u2) term can be removed and that the commonly used alter-
native forms 3u+O(u2) and γ3 mentioned before are in fact not needed. However,
this says nothing about the quality of all these bounds and, therefore, raises the
following question: Can the leading constant 3 be reduced further, and if so by
which value should it be replaced?

1 The 2019 revision of IEEE 754 [5] now includes a third way of rounding to nearest, called
roundTiesToZero and used to specify some operations recommended in base 2. We shall see at

the end of section 2 that the result we obtain for roundTiesToAway extends trivially to this case.
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We show with Theorem 1.1 that the answer actually depends on the tie-breaking
rule and the base: if ties are broken to away, then 3 is indeed best possible; oth-
erwise, this constant can be decreased down to 2.25 for binary arithmetic and 2
for larger bases, these new constants now being best possible as well. Here “best
possible” means the following: the relative error |θ| is upper bounded by λu (with
λ either 3, 2.25 or 2) and there exists an input (x0, y0) ∈ F2 that is parametrized by
u and such that the corresponding error |θ0| → λu as u→ 0. We will say that such
a bound is asymptotically optimal and may call the input (x0, y0) a certificate of
asymptotic optimality for that bound. In our case, the certificates will be provided
explicitly, as pairs of simple functions of u.

Theorem 1.1. Let x, y ∈ F and let fl denote a round-to-nearest map from R to F.
Then, when evaluating x2 − y2 as r̂ = fl(fl(x + y)fl(x − y)), the returned value r̂
satisfies

r̂ = (x2 − y2)(1 + θ), |θ| <


3u if fl breaks ties to away,
9
4u if fl breaks ties to even and β = 2,

2u if fl breaks ties to even and β 6= 2.

Furthermore, each of these bounds on the relative error |θ| is asymptotically optimal.

In practice this result implies that for default IEEE floating-point arithmetic—
which has base 2 and ties broken to even, the overall relative error of evaluating
(x + y)(x − y) can never get close to the traditional bound 3u and will at worst
approach 2.25u. Our analysis can also be seen as a typical example of fine-grained
accuracy analysis, as surveyed in [6] and whose goal is to provide not only a priori,
worst-case error bounds but also certificates of the quality of such bounds. Other
examples include optimal bounds for the five basic operations [8] and for summation
in high dimension [12, 11], as well as asymptotically optimal bounds in the context
of complex arithmetic [1, 7].

1.1. Ingredients for the proof. To establish Theorem 1.1 we shall exploit (4)
as well as several other, lower level properties of IEEE floating-point arithmetic
that are most often straightforward consequences of (2) and (3) and which we
briefly review in this subsection. It turns out that several of these properties are
conveniently expressed in terms of the unit roundoff u = 1

2β
1−p and also via the

real functions ufp (unit in the first place, introduced in [14]) and ulp (unit in the
last place), defined by ufp(0) = ulp(0) = 0 and

for t ∈ R 6=0, ufp(t) = βblogβ |t|c and ulp(t) = 2uufp(t).

Clearly, these two functions are even (that is, independent of the sign of t) and
non-decreasing over R>0: if |t| 6 |t′| then ufp(t) 6 ufp(t′) and ulp(t) 6 ulp(t′).

Some properties of F. Note first that if x ∈ F then −x ∈ F (symmetry) and
xβk ∈ F for all k ∈ Z (auto-similarity).

Furthermore, since 2u = β1−p, any nonzero x ∈ F can be rewritten as

x = ±mβe, m = 1 + j · 2u, j ∈
{

0, 1, 2, . . . , (β − 1)βp−1 − 1}, e ∈ Z.

Here, βe = ufp(x) and, for example, the subset for which ufp(x) = 1 is

F ∩ [1, β) =
{

1, 1 + 2u, 1 + 4u, . . . , β − 2u
}
.
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It is worth noting that the midpoints associated with F, that is, the rational numbers
lying halfway between two consecutive elements of F, can be expressed in a similar
way as ±

(
1 + j · 2u+ u

)
βe. Their set will be written M and, in particular,

M ∩ [1, β) =
{

1 + u, 1 + 3u, 1 + 5u, . . . , β − u
}
.

From the definition of ufp, it follows that

for all t ∈ R 6=0, ufp(t) 6 |t| < βufp(t).

Combining this with the structure of F just described, we deduce that over F the
strict inequality can be refined:

for all x ∈ F, ufp(x) 6 |x| 6 (β − 2u)ufp(x).

Finally, it will be useful to exploit the fact that floating-point numbers are inte-
gral multiples of their ulp: if x ∈ F then

x ∈ ulp(x)Z.
Conversely, if a nonzero real number t satisfies |t| ∈ ulp(t)Z and |t|/ulp(t) 6 βp,
then t ∈ F.

Some properties of fl. A first important property of rounding to nearest is that
it is a non-decreasing function over R: for any t, t′ ∈ R such that t 6 t′, we have
fl(t) 6 fl(t′).

Another property, made possible by the fact that our tie-breaking rules are
independent of both the sign and the order of magnitude of the number to be
rounded, is that

(6) fl(±tβk) = ±fl(t)βk, t ∈ R, k ∈ Z.
Third, the relative error due to rounding a real number can be bounded by means

of the ufp function as follows:

for all t ∈ R 6=0, fl(t) = t · (1 + δ), |δ| 6 uufp(t)

|t|
.

This bound, which improves upon the bound u/(1 + u) given in (4) as soon as
|t| > (1 + u)ufp(t), can be as small as about u/β when |t| ≈ βufp(t).

Finally, fl(t) = t whenever t ∈ F. This obvious fact, which is not implied by (4),
may be used under the form t 6∈ F⇒ δ 6= 0.

Sufficient conditions to ensure |θ| < 2u. In addition to the low-level features
that we have just recalled, we will use the following two facts:

(7) δiδj 6 0 ⇒ |θ| < 2u

and

(8) x, y ∈ F : 0 6 y 6 x 6 y + βufp(y) ⇒ x− y ∈ F.
The implication in (7) follows immediately from θ = (1 + δ1)(1 + δ2)(1 + δ3)− 1

and the bounds |δi| 6 u/(1 + u) for i = 1, 2, 3.
On the other hand, the implication in (8) can be referred to as the Sterbenz–Ziv

property [15, 20] and says that if two floating-point numbers are close enough to
each other, then their exact difference is itself a floating-point number.

Proving this result is particularly simple thanks to the properties of F, ufp,
and ulp seen above: when y = 0 it is obvious; otherwise, ulp(y) divides ulp(x)
because y 6 x, so that x and y and x − y are integral multiples of ulp(y). Hence
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x − y = Mulp(y) for some integer M that by assumption satisfies 0 6 M 6
βufp(y)/ulp(y) = βp. Therefore, x− y ∈ F.

Note also that the condition in (8) is essentially best possible in the sense that
if x > y + βufp(y), then x − y need not be in F anymore. For example, taking
x = β + 1 + β · 2u and y = 1 + 2u gives x > β + 1 + 2u = y + βufp(y) and
x− y = β + (β − 1) · 2u 6∈ F.

Finally, remark that x − y ∈ F is equivalent to δ2 = 0, which by (7) implies
|θ| < 2u. Consequently, both (7) and (8) will be used as ways to filter out various
easy sub-cases that occur during the proof of the upper bounds 2.25u and 2u in
Theorem 1.1.

1.2. Outline. The rest of the paper is mostly devoted to the proof of Theorem 1.1.
We begin, in section 2, by setting up a certificate showing that if ties are broken
to away then the bound 3u is asymptotically optimal. We go on to consider round
to nearest even in the next two sections. First, we show in section 3 that for this
choice of tie-breaking rule smaller upper bounds are possible, namely, 2.25u when
β = 2 and 2u for larger bases: after a preliminary range reduction on the input x
and y, we focus on the resulting three sub-cases, which are x±y ∈ [1, β), x+y > β,
and x − y < 1, and provide for each of them a detailed analysis. We then present
in section 4 the construction of two certificates of asymptotic optimality, one for
the bound 2.25u in the case where β = 2, and one for the bound 2u. We conclude
briefly in section 5 by noting that despite its high accuracy and unlike x2− y2, the
factored form (x+ y)(x− y) can yield values that slightly exceed fl(x2) regardless
of the base and tie-breaking rule.

2. Asymptotic optimality of the error bound 3u
when rounding ties to away

Lemma 2.1. Assume that p > 4, and let

j =
⌈ 1

2
√
u

⌉
, x = 1 + j · 2u, y = u.

Then x, y ∈ F and, when rounding ties to away, θ = 3u − ε for some positive
ε = O(u3/2).

Proof. Note first that y ∈ F for β even. On the other hand, for p > 4, we have
u 6 1/16, which together with 1 6 j < 1

2
√
u

+ 1 implies that both x = 1 + j · 2u
and the expression 1 + (2j + 1) · 2u are in (1, β) and, thus, in F ∩ (1, β).

We deduce from x ∈ F ∩ (1, β) and y = u that

x+ y = 1 + j · 2u+ u, x− y = 1 + j · 2u− u
are midpoints in (1, β); furthermore, since ties are broken to away, they are rounded
up to

r̂1 = 1 + (j + 1) · 2u, r̂2 = 1 + j · 2u,
respectively. Now, using j = 1

2
√
u

+O(1), we see that x± y = 1 +O(
√
u) and that

the associated relative errors have the form

δi = u− εi, 0 < εi = O(u3/2), i = 1, 2.

Consider now the relative error δ3 that occurs when rounding r̂1r̂2. We have

r̂1r̂2 = 1 + (2j + 1) · 2u+ j(j + 1) · 4u2,
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where, as noted above, 1 + (2j + 1) · 2u belongs to F ∩ [1, β) and where it can be
checked that j(j + 1) · 4u2 ∈ (u, 2u) for all p > 4: the lower bound follows from
j > 1

2
√
u

; for the upper bound we use j < 1
2
√
u

+ 1 to deduce that

j(j + 1) · 4u2 < u+ 6u3/2 + 8u2,

which is at most 2u if p > 6; if p ∈ {4, 5}, then ϕβ,p := j(j+ 1) · 4u2 satisfies for all
β > 3, ϕβ,p < ϕ2,p = 3

4 · 2u < 2u. Consequently, the exact product r̂1r̂2 is rounded
up to

r̂ = 1 + (2j + 2) · 2u;

since it also has the form r̂1r̂2 = 1 +O(
√
u) and since j(j + 1) · 4u2 = u+O(u3/2),

we deduce that

δ3 = u− ε3, 0 < ε3 = O(u3/2).

The conclusion then follows from 3u > θ = r̂/(x2 − y2) − 1 = δ1 + δ2 + δ3 +
O(u2). �

Rounding ties to away is not the only directed tie-breaking rule. For example, we
could consider the variant of Riedy and Demmel [13, §3] called roundTiesToZero,
which in case of a tie always rounds to the nearest floating-point number of smaller
magnitude; this tie-breaking rule applies in particular to the augmented operations
+,−,× that are now recommended, for binary formats, by the 2019 revision of
IEEE 754 [5, §9.5]. It turns out that for (x+ y)(x− y) the traditional bound 3u is
asymptotically optimal in this case as well, and this can be shown by reasoning as
in the proof of Lemma 2.1 with (x− 2u, y) instead of (x, y).

3. New error bounds when rounding ties to even

The goal of this section is to establish the following theorem, which says that
when the rounding map breaks ties to even the traditional bound 3u can be reduced
further, depending on the value of the base.

Theorem 3.1. If fl breaks ties to even, then

|θ| <

{
2.25u if β = 2,

2u otherwise.

In the rest of this section, we first reduce the range of both x and y. This yields
the following three regimes: x ± y ∈ [1, β), x + y > β, and x − y < 1. Then,
for each of them, we eliminate the easy subcases corresponding to (7) and (8),
and deal finally with the remaining, nontrivial subcases with Lemmas 3.1, 3.2, 3.3,
respectively.

3.1. Range reduction. Letting ϕ : (x, y) 7→ fl(fl(x+ y)fl(x− y)), we deduce from
the property of rounding in (6) that ϕ(x, y) = ϕ(−x, y) = ϕ(x,−y) = −ϕ(y, x)
and that ϕ(xβk, yβk) = ϕ(x, y)β2k for any k ∈ Z. Since these equalities hold for
the exact expression x2 − y2 as well and since ϕ(0, 0) = 0 is the exact result when
x = y = 0, we can restrict our error analysis to the pairs (x, y) such that

0 6 y 6 x and 1 6 x < β.

Two further restrictions can be made. First, if y > 1 then ufp(y) = 1 and, by
the Sterbenz–Ziv property in (8), we obtain δ2 = 0; hence in this case |θ| < 2u
and Theorem 3.1 is proved. Second, if y < u then (r̂1, δ3) = (1, 0) for x = 1 and
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δ1 6 0 6 δ2 for x > 1 + 2u. Thus, y < u implies |θ| < 2u as well. Consequently, we
can reduce the range of y accordingly and assume from now on that

(9) u 6 y < 1 6 x < β.

This reduced range for x and y has several implications. First, ufp(x) = 1 and
the range of ufp(y) is itself reduced: using u > β−p for β > 2, we see that β−p 6
ufp(y) 6 β−1, or, equivalently,

1 6 e 6 p, ufp(y) =: β−e 6 y < β1−e.

Second, since y ∈ F<1 implies y 6 1− 2u/β = 1− β−p, we deduce from (9) that

x+ y ∈ [1, β) ∪ [β, β2) and x− y ∈ [β−p, 1) ∪ [1, β).

If x+y = β, then δ1 = 0 and so |θ| < 2u. Consequently, we are left with the following
three nontrivial cases, which we shall analyze separately in the next subsections:

x± y ∈ [1, β) or x+ y > β or x− y < 1.

3.2. Analysis when x ± y ∈ [1, β). Since x belongs to F ∩ [1, β), it has the form
x = 1 + j · 2u for some integer j and, on the other hand, setting k = by/(2u)c gives
y = k · 2u+ ε for some ε ∈ [0, 2u). Thus

x± y = 1 + (j ± k) · 2u± ε, j ± k ∈ Z>0, 0 6 ε < 2u.

We now consider two cases. If ε < u or if ε = u with j + k even, then x + y is
rounded down, while x − y is rounded up, that is, δ1 6 0 6 δ2. Likewise, if ε > u
or if ε = u with j + k odd, then δ2 6 0 6 δ1. Hence δ1δ2 6 0 in all cases and,
recalling (7), we arrive at the following result.

Lemma 3.1. Let x, y ∈ F be as in (9) and such that x± y ∈ [1, β). If fl breaks ties
to even, then

|θ| < 2u.

3.3. Analysis when x+ y > β. If x− y 6 1 then y = 1
2 (x+ y − (x− y)) > β−1

2 .
Together with y < 1, this requires β = 2 and ufp(y) = 1/2. We can thus rewrite
the assumption x− y 6 1 as x 6 y+ 2ufp(y) and, using the Sterbenz–Ziv property
in (8), we deduce that in this case δ2 = 0 and |θ| < 2u.

Let us now assume that x−y > 1, so x±y are in two consecutive open intervals:

(10) x− y ∈ (1, β), x+ y ∈ (β, β2).

In this case, the next lemma shows how to bound the overall relative error |θ|
depending on the value of the base β.

Lemma 3.2. Let x, y ∈ F be as in (9) and (10). If fl breaks ties to even, then

|θ| <

{
2.25u if β = 2,

2u otherwise.

We give a detailed proof of this result in the rest of this subsection. We focus
only on the case where all the δi have the same sign, for otherwise the result follows
immediately from (7).
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3.3.1. Preliminaries. Note that 0 < y < x implies that x± y are integral multiples
of ulp(y) = 2uufp(y). Defining, for simplicity,

η := ufp(y)

and using the strict inequality x + y > β together with x − y = (x + y) − 2y and
y 6 (β − 2u)η, we deduce that

(11) x+ y > β + 2uη, x− y > β − 2βη + 6uη.

(We shall use the latter bound only when β > 2 or e > 2, that is, only in the cases
where it is larger than the lower bound 1 + 2uη resulting from x− y > 1.)

Let x = 1 + j · 2u and, to handle the fact that x+ y > β, let us also consider the
decompositions y = k · 2u+ ε and j + k = k1β + k0, where

(12) k := by/(2u)c, k1 := b(j + k)/βc, k0 ∈ {0, 1, . . . , β − 1}, 0 6 ε < 2u.

It follows from (10) and (12) that

(13) x+ y = 1 + k1 · β · 2u︸ ︷︷ ︸
∈ F ∩ [β, β2)

+ k0 · 2u+ ε︸ ︷︷ ︸
∈ [0, β · 2u)

, x− y = 1 + (j − k) · 2u︸ ︷︷ ︸
∈ F ∩ (1, β]

− ε.

We will also rely on the following specific properties. The first one will be useful
for large bases, while the second one holds only for base 2.

Property 3.1. Assume that β > 2. If δ1 6 0 or δ3 > 0, then

|δ3| 6
u

β − 2
.

Proof. Since 0 < η 6 β−1 and β, β − 2 ∈ F, the lower bounds in (11) imply r̂1 > β
and r̂2 > β − 2. Hence

|δ3| 6 u
ufp(r̂1r̂2)

β(β − 2)
.

To conclude, it suffices to prove that ufp(r̂1r̂2) 6 β, that is,

r̂1r̂2 < β2,

which can be done as follows. The ranges of x± y in (10) imply that

r̂1 6 x+ y + βu, r̂2 6 x− y + u.

Using x 6 β − 2u then gives r̂1r̂2 6
(
β(1 + u)− 2u+ y

)
(β − u− y) =

(
β(1 + u)−

2u
)
(β − u)− (β − 1)uy − y2, which for β > 2 and u, y > 0 implies

r̂1r̂2 < (1 + u)β2.

If δ3 > 0, then the latter bound suffices to ensure r̂1r̂2 < β2 (for otherwise that
product is rounded down to β2, a contradiction). If δ1 6 0, then we start instead
with

r̂1 6 x+ y;

this leads to r̂1r̂2 6 (β − 2u+ y)(β − u− y) = (β − 2u)(β − u) + y(u− y) < β2 for
u 6 y. �

Property 3.2. Assume that β = 2 and that fl breaks ties to even. If δ1δ2 > 0 then
ε 6= u and, more precisely, either

ε 6 (1− 2η)u or ε > (1 + 2η)u.



THE RELATIVE ACCURACY OF (x+y)*(x-y) 9

Proof. Assume for contradiction that ε = u. According to (13), this means x − y
is halfway between the two consecutive floating-point numbers 1 + (j − k − 1) · 2u
and 1 + (j − k) · 2u. If j − k is even, then the choice of tie-breaking rule implies

δ2 > 0;

furthermore, k0 = (j+k) mod 2 is then equal to zero, which implies k0 ·2u+ ε < 2u
and thus, due to the form of x+ y in (13),

δ1 < 0.

If j − k is odd then, using the same reasoning, we deduce that δ2 < 0 and δ1 > 0.
This shows that if δ1 and δ2 have the same sign, then ε 6= u.

Now, from y = k · 2u+ ε and ufp(y) = η = 2−e < 1 for e > 1, we deduce that

ε = ` · 2uη for some ` ∈ Z>0.

Hence ε 6= u is equivalent to ` 6= 1/(2η). Since e > 1 implies that 1/(2η) = 2e−1 is
an integer, we conclude that either ` 6 1/(2η)− 1 or ` > 1/(2η) + 1. �

3.3.2. Case where δi > 0 for all i. In this case x + y and x − y are rounded up in
F. Because of (13), this implies that

k0 · 2u+ ε > βu, ε 6 u,

and that the associated relative errors can be expressed exactly as

δ1 =
β · 2u− (k0 · 2u+ ε)

x+ y
, δ2 =

ε

x− y
.

Since ε 6 u, we must have 2k0 > β − 1, which for β even is equivalent to k0 > β/2.
Hence the overall error θ is bounded as

(14) 1 + θ 6

(
1 +

βu− ε
x+ y

)(
1 +

ε

x− y

)
(1 + δ3) =: F (x, y, ε, δ3).

Note that F increases with ε, since ∂F/∂ε = (2y + βu − 2ε)(1 + δ3)/(x2 − y2) is
positive for all δ3 > −1, x > y > 0, β > 2, and ε 6 u.

� Assume first that β > 4. In this case, because of η 6 β−1 and (11) and, on the
other hand, because of δ3 > 0 and Property 3.1, we have the bounds

ε 6 u, x+ y > β, x− y > β − 2, δ3 6
u

β − 2
,

which, when applied to (14), lead to

1 + θ 6

(
1 +

(
1− 1

β

)
u

)(
1 +

u

β − 2

)2

.

It can be checked that the latter bound decreases with β > 4, and we conclude that

1 + θ 6

(
1 +

3

4
u

)(
1 +

1

2
u

)2

= 1 +
7

4
u+ u2 +

3

16
u3

< 1 + 2u.

This completes the proof of Lemma 3.2 in the case where δi > 0 for all i and β > 4.

� Assume now that β = 2. Using (11) and Property 3.2, we see that we can take

ε 6 (1−2η)u, x+y > 2+2uη, x−y > 2−4η+6uη, δ3 6
u

1 + u
=: u1,
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and, applying these bounds to (14), we arrive at

1 + θ 6

(
1 +

1 + 2η

2 + 2uη
u

)(
1 +

1− 2η

2− 4η + 6uη
u

)
(1 + u1) =: G(η).

Now, δ2 > 0 implies that ε cannot be zero, so that 0 < ε 6 (1−2η)u. Since η = 2−e,
this forces e > 2 or, equivalently,

η 6 1/4.

On the other hand, using x+ y > 2 and x 6 2− 2u yields the refined lower bound
y > 2u = 21−p, which implies η > 2u (that is, e 6 p− 1). Hence 2u 6 η 6 1/4 and,
consequently,

u 6 1/8.

For u 6 1/8, one can now check that the derivative of G has the form G′(η) =
(1+u1) ·H(η)/(· · · )2, where H is a degree-2 polynomial in η (whose coefficients are
polynomials in u), and that H is positive for all η 6 1/4. (It is positive at 0 and
has two positive roots, the smallest one being larger than 1/4.) Hence G increases
with η over (0, 1/4] and, consequently, 1 + θ 6 G(1/4), that is,

1 + θ 6

(
1 +

3
4u

1 + u
4

)(
1 +

u
2

1 + 3
2u

)
(1 + u1) = 1 +

9

4
u− 5

16
u2 +O(u3)

< 1 +
9

4
u.

Thus we have proved Lemma 3.2 in the case where δi > 0 for all i and β = 2.

3.3.3. Case where δi < 0 for all i. In this case, we consider θ̃ defined by

(15) 1 + θ̃ :=
(
1 + |δ1|

)(
1 + |δ2|

)(
1 + |δ3|

)
and, noting that −θ̃ < θ < 0 and θ̃ − |θ| = O(u2), we focus on determining an

upper bound on θ̃.
Since δ1 and δ2 are negative, x + y and x − y are rounded down in F and,

recalling (13), we see that this implies

k0 · 2u+ ε 6 βu, ε > u,

and that the (negative) relative errors δ1 and δ2 satisfy

|δ1| =
k0 · 2u+ ε

x+ y
, |δ2| =

2u− ε
x− y

.

Since ε > u and β is even, the constraint k0 · 2u + ε 6 βu seen above implies that

the integer k0 satisfies k0 6 β/2 − 1. Consequently, θ̃ can be bounded in terms of
the function F in (14) as follows:

1 + θ̃ 6 F
(
x, y, ε̃, |δ3|

)
, ε̃ := 2u− ε.

Note that u 6 ε < 2u implies 0 < ε̃ 6 u, and recall that F increases with ε̃ in [0, u].
We can then conclude using the same analysis as in §3.3.2—where all the δi were

assumed to be positive, and arrive at exactly the same bounds. Simply note that
when β > 4, Property 3.1 can still be applied because now δ1 < 0. When β = 2,
Property 3.2 now implies ε > (1 + 2η)u and thus ε̃ 6 (1− 2η)u; also, it is the fact
that ε < 2u (by definition) which implies ε̃ > 0 and thus forces η to satisfy η 6 1/4.

This terminates the analysis of the case where δi < 0 for all i and, therefore,
concludes the proof of Lemma 3.2.



THE RELATIVE ACCURACY OF (x+y)*(x-y) 11

3.4. Analysis when x− y < 1. Here we will show that |θ| is always less than 2u.
Assume first that the integer e such that ufp(y) = β−e satisfies e = 1. In this case
x − y < 1 is equivalent to x < y + βufp(y) and we deduce from the Sterbenz–Ziv
property in (8) that δ2 = 0 and thus |θ| < 2u.

Let us now consider the situation where

e > 2.

The inequalities in (9) can then be replaced by

(16) u 6 y < β−1, 1 6 x < β,

which together with β > 2 and x−y < 1 lead to the lower bound x−y > 1−β−1 >
β−1 and to the upper bound x+y = (x−y) + 2y < 1 + 2β−1 6 β. We are thus in a
situation where x− y and x+ y belong to the following consecutive open intervals:

(17) x− y ∈ (β−1, 1), x+ y ∈ (1, β).

The next lemma tells us that when ties are broken to even, then the bound 2u holds
in this case too.

Lemma 3.3. Let x, y ∈ F be as in (16) and (17). If fl breaks ties to even, then

|θ| < 2u.

The rest of this subsection is devoted to the proof of this result. As before, the
only nontrivial cases are those where the δi are either all positive or all negative.

3.4.1. Preliminaries. We write x = 1 + j · 2u as in the previous subsections, but
since x− y is now below 1, we decompose y as y = k1 · 2u+ k0 · 2u/β + ε, where

(18) k1 := by/(2u)c, k0 ∈ {0, 1, . . . , β − 1}, 0 6 ε < 2u/β.

(The values of j, k1, k0, ε are determined uniquely by those of x and y.) Then,
using (17) and (18), we can check that the exact sum and difference have the form

(19a) x+ y = 1 + (j + k1) · 2u︸ ︷︷ ︸
∈ F ∩ [1, β)

+ k0 · 2u/β + ε︸ ︷︷ ︸
∈ [0, 2u)

and

(19b) x− y = 1 + (j − k1) · 2u− k0 · 2u/β︸ ︷︷ ︸
∈ F ∩ (β−1, 1]

− ε.

Recall that η = ufp(y) = β−e. When β = 2, the following two properties will
turn out to be useful.

Property 3.3. Assume that β = 2 and that fl breaks ties to even. If δ1δ2 > 0 then
either

ε 6 (1− 4η)
u

2
or ε > (1 + 4η)

u

2
.

Proof. We can proceed in the same way as for Property 3.2. First, if ε = u/2 then
x − y ∈ M, which due to (19) and the tie-breaking rule implies that δ1 and δ2 are
nonzero and of opposite signs; this contradicts the assumption δ1δ2 > 0, and so
ε 6= u/2. Then, since y is an integral multiple of ulp(y) = 2uη = 21−eu, so is ε, and
the conclusion follows from applying this fact together with η = 2−e 6 1/4 to each
of the strict inequalities ε < u/2 and ε > u/2. �
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Property 3.4. Assume that β = 2 and x = 1. If δ1δ3 > 0 then

|δ3| 6
u

(1 + 2u)2
.

Proof. Since β = 2, we deduce from (17) and the monotonicity of rounding that
r̂1 > 1 and r̂2 > 1/2. Furthermore, δ3 6= 0 implies that r̂1 6= 1 and r̂2 6= 1/2. Hence,
recalling that the successor of 1 in F is 1 + 2u, we must have r̂1r̂2 > (1 + 2u)2/2
and, consequently,

|δ3| 6 2u
ufp(r̂1r̂2)

(1 + 2u)2
.

Let now check that ufp(r̂1r̂2) 6 1/2, that is,

r̂1r̂2 < 1,

by specializing (19) to j = 0 and β = 2. If δ1 > 0 then r̂1 = 1 + (k1 + 1) · 2u and
k0 = 1. Therefore, r̂2 6 1−(2k1+1)u and r̂1r̂2 6 1+u−(k1+1)(2k1+1)·2u2 < 1+u
for k1 > 0. It then follows from δ3 > 0 that r̂1r̂2 < 1.

If δ1 < 0 then r̂1 = 1 + k1 · 2u. Furthermore, x − y 6 1 − k1 · 2u ∈ F, so that
r̂2 6 1− k1 · 2u as well. Hence r̂1r̂2 6 1− k21 · 4u2 6 1 and, using δ3 6= 0, we must
have r̂1r̂2 < 1. �

3.4.2. Case where δi > 0 for all i. Here x± y are rounded up, which by (19) gives

k0 · 2u/β + ε > u, ε 6 u/β, δ1 =
2u− (k0 · 2u/β + ε)

x+ y
, δ2 =

ε

x− y
.

For β even, it follows that k0 > β/2 and, therefore,

(20) 1 + θ 6

(
1 +

u− ε
x+ y

)(
1 +

ε

x− y

)
(1 + δ3) =: f(x, y, ε, δ3).

Note that f increases with ε, since ∂f/∂ε = (2y+u−2ε)(1+δ3)/(x2−y2) is positive
for all δ3 > −1, x > y > 0, and ε 6 u/β 6 u/2.

� If β > 4, then by combining (20) with ε 6 u/β, x > 1, and δ3 6 u/(1 + u) =: u1,
we obtain

(21) 1 + θ 6

(
1 +

1− β−1

1 + y
u

)(
1 +

β−1

1− y
u

)
(1 + u1) =: g(y).

Now, the derivative of g has the form g′(y) = −u(1 +u1)/
(
β(1− y2)

)2 ·h(y), where
h(y) is the following quadratic polynomial:

h(y) = h0(1 + y2)− h1y, h0 = β(β − 2), h1 = 2β2 + (β − 1) · 2u.
Applying β − 2 > 2 and y > u to h0(1 + y2), and y 6 (β − 2u)β−2 to h1y, one can
check that

h(y) > (2 + 2β−1)u+ (2β + 4β−1 − 4β−2)u2,

which is positive for β > 2. Hence g decreases with y > u and thus

1 + θ 6 g(u).

Finally, it can be checked that β > 4 and p > 2 imply

g(u) < 1 + 2u.

� Assume now that β = 2. In this case the function g(y) introduced in (21) does
not suffice, as it can now be larger than 1 + 2u (namely, as large as about 1 + 7

3u
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when y = (1−u)/2—and thus even larger than the uniform bound 1+ 9
4u we target).

Hence, instead of ε 6 u/2, we shall apply to (20) the refined bound ε 6 (1−4η)u/2
from Property 3.3:

1 + θ 6

(
1 +

1
2 + 2η

x+ y
u

)(
1 +

1
2 − 2η

x− y
u

)
(1 + δ3) =: g2(x, y, η, δ3).

One can check that ∂g2/∂y has the form (1 + δ3)u/(x2 − y2)2 · P (x, y, η), where

P (x, y, η) = −4(x2 + y2)η + 2xy + ( 1
2 − 8η2)uy.

Using x2 > x > 1, y2 > u2, y 6 (1− u) · 2η < 2η, and −8η2 < 0, we deduce that

P (x, y, η) < −4(x+ u2)η + 2x · (1− u) · 2η + u
2 · 2η = (1− 4x)uη − 4u2η,

which is negative for x > 1. Hence g2 decreases with y > η, and thus 1 + θ 6
g2(x, η, η, δ3) =: h(x, η, δ3). Now, it can be checked that ∂h/∂η equals −u(1 +
δ3)/(x2 − η2)2 · (2x − 1/2)(4x + u + 4xu)η and, therefore, is negative for x > 1.
Consequently, h decreases with η > u and thus 1 + θ 6 h(x, u, δ3) or, equivalently,

(22) 1 + θ 6

(
1 +

1
2 + 2u

x+ u
u

)(
1 +

1
2 − 2u

x− u
u

)
(1 + δ3).

From x > 1 and δ3 < u, it then follows immediately that

1 + θ 6 1 + 2u+O(u2).

To get rid of the O(u2) term, we may proceed as follows, with two separate cases.
If x > 1 + 2u, then applying the general bound δ3 6 u/(1 + u) to (22) suffices
to conclude that 1 + θ < 1 + 2u. If x = 1, this yields only 1 + 2u + 1

4u
2, but

then the term 1
4u

2 can be removed using the refined bound δ3 6 u/(1 + 2u)2 from
Property 3.4.

This concludes the proof of Lemma 3.3 in the case where δi > 0 for all i.

3.4.3. Case where δi < 0 for all i. Using again θ̃ as in (15) together with the fact

that −θ̃ < θ < 0, it suffices to check that θ̃ < 2u.
From δ1 < 0 and δ2 < 0 we deduce that

k0 6 β/2− 1, |δ1| =
k0 · 2u/β + ε

x+ y
, ε > u/β, |δ2| =

2u/β − ε
x− y

.

Consequently,

|δ1| 6
u− ε̃
x+ y

, |δ2| =
ε̃

x− y
, ε̃ := 2u/β − ε ∈ (0, u/β].

Thus, for f as in (20), we arrive at

1 + θ̃ 6 f
(
x, y, ε̃, |δ3|

)
.

For β > 4, using x > 1, y > u, ε̃ ∈ (0, u/β], and |δ3| 6 u/(1 + u), we can show

as in the previous section that 1 + θ̃ 6 g(y) 6 g(u) < 1 + 2u.
For β = 2, Property 3.3 tells us that ε > (1+4η)u/2, which means ε̃ 6 (1−4η)u/2,

and we obtain as before 1 + θ̃ 6 g2(x, y, η, |δ3|) 6 g2(x, η, η, |δ3|) 6 g2(x, u, u, δ3).
We conclude in the same way, using the fact (given by Property 3.4) that |δ3| 6
u/(1 + 2u)2 in the special case where x = 1.

This concludes the proof of Lemma 3.3 and, therefore, the proof of Theorem 3.1
as well.
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4. Asymptotic optimality of the new error bounds
when rounding ties to even

We give now two lemmas showing that the upper bounds established in the
previous section (Theorem 3.1) are asymptotically optimal; this completes the proof
of Theorem 1.1.

Lemma 4.1. Assume that β = 2 and p > 5, and let

j =
⌈
1/
√

8u
⌉
, x =

3

2
+ (2j + 1) · 2u, y =

1

2
− 7

2
u.

Then x, y ∈ F and θ = 9
4u− ε for some positive ε = O(u3/2).

Proof. Since u = 2−p, we have x = X ·21−p and y = Y ·2−p−1, where X = 3
4u+2j+1

and Y = 2p − 7 are integers. Using 1 6 j < 1√
8u

+ 1 gives 0 < X < 3
4u + 1√

2u
+ 3,

and it can be checked that for p > 5 the upper bound on X is less than 1/u = 2p;
on the other hand, p > 5 clearly implies 0 < Y < 2p, and we conclude that x, y ∈ F.

To show that θ is asymptotically equivalent to 9
4u, note first that because of

1 6 j < 1/
√

8u+ 1 and p > 5 each of the three quantities

1 + (j − 1) · 2u, 1 + (2j + 2) · 2u, 1 + (3j + 3) · 2u

belongs to [1, 2) and, therefore, to F ∩ [1, 2).
Consequently,

x+ y = 2 + (j − 1) · 4u︸ ︷︷ ︸
∈ F ∩ [2, 4)

+
5

2
u, x− y = 1 + (2j + 2) · 2u︸ ︷︷ ︸

∈ F ∩ [1, 2)

+
3

2
u,

and, using 5
2u ∈ (2u, 4u) and 3

2u ∈ (u, 2u), we deduce that x + y and x − y are
rounded up to

r̂1 = 2 + j · 4u, r̂2 = 1 + (2j + 3) · 2u,
respectively. On the other hand, x+ y > 2 and x− y > 1, and since j = 1/

√
8u+

O(1), we have also x + y = 2 + O(u1/2) and x − y = 1 + O(u1/2). Hence the
associated relative errors δ1 and δ2 satisfy

δ1 =
3

4
u− ε1, δ2 =

1

2
u− ε2, 0 < ε1, ε2 = O

(
u3/2

)
.

It remains to estimate the third relative error, δ3, that occurs when rounding
the product r̂1r̂2. The expressions given above for r̂1 and r̂2 lead to

r̂1r̂2 = 2 + (3j + 3) · 4u︸ ︷︷ ︸
∈ F ∩ [2, 4)

+j(2j + 3) · 8u2.

Furthermore, one can check that j(2j + 3) · 8u2 is in (2u, 4u): the lower bound

follows from j > 1/
√

8u; for the upper bound, using j < 1/
√

8u+ 1 leads to

j(2j + 3) · 8u2 < 2u+ 7
√

8u3/2 + 40u2,

which is at most 4u for all p > 8; if p ∈ {5, 6, 7}, then the ratio
(
j(2j+3) ·8u2

)
/(4u)

is in {7/8, 27/32, 11/16} and thus less than 1, as wanted. Therefore, r̂1r̂2 is rounded
up to

r̂ = 2 + (3j + 4) · 4u
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and, using again j = 1/
√

8u+O(1), we deduce that r̂1r̂2− r̂ = j(2j+3) ·8u2−4u =
−2u+O(u3/2) and r̂1r̂2 = 2 +O(u1/2). Hence

δ3 = u− ε3, 0 < ε3 = O
(
u3/2

)
.

Using θ = δ1 + δ2 + δ3 +O(u2), we obtain θ =
(
3
4 + 1

2 + 1
)
u− ε with ε = O(u3/2).

To check that ε > 0, one can use the expressions of x, y, and r̂ together with
j = 1/

√
8u+ j0, j0 ∈ [0, 1), in order to rewrite θ = r̂/(x2 − y2)− 1 as a function of

j0 and u, and verify that it is less than 9
4u. Alternatively, we could notice that the

value of r̂ has been deduced from x and y independently of the tie-breaking rule,
making it possible to apply the bound θ < 9

4u established in Theorem 3.1 for the
special case of rounding ties to even. �

Lemma 4.2. Assume that p > 4 and let

x = 1 + 2u, y = 3u− 4u2.

Then x, y ∈ F and θ = −2u+ ε for some positive ε = 13u2 +O(u3).

Proof. The fact that x ∈ F is clear and, on the other hand, it is easily checked that
y ∈ F for β even. Now, the exact sum and difference can be written

x+ y = (1 + 4u) + (u− 4u2), x− y = (1− u) + 4u2,

where 1 + 4u ∈ F ∩ [1, β) and 1− u ∈ F ∩ [β−1, 1). Since u− 4u2 ∈ (0, u) for p > 2
and 4u2 ∈ (0, β−1u) for p > 4, we deduce that x + y and x − y must be rounded
down, so that

r̂1 = 1 + 4u, r̂2 = 1− u.
Hence r̂1r̂2 = (1 + 2u) + (u − 4u2), which is rounded down to r̂ = 1 + 2u. The
conclusion follows from θ = r̂/(x2 − y2) − 1 and x2 − y2 = 1 + 4u − 5u2 + 24u3 −
16u4. �

5. Concluding remarks

We conclude by noting that while the factored form (x+ y)(x− y) ensures high
accuracy in floating-point arithmetic, the algebraic inequality (x + y)(x− y) 6 x2

need not be preserved. The next property shows that this failure is in fact possible
regardless of the base and the tie-breaking rule. This is in contrast with the classical
scheme x2 − y2, where the monotonicity of the rounding map fl together with
the fact that fl(t) = t whenever t ∈ F imply immediately that all three variants
fl(fl(x2) − fl(y2)), fl(x2 − fl(y2)), and fl(fl(x2) − y2) produce values not exceeding
fl(x2).

Property 5.1. Assume that p > 4 and let

x = β − 2u, y = (1 + β/2 + 4u) · 2u.

Then x, y ∈ F and r̂ = fl(fl(x+ y)fl(x− y)) satisfies r̂ > fl(x2).

Proof. Clearly, x ∈ F and, for β = 2, y = (1 + 2u) · 4u ∈ F. For β > 2 even and
p > 2, we see that 1 + β/2 + 4u ∈ 2uZ∩ [1, β], so y ∈ F in this case too. The exact
sum and difference are

x+ y = (1 + u+ 8β−1u2)β, x− y = β − (β/2 + 2) · 2u− 8u2.
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From 1 + u ∈ M ∩ [1, β) and 8β−1u2 ∈ (0, u) for p > 3, we deduce that x + y is
rounded up to r̂1 = (1+2u)β. Similarly, x−y is rounded up to r̂2 = β−(β/2+2)·2u,
since β− (β/2 + 2) · 2u ∈ F∩ [1, β) for p > 3, and 8u2 ∈ (0, u) for p > 4. Therefore,

r̂1r̂2 =
(
β + (β/2− 2) · 2u− (β/2 + 2) · 4u2

)
β.

Using (β/2 − 2) · 2u > −2u for β > 2 together with (β/2 + 2) · 4u2 < u for p > 4,
we obtain the strict lower bound

r̂1r̂2 > (β − 3u)β.

On the other hand, the exact square is x2 = (β−4u+4β−1u2)β, and using 4β−1u2 <
u gives the strict upper bound x2 < (β − 3u)β. In other words, x2 and r̂1r̂2 are
(strictly) separated by the midpoint (β − 3u)β, which implies that fl(x2) 6= fl(r̂1r̂2)
whatever the tie-breaking rule, and, since x2 < r̂1r̂2, that fl(x2) < fl(r̂1r̂2). �

Since r̂ is highly accurate, it can exceed fl(x2) only slightly: r̂ 6 (x2 − y2)(1 +
3u) 6 x2(1 + 3u) 6 fl(x2) · (1 + 4u + O(u2)). Also, this can occur only in very
special circumstances. More precisely, assuming 0 < y < x, we deduce from the
monotonicity of rounding and from the relative error bound in (4) that a necessary
condition to have fl(x2) < r̂ is that x and y satisfy x2 < r̂1r̂2 6 (x+ y)(x− y)

(
1 +

u
1+u

)2
and, therefore,

(23)
y2

x2
<

2u+ 3u2

(1 + 2u)2
< 2u.

In other words, r̂ can exceed fl(x2) only when y/x <
√

2u, that is, only when y is
much smaller than x.

In this regime, however, the schemes based on x2 − y2 are perfectly accurate:
it is easy to show by repeated applications of (4) that if y/x <

√
2u then the

relative errors of fl(fl(x2) − fl(y2)), fl(x2 − fl(y2)), and fl(fl(x2) − y2) are at most
λu+O(u2) with λ equal to 2, 1, and 2, respectively, and this whatever the base and
the tie-breaking rule. Similarly, for small values of y as in (23), it can be checked
that fl(x2) = (x2 − y2)(1 + θ) with |θ| < 3u, so that simply squaring x already
approximates x2 − y2 with high relative accuracy.

These error bounds suggest that if we need approximations to x2 − y2 that are
both highly accurate and not exceeding fl(x2), then the factored form (x+y)(x−y)
could be combined with one of the four alternatives above. For example, one could
compute r̂ = fl(fl(x+ y)fl(x− y)) and fl(x2) and then return min(r̂,fl(x2)). How to
best combine such schemes in practice will depend on the context and it would be
interesting to study the fine-grained accuracy of the resulting methods.
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Appendix A. Alternative tie-breaking rules2

The tie-breaking rules considered so far are those appearing in the latest revision
of IEEE 754 standard: to even, to away, and to zero [5, pp. 27, 68]. Other tie-
breaking rules exist3 and in this appendix we study what happens when ties are
broken up, down, or to odd.

Recalling that fl denotes a round-to-nearest map from R to F and that the
nonzero elements of F have the form M · βE with M,E ∈ Z and βp−1 6 |M | < βp,
one can define these tie-breaking rules as follows: if fl breaks ties to odd, then every
real number lying midway between two successive elements of F is rounded to the
one whose integral significand M is odd; if fl breaks ties up (resp. down), then it is
rounded to the one for which M is largest (resp. smallest).

For ties to odd, fl satisfies all the properties recalled in section 1.1 and especially
the one in (6); for ties up or down the same holds, except that (6) must be modified

slightly in order to account for the fact that fl(ties up)(−t) = −fl(ties down)(t) for
every midpoint t. Consequently, in each case the relative error θ committed when
evaluating x2 − y2 as fl(fl(x + y)fl(x − y)) is amenable to an analysis similar to
the ones already performed in sections 2 and 3 for IEEE roundings. As the next
theorem shows, when the chosen tie-breaking rule is directed (up or down) or when
it is parity-based (to odd) and the base is large, then the best possible constants
are the same as those obtained before (namely, 3 and 2, respectively); however,
when breaking ties to odd and in base 2, the constant 2.25 obtained for rounding
to nearest even must now be replaced by the larger value 2.5. As we shall see in
the proof of the theorem, the reason for this larger bound is that Properties 3.2
and 3.3 do not hold anymore when ties are broken to odd (namely, ε = y mod 2u
(resp. y mod u) can now be equal to u (resp. u/2)).

Theorem A.1. Assume that the tie-breaking rule of fl is either up, down, or to odd.
Asymptotically-optimal bounds on the relative error θ of fl(fl(x + y)fl(x − y)) are
then as follows:

|θ| <


3u if fl breaks ties up,

3u if fl breaks ties down,
5
2u if fl breaks ties to odd and β = 2,

2u if fl breaks ties to odd and β 6= 2.

A.1. Proof of Theorem A.1 for directed tie-breaking rules. Recall first from
section 1 that the bound |θ| < 3u holds for any tie-breaking rule and thus, in
particular, for directed rules such as up and down. Furthermore, when restricted
to nonnegative inputs, the induced maps fl coincide with those obtained for the
to-away and to-zero rules, respectively:

t ∈ R>0 ⇒ fl(ties up)(t) = fl(ties to away)(t), fl(ties down)(t) = fl(ties to zero)(t).

By inspecting the proof of Lemma 2.1, we can see that the only midpoints involved
are x + y and x− y and, for the specific expressions chosen there for x and y, are
positive. Hence, by the property above, r̂ = fl(fl(x+y)fl(x−y)) will be the same for

2This appendix provides supplementary material that does not appear in the published version

[C.-P. Jeannerod. The relative accuracy of (x+y)*(x-y). J. Comput. Appl. Math. 369 (2020)].
3See for example https://en.wikipedia.org/wiki/Rounding.

https://doi.org/10.1016/j.cam.2019.112613
https://en.wikipedia.org/wiki/Rounding
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ties up as for ties to away. In other words, the certificate of asymptotic optimality
of the bound 3u provided by Lemma 2.1 under the assumption that fl breaks ties
to away remains valid when fl breaks ties up.

Similarly, the certificate we have given for the to-zero rule at the end of section 2
is easily seen to involve only positive midpoints and, therefore, remains valid when
fl breaks ties down.

We thus have shown the first half of Theorem A.1: when the tie-breaking rule
chosen for fl is up or down, then the relative error θ is bounded according to |θ| < 3u
and this bound is asymptotically optimal.

A.2. Proof of Theorem A.1 when fl breaks ties to odd. Our derivation of
the upper bounds 2u and 5

2u will follow closely what we have done in section 3.
Note that the range reduction performed in section 3.1 only requires (6) and thus
still holds when breaking ties to odd. Consequently, we are again left with x, y ∈ F
as in (9) and with the three cases x± y ∈ [1, β), x+ y > β, and x− y < 1.

Analysis when x ± y ∈ [1, β). The same reasoning as in section 3.2 shows that
for ties to odd, either x + y and x − y are both in F or they will be rounded in
opposite directions. Hence the product of the corresponding relative errors satisfies
δ1δ2 6 0, which similarly to Lemma 3.1 leads to |θ| < 2u regardless of the value of
the base β.

Analysis when x + y > β. If x − y 6 1 or β 6= 2, it is easily checked that the
analysis in section 3.3 is independent of the tie-breaking rule and can thus be re-
used here to show that |θ| < 2u. Recalling (7), note that we also have this bound
independently of the tie-breaking rule when δiδj 6 0 for some i, j. Hence it remains
to handle the situation where x− y > 1 and β = 2 and the δi are either all positive
or all negative.

Assume first that δi > 0 for all i. In this case the bounds in Property 3.2 do
not hold anymore, since when β = 2 and δ1δ2 > 0 the quantity ε = y mod 2u
introduced in (12) can be equal to u (as shown for example by the certificates given
below). Therefore, we shall apply (14) with ε 6 u instead of ε 6 (1 − 2η)u with
η = ufp(y), which together with β = 2 and δ3 6 u1 leads to

(24) 1 + θ 6

(
1 +

u

x+ y

)(
1 +

u

x− y

)
(1 + u1).

Using x+ y > 2 and x− y > 1, we deduce that θ 6 5
2u+O(u2). In order to further

remove the O(u2) term, we consider the following three sub-cases, depending on
the value of η.

If η 6 1/8 then y < 1/4 and, since x+y > 2, this gives x−y = (x+y)−2y > 3/2.
Applying these lower bounds on x± y to the right-hand side of (24), we obtain

1 + θ 6

(
1 +

1

2
u

)(
1 +

2

3
u

)
(1 + u1) = 1 +

13

6
u+

1

2
u2 +O(u2)

< 1 +
5

2
u.
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If η = 1/4, then the refined lower bounds on x± y given in (11) become x+ y >
2 + u/2 and x− y > 1 + 3u/2. Hence (24) gives now

1 + θ 6

(
1 +

u

2 + u
2

)(
1 +

u

1 + 3
2u

)
(1 + u1) = 1 +

5

2
u− 5

8
u2 +O(u3)(25)

< 1 +
5

2
u.

If η = 1/2, then y ∈ uZ. Hence x± y ∈ uZ and the strict inequalities x+ y > 2
and x− y > 1 are equivalent to x+ y > 2 + u and x− y > 1 + u. Thus, using (24),

1 + θ 6

(
1 +

u

2 + u

)(
1 +

u

1 + u

)2

= 1 +
5

2
u− 1

4
u2 +O(u3)(26)

< 1 +
5

2
u.

From these three sub-cases we conclude that if δi > 0 for all i, then 0 < θ < 5
2u.

If δi < 0 for all i, then 1 + θ̃ with θ̃ as in (15) is also upper bounded by the
right-hand side in (24) and, therefore, by 1 + 5

2u as well. Consequently, − 5
2u <

−θ̃ < θ < 0.

Analysis when x − y < 1. When e = 1 or β 6= 2 or δiδj 6 0 for some i, j, we
perform exactly the same analysis as in section 3.4, which for such cases yields the
bound |θ| < 2u no matter what the tie-breaking rule.

When e > 2 and β = 2 and the δi are either all positive or all negative, we cannot
rely on Property 3.3 anymore and, instead, allow ε = y mod u to be equal to u/2.
(This value of ε is obtained for example with x = 3/2 − j · 2u and y = 1/2 − u/2
and j such that x+ y ∈ (1, 2), x− y ∈ (1/2, 1), δ1 > 0, and δ2 > 0.)

Assume first that that δi > 0 for all i. Applying (20) with ε 6 u/2, x > 1 and
δ3 6 u1 then leads to

1 + θ 6

(
1 +

u/2

1 + y

)(
1 +

u/2

1− y

)
(1 + u1).(27)

From e > 2 it follows that η 6 1/4 and thus y < 1/2. Noting that the right-hand
side of (27) is an increasing function of y, we deduce that

1 + θ <

(
1 +

1

3
u

)
(1 + u)(1 + u1) = 1 +

7

3
u+

2

3
u2

6 1 +
5

2
u.

Assume now that δi < 0 for all i. It is then easily checked that 1 + θ̃ is upper

bounded as in (27). Hence 1 < 1 + θ̃ 6 1 + 5
2u and − 5

2u < θ < 0, which concludes
the proof of the upper bounds in Theorem A.1 when fl breaks ties to odd.

Certificates of asymptotic optimality. Lemma 4.2 holds whatever the tie-
breaking rule and can thus be used here to provide a certificate of asymptotic
optimality of the bound |θ| < 2u when fl breaks ties to odd and β 6= 2.

When fl breaks ties to odd and β = 2, Lemma 4.1 (which, too, holds whatever
the tie-breaking rule) only yields a lower bound of about 2.25u. To show that the
upper bound 2.5u is asymptotically optimal we propose the following variant of
that lemma, obtained simply by shifting y from 1

2 −
7
2u to 1

2 + u.
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Lemma A.1. Assume that β = 2 and p > 5, and let

j =
⌈
1/
√

8u
⌉
, x =

3

2
+ (2j + 1) · 2u, y =

1

2
+ u.

Then x, y ∈ F and, if fl breaks ties to odd, θ = 5
2u−ε for some positive ε = O(u3/2).

Proof. The proof is similar to that of Lemma 4.1. First, we have as before x ∈ F
for p > 5, and it is clear that the new y is also in F. Then

x+ y = 2 + j · 4u︸ ︷︷ ︸
∈ F ∩ [2, 4)

+3u, x− y = 1 + 2j · 2u︸ ︷︷ ︸
∈ F ∩ [1, 2)

+u.

Using 2u < 3u < 4u, we deduce that x+y is rounded up to r̂1 = 2+(j+1) ·4u and
this regardless of the tie-breaking rule. On the other hand, the expression above
for x − y shows that it is halfway between the consecutive floating-point numbers
1 + 2j ·2u and 1 + (2j+ 1) ·2u. Since 2j is even and we have assumed that fl breaks
ties to odd, we deduce that x− y is rounded up to r̂2 = 1 + (2j + 1) · 2u. It is then
easy to check that the associated relative errors δ1 and δ2 satisfy

δ1 =
1

2
u− ε1, δ2 = u− ε2, 0 < ε1, ε2 = O

(
u3/2

)
.

From the expressions of r̂1 and r̂2 just obtained we deduce that

r̂1r̂2 = 2 + (3j + 2) · 4u︸ ︷︷ ︸
∈ F ∩ [2, 4)

+ (j + 1)(2j + 1) · 8u2︸ ︷︷ ︸
∈ (2u, 4u)

,

where the strict upper bounds 4 and 4u need p > 5. Hence, regardless of the tie-
breaking rule, r̂1r̂2 is rounded up to r̂ = 2 + (3j + 3) · 4u. The associated relative
error is

δ3 = u− ε3, 0 < ε3 = O
(
u3/2

)
.

Recalling that θ = δ1 + δ2 + δ3 + O(u2), we arrive at θ = ( 1
2 + 1 + 1)u − ε

with ε = O(u3/2), and the fact that ε > 0 follows from the third inequality in
Theorem A.1. �

The certificate we have given in Lemma A.1 has y in [1/2, 1), which corresponds
to the case η = 1/2 and the bound in (26). Note, however, that a certificate
corresponding to the case η = 1/4 and the bound (25) can be obtained as well, for
example by taking y = 1/2− 3u.
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