A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the hypervolume indicator: optimal µ-distributions and the choice of the reference point, Foundations of Genetic Algorithms, pp.87-102, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00430540

A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications, Theoretical Computer Science, vol.425, pp.75-103, 2012.
DOI : 10.1016/j.tcs.2011.03.012

URL : https://hal.archives-ouvertes.fr/inria-00638989

R. Berghammer, T. Friedrich, and F. Neumann, Set-based Multi-objective Optimization, Indicators, and Deteriorative Cycles, Genetic and Evolutionary Computation Conference, pp.495-502, 2010.
DOI : 10.1145/1830483.1830574

N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective Selection Based on Dominated Hypervolume, European Journal of Operational Research, vol.181, pp.1653-1669, 2007.
DOI : 10.1016/j.ejor.2006.08.008

K. Bringmann and T. Friedrich, Convergence of hypervolume-based archiving algorithms I: Effectiveness, Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp.745-752, 2011.
DOI : 10.1145/2330163.2330229

S. Bubeck and N. Cesa-bianchi, Regret analysis of stochastic and nonstochastic multi-armed bandit problems, Foundations and Trends® in Machine Learning, vol.5, pp.1-122, 2012.
DOI : 10.1561/2200000024

URL : http://arxiv.org/pdf/1204.5721.pdf

Y. Collette, N. Hansen, G. Pujol, D. Salazar-aponte, and R. L. Riche, On Object-Oriented Programming of OptimizersExamples in Scilab, Multidisciplinary Design Optimization in Computational Mechanics, pp.499-538, 2010.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, pp.182-197, 2002.
DOI : 10.1109/4235.996017

M. Emmerich, N. Beume, and B. Naujoks, An EMO algorithm using the hypervolume measure as selection criterion, International Conference on Evolutionary Multi-Criterion Optimization, pp.62-76, 2005.
DOI : 10.1007/978-3-540-31880-4_5

M. Emmerich and J. Klinkenberg, The computation of the expected improvement in dominated hypervolume of Pareto front approximations, 2008.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989.

M. P. Hansen and A. Jaszkiewicz, Evaluating The Quality of Approximations of the Non-Dominated Set, 1998.

N. Hansen, Y. Akimoto, and P. Baudis, CMA-ES/pycma on Github, 2019.
DOI : 10.1145/2001858.2002123

N. Hansen, D. V. Arnold, and A. Auger, Evolution strategies, Springer handbook of computational intelligence, pp.871-898, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155533

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, pp.159-195, 2001.
DOI : 10.1162/106365601750190398

URL : https://www.mitpressjournals.org/userimages/ContentEditor/1164817256746/lib_rec_form.pdf

. Vas-hernandez, H. Schutze, . Wang, M. Deutz, and . Emmerich, The Set-Based Hypervolume Newton Method for Bi-Objective Optimization, IEEE transactions on cybernetics in print, 2018.

C. Igel, N. Hansen, and S. Roth, Covariance matrix adaptation for multiobjective optimization, Evolutionary Computation, vol.15, pp.1-28, 2007.

A. J. Keane, Statistical improvement criteria for use in multiobjective design optimization, AIAA journal, vol.44, issue.4, pp.879-891, 2006.
DOI : 10.2514/1.16875

J. Knowles, L. Thiele, and E. Zitzler, A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers, 2006.

O. Krause, T. Glasmachers, and C. Igel, Qualitative and quantitative assessment of step size adaptation rules, Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp.139-148, 2017.
DOI : 10.1145/3040718.3040725

K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer, 1999.

W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, Multiobjective Optimization on a Limited Budget of Evaluations Using ModelAssisted S-Metric Selection. In Parallel Problem Solving from, Nature, 2008.

. Springer, , pp.784-794

C. Toure, A. Auger, D. Brockhoff, and N. Hansen, On BiObjective convex-quadratic problems, International Conference on Evolutionary Multi-Criterion Optimization, pp.3-14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01942159

T. Voß, N. Hansen, and C. Igel, Improved Step Size Adaptation for the MO-CMA-ES, Genetic and Evolutionary Computation Conference, pp.487-494, 2010.

T. Wagner, M. Emmerich, A. Deutz, and W. Ponweiser, On expected-improvement criteria for model-based multi-objective optimization, International Conference on Parallel Problem Solving from Nature, pp.718-727, 2010.

T. Wagner and H. Trautmann, Online convergence detection for evolutionary multi-objective algorithms revisited, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.

S. Wessing, evoalgos: Modular evolutionary algorithms. Python package version 1, 2017.

K. Yang, M. Emmerich, A. Deutz, and T. Bäck, MultiObjective Bayesian Global Optimization using expected hypervolume improvement gradient, Swarm and evolutionary computation, vol.44, pp.945-956, 2019.
DOI : 10.1016/j.swevo.2018.10.007

URL : https://doi.org/10.1016/j.swevo.2018.10.007

Q. Zhang and H. Li, MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition, IEEE Transactions on Evolutionary Computation, vol.11, pp.712-731, 2007.

E. Zitzler and S. Künzli, Indicator-based selection in multiobjective search, International Conference on Parallel Problem Solving from Nature, pp.832-842, 2004.

E. Zitzler and L. Thiele, Multiobjective Optimization Using Evolutionary Algorithms -A Comparative Case Study, Conference on Parallel Problem Solving from Nature (PPSN V), vol.1498, pp.292-301, 1998.

E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms -A comparative case study, International conference on parallel problem solving from nature, pp.292-301, 1998.