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There’s No Free Lunch:
On the Hardness of Choosing a

Correct Big-M in Bilevel Optimization

Thomas Kleinert1,2, Martine Labbé3,4,
Fränk Plein3,4, and Martin Schmidt5

Abstract. One of the most frequently used approaches to solve linear bilevel
optimization problems consists in replacing the lower-level problem with its
Karush–Kuhn–Tucker (KKT) conditions and by reformulating the KKT comple-
mentarity conditions using techniques from mixed-integer linear optimization.
The latter step requires to determine some big-M constant in order to bound
the lower level’s dual feasible set such that no bilevel optimal solution is cut
off. In practice, heuristics are often used to find a big-M although it is known
that these approaches may fail. In this paper, we consider the hardness of two
proxies for the above mentioned concept of a bilevel-correct big-M . First, we
prove that verifying that a given big-M does not cut off any feasible vertex
of the lower level’s dual polyhedron cannot be done in polynomial time un-
less P = NP. Second, we show that verifying that a given big-M does not cut
off any optimal point of the lower level’s dual problem is as hard as solving the
original bilevel problem.

1. Introduction

A bilevel optimization problem consists in a constrained optimization problem
in which some constraints specify that a subset of variables constitutes an optimal
solution of a second (auxiliary) optimization problem. Since the publication of
the first and seminal paper [7], research on the subject has become increasingly
important. Indeed, the bilevel structure allows the modeling of a large number of
real-life problems involving two types of decision makers, a leader and a follower
(or several followers) interacting hierarchically. Such optimization problems appear
in many fields of application like energy markets [1, 10, 18–21, 23, 25], critical
infrastructure defense [8, 9, 14, 29], or pricing [26, 27, 31].

Due to their ability of modeling hierarchical decision processes, bilevel optimiza-
tion problems are inherently hard to solve. In [13, 22] it is shown that even the
easiest instantiation, i.e., bilevel problems with linear upper and lower level, is
strongly NP-hard. Moreover, even checking local optimality for a given point is
NP-hard as well [32]. For other hardness results we refer to, e.g., [4]. For general
surveys of bilevel optimization see [3, 11–13] and [33] for a survey focusing on
linear-linear (LP-LP) bilevel problems.
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In this paper, we consider the LP-LP bilevel problem

min
x,y

c>x+ d>y (1a)

s.t. Ax+By ≥ a, (1b)

y ∈ arg min
ȳ
{f>ȳ : Cx+Dȳ ≥ b} (1c)

with c ∈ Rn, d, f ∈ Rm, A ∈ Rk×n, B ∈ Rk×m, a ∈ Rk, C ∈ R`×n, D ∈ R`×m, and
b ∈ R`. The vector x ∈ Rn comprises the upper-level variables and y ∈ Rm the
lower-level variables. LP-LP bilevel problems are often solved by a reformulation to
an equivalent single-level problem. Usually, this is done by one of the two following
approaches. One can replace the lower level with its primal and dual feasibility
conditions as well as the strong-duality equation or one replaces the lower level with
its Karush–Kuhn–Tucker (KKT) conditions. Both approaches have their drawbacks:
The strong-duality based technique yields nonconvex bilinear terms whereas the
KKT approach leads to the following mathematical program with complementarity
constraints (MPCC):

min
x,y,λ

c>x+ d>y (2a)

s.t. Ax+By ≥ a, D>λ = f, (2b)
0 ≤ Cx+Dy − b ⊥ λ ≥ 0, (2c)

Its hardness stems from the complementarity conditions (2c). Since these constraints
can be reformulated in a mixed-integer linear way, the KKT approach is often
preferred in practice. Typically, one applies the reformulation introduced in [15],
which requires an additional binary variable zi ∈ {0, 1} for every i ∈ {1, . . . , `} and
the additional constraints

λi ≤Mdzi, (Cx+Dy − b)i ≤ (1− zi)Mp, i ∈ {1, . . . , `}, (3)

where Md and Mp are sufficiently large constants, called big-Ms. In this note, we
focus on the big-M for bounding the lower level’s dual variables, i.e., on M = Md.
Applying (3) requires to bound the lower level’s dual polyhedron such that no
point λ∗ that is part of an optimal solution (x∗, y∗, λ∗) of (2) is cut off. Stated
differently, one needs to choose an M that preserves all bilevel optimal points
(x∗, y∗). We call an M with this property a (bilevel-)correct big-M .

When the dual of the lower level has a finite optimal value, there exists an
optimal solution λ∗ that is a vertex of the associated feasible polyhedron. Hence,
it is sufficient to obtain bounds on the dual variables that—independently of the
upper-level decision—do not cut off (i) any feasible vertex of the lower level’s dual
polyhedron or (ii) any optimal vertex of the lower level’s dual polyhedron. In some
sense, these two concepts are more demanding, since they need to preserve more
points of the original lower level’s dual polyhedron compared to what is required
for a correct big-M in the above mentioned sense. On the other hand, they can be
considered as weaker concepts (or proxies) because they do not take into account
bilevel optimality but still preserve all optimal solutions (x∗, y∗, λ∗) of (2), i.e., (i)
and (ii) still yield correct big-M ’s.

The choice of the big-M is often done heuristically, which may result in a severe
issue: If the big-M is not chosen large enough, a “solution” of (2) with (2c) replaced
by (3) does not even need to be a bilevel feasible point. See, e.g., [30], where a
common heuristic for computing a big-M is shown to deliver wrong results.

The contribution of this note is twofold. First, in Section 2, we consider the
hardness of verifying that a given big-M does not cut off any feasible vertex of the
lower level’s dual polyhedron. We show that there is no polynomial-time algorithm
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for this verification unless P = NP. Second, in Section 3, we show that validating
that a given big-M does not cut off any optimal point of the lower level’s dual
problem (for any given feasible upper-level variable x) is as hard as solving the
original bilevel problem. Both results together imply that there is no hope for an
efficient, i.e., polynomial-time, general-purpose method for verifying or computing
a correct big-M in bilevel optimization unless P = NP. Thus, our results strongly
indicate that problem-specific bounds on the lower level’s dual variables need to
be investigated if the given bilevel problem is going to be solved using the KKT
approach combined with the classical big-M linearization of KKT complementarity
conditions.

2. Hardness of Bounding the Vertices of an Unbounded Polyhedron

A mild assumption often made for bilevel problems is that the feasible region
of the high-point relaxation (defined by the upper- and lower-level constraints) is
non-empty and bounded; see, e.g., [2] where this assumption is used as well. Under
this assumption, the lower-level primal and dual problems have a finite optimal
solution for every upper-level decision x. In particular, there is a vertex of the
feasible region of the lower-level dual problem at which the optimal dual solution
is attained. One way of preserving every bilevel optimal solution in the KKT
reformulation (2) is to choose a big-M such that no lower-level dual vertex is cut off.
Thus, this bounding approach yields a correct big-M . In this section, we show—even
more generally—that bounding the vertices of an unbounded polyhedron is hard.
To obtain a hardness result in the Turing model of computation, we assume that all
problem data are rational and thus are Turing representable.

Let P (A, b) := {x ∈ Qn : Ax ≤ b} be an unbounded polyhedron defined by
A ∈ Qk×n and b ∈ Qk. For M ∈ Q and j ∈ {1, . . . , n}, let Qj(A, b,M) :=
{x ∈ Qn : Ax ≤ b, xj ≤M} be the polyhedron obtained from adding the bound
xj ≤ M to P (A, b). To validate a given big-M , we need to verify that for every
j ∈ {1, . . . , n} the bound xj ≤M is satisfied by all vertices of P (A, b). This results
in the following decision problem.
Component-wise valid bound for the vertices of a polyhedron (CVBVP).
Input: A ∈ Qk×n, b ∈ Qk, j ∈ {1, . . . , n}, M ∈ Q.
Question: Does v ∈ Qj(A, b,M) hold for every vertex v of P (A, b)?

We will see in the following that validating a big-M is related to the problem of
finding an optimal vertex v in an unbounded polyhedron with respect to the linear
objective function h>v. If the polyhedron is bounded at least in the direction of
optimization, then this problem is equivalent to linear optimization. However, in the
general case of polyhedra that are unbounded in the direction of optimization, this
is a difficult task. As shown in [16], the decision problem that studies the existence
of a vertex of a given polyhedron such that the corresponding objective function
value is larger or equal to a certain threshold K is strongly NP-complete. The proof
is based on a reduction from the Hamiltonian path problem [17, Problem GT39]
and can be easily extended to the decision problem that decides whether a vertex
with an objective function value strictly larger than a certain threshold exists:
Optimal vertex of a polyhedron (OVP).
Input: A ∈ Qk×n, b ∈ Qk, h ∈ Qn, K ∈ Q.
Question: Is there a vertex v of P (A, b) with h>v > K?

As pointed out above, w.r.t. the linearization (3), we are interested in the special
case h = ej . The related decision problem is the following:
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Component-wise optimal vertex of a polyhedron (COVP).
Input: A ∈ Qk×n, b ∈ Qk, j ∈ {1, . . . , n}, K ∈ Q.
Question: Is there a vertex v of P (A, b) with vj > K?

We now show that even for this subclass of instances, the decision problem is
strongly NP-complete. In what follows, vert(P (A, b)) denotes the set of vertices of
the polyhedron P (A, b).

Theorem 1. COVP is strongly NP-complete.

Proof. We prove the result for j = 1. For any other j′ ∈ {2, . . . , n}, e1 can be
replaced with ej′ in the proof.

It is clear that the problem is in NP. We prove its hardness by reduction from
OVP. Let A ∈ Qk×n, b ∈ Qk, h ∈ Qn, K ∈ Q be a given OVP instance and assume
h 6= 0. Otherwise, the corresponding instance is trivial. Now take j ∈ {1, . . . , n}
with hj 6= 0. We construct a basis of Qn by replacing ej with h. If we put h as the
first basis vector, the corresponding linear transformation is given by the inverse of
matrix B = [h, e1, . . . , ej−1, ej+1, . . . , en] and can be computed in polynomial time.
Using this basis change, we now linearly transform the hyperplanes defining the
polyhedron P (A, b) and the objective function vector h of the given OVP instance.

We construct an instance of COVP by Ã = AB−>, b̃ = b, K̃ = K. Note that
B−1h = e1 holds. It remains to show that there exists a vertex v of P (A, b) with
h>v > K if and only if there exists a vertex ṽ of P (Ã, b̃) with ṽ1 > K̃. Let
v ∈ vert(P (A, b)) such that h>v > K and define ṽ := B>v. Then,

Ãṽ = AB−>B>v = Av ≤ b = b̃, ṽ1 = h>B−>B>v = h>v > K = K̃.

Thus, ṽ ∈ P (Ã, b̃) and it is clear that ṽ is also a vertex of P (A, b).
Conversely, let ṽ ∈ vert(P (Ã, b̃)) with ṽ1 > K̃ and define v := B−>ṽ. Then,

Av = AB−>ṽ = Ãṽ ≤ b̃ = b, h>v = h>B−>ṽ = ṽ1 > K̃ = K.

Thus, v is a vertex of P (A, b). �

Using problem COVP, we can deduce the complexity of CVBVP.

Theorem 2. CVBVP is strongly coNP-complete.

Proof. The decision problem CVBVP, i.e., the complement of CVBVP, is to find
a vertex v ∈ vert(P (A, b)) such that vj > M holds. This is equivalent to COVP
with K = M . �

Finally, we can state the main result of this section.

Corollary 1. Let A ∈ Qk×n, b ∈ Qk, andM ∈ Q. Then, there exists no polynomial-
time algorithm for checking whether

vert(P (A, b)) ⊆
n⋂
j=1

Qj(A, b,M),

unless P = NP.

Proof. Assume a polynomial-time algorithm exists. Then, for every j ∈ {1, . . . , n}
we can efficiently decide whether vert(P (A, b)) ⊆ Qj(A, b,M) holds. This implies
that we can decide CVBVP in polynomial time, and thus P = coNP must also hold.
Since P is closed under taking the complement, it follows that P = NP. �

As a final remark, note that to compute the tightest possible big-M so that no
vertex of P (A, b) is cut off, we can set

M := max
j∈{1,...,n}

{
max

vert(P (A,b))
xj

}
. (4)
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It is equivalent to solving COVP for j ∈ {1, . . . , n} and taking the maximum value.
Thus, (4) cannot be computed in polynomial time, unless P = NP.

3. Valid Bounds for Bilevel Feasible Solutions

Recall that a big-M is correct, if it does not cut off any bilevel optimal solution.
A weaker approach is to find a big-M that maintains at least one optimal lower-level
dual vertex for every feasible upper-level decision. This is less demanding than the
big-M of Section 2, since we now allow to cut off lower-level dual vertices that do
not correspond to an optimal solution.

Here and in what follows we denote the high-point relaxation of the bilevel
problem (1) as

H := {(x, y) ∈ Rn × Rm : Ax+By ≥ a, Cx+Dy ≥ b}
and the corresponding projection onto the space of x-variables is defined as

Hx := {x ∈ Rn : ∃y with (x, y) ∈ H}.
For the sake of simplicity, we make the following assumption.

Assumption 1. For every upper-level decision x ∈ Hx, the lower-level problem (1c)
admits a unique solution y and satisfies the linear independence constraint qualifica-
tions (LICQ) at y.

The assumption of a unique lower-level solution is justified in this scope given
that the bilevel problem becomes even more difficult to analyze otherwise; see, e.g.,
Chapter 7 in [12]. Moreover, the LICQ guarantees the uniqueness of the lower-level
dual optimal solution for every upper-level decision x ∈ Hx; see, e.g., Chapter 12
of [28].

We start by introducing a validity criterion for the big-M proxy discussed in
this section. To this end, define the lower-level optimal value function ϕ(x) for any
upper-level decision x ∈ Hx by means of its dual as

ϕ(x) := max
λ
{(b− Cx)>λ : D>λ = f, λ ≥ 0}. (5)

Further, for any upper-level decision x ∈ Hx,M ∈ R, and i ∈ {1, . . . , `}, let ϕi(x,M)
be the optimal value function of the lower level’s dual problem with the additional
bound λi ≤M , i.e.,

ϕi(x,M) := max
λ
{(b− Cx)>λ : D>λ = f, λ ≥ 0, λi ≤M}, (6)

where we formally set ϕi(x,M) = −∞ if Problem (6) is infeasible. Under Assump-
tion 1, all bilevel feasible solutions remain the same after adding the big-M bounds
to the lower level’s dual problem if and only if for every upper-level decision x ∈ Hx

and for every i ∈ {1, . . . , `}, the lower-level optimal value stays unchanged, i.e., if
ϕ(x) = ϕi(x,M) holds.

We now collect some simple observations on these two optimal value functions
that are used afterward.

Observation 1. Given an upper-level decision x ∈ Hx and i ∈ {1, . . . , `}, the
following properties hold:

(a) ϕ(x) ≥ ϕi(x,M) for every M ∈ R.
(b) ϕi(x, ·) is monotonically increasing.
(c) Suppose there exists an M ∈ R with ϕ(x) = ϕi(x,M). Then, ϕ(x) =

ϕi(x, M̃) holds for every M̃ ≥M .
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Lemma 1. Suppose that Assumption 1 holds and let an upper-level decision x ∈ Hx

and M = M(x) ∈ R be given. Then, for every i ∈ {1, . . . , `}, ϕ(x) = ϕi(x,M(x))
holds if and only if M(x) ≥ max{λ∗i (x) : i ∈ {1, . . . , `}}, where λ∗(x) is the unique
optimal solution of the lower level’s dual problem (5) corresponding to x.

Proof. If M(x) < max{λ∗i (x) : i ∈ {1, . . . , `}}, then there is an i ∈ {1, . . . , `} such
that the optimal solution of the lower level’s dual problem is cut off by the bound
λi ≤M(x), which again is equivalent to ϕ(x) > ϕi(x,M(x)). �

In particular, this implies that for every fixed upper-level decision, we can validate
a given big-M by computing the corresponding unique optimal solution of the lower
level’s dual problem and by verifying that it satisfies the bounds λi ≤ M for all
i ∈ {1, . . . , `}.

For the case that all upper-level decisions are taken into account, the next result
gives a necessary and sufficient condition for the property that a big-M does not
cut off any bilevel feasible point.

Theorem 3. Let M ∈ R be given and suppose that Assumption 1 holds. Then,
for every upper-level decision x ∈ Hx and for every i ∈ {1, . . . , `}, ϕ(x) = ϕi(x,M)
holds if and only if

M ≥ max
i∈{1,...,`}

{
max
x,y,λ

{λi : (2b), (2c)}
}
. (7)

Proof. Observe that the first constraint of (2b) defines the domain of the upper-
level decisions x, whereas the second constraint together with (2c) determine the
lower-level primal-dual optimal solution (y, λ) corresponding to x. The final result
then follows by Lemma 1 and Property (c) in Observation 1. �

Theorem 3 implies that validating a big-M requires optimizing different objective
functions over a set of constraints that are equivalent to feasibility of the original
bilevel problem. In [24], linear 0-1-feasibility has been shown to be NP-complete.
It is thus possible to adapt the techniques from [2] to show the NP-completeness
of LP-LP bilevel feasibility by reduction from linear 0-1-feasibility. Similarly to
Corollary 1, we can thus state that there is no polynomial-time validation of a given
big-M w.r.t. (7) unless P = NP. On the other hand, computing the tightest big-M
w.r.t. the proxy considered in this section requires solving a maximization problem
over all bilevel feasible solutions for every i ∈ {1, . . . , `} and taking the maximum
objective value. Computing this big-M is therefore as hard as solving the initial
problem and there is little hope of doing it efficiently, unless the original bilevel
problem (1) can be solved in polynomial time.

4. Conclusion

Many applications of LP-LP bilevel optimization make use of the KKT reformu-
lation of the lower-level problem together with a big-M linearization of the KKT
complementarity constraints. This results in a single-level mixed-integer linear
problem that can, in principle, be solved with state-of-the-art solvers. However, to
guarantee bilevel feasibility of a solution obtained by this approach, one needs to
validate the correctness of the big-M that is used to bound the lower level’s dual
variables—a necessary task that is not always carried out in practice. In general,
such a big-M is correct if it does not cut off any bilevel optimal point. In this
note we considered two proxies for this type of correctness and proved that even
validating that a given big-M does not cut off any feasible or optimal vertex of the
lower level’s dual polyhedron cannot be done in polynomial time unless P = NP.
Both proxies abstract from upper-level optimality. Thus, validating that a given
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big-M preserves all bilevel optimal points can be expected to be at least as hard
since one needs to take into account another—i.e., the upper level’s—optimization
problem on top of what needs to be considered for the two proxies.

Our results strongly suggest that the popular big-M approach needs to be applied
very carefully. If the correctness of the chosen big-M is not guaranteed by problem-
specific insights, it cannot be formally guaranteed that the obtained “solutions” are
indeed bilevel feasible. In such cases, we suggest to better resort to exact approaches
that do not rely on big-M ’s like, e.g., the kth best algorithm ([6] or [3, Chapter
5.3.1]) or branch-and-bound methods ([5, 22], or [3, Chapter 5.3.2]).
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