
HAL Id: hal-02110868
https://inria.hal.science/hal-02110868v2

Submitted on 25 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autotuning under Tight Budget Constraints: A
Transparent Design of Experiments Approach

Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand,
Jean-Marc Vincent, Alfredo Goldman

To cite this version:
Pedro Bruel, Steven Quinito Masnada, Brice Videau, Arnaud Legrand, Jean-Marc Vincent, et al..
Autotuning under Tight Budget Constraints: A Transparent Design of Experiments Approach. CC-
Grid 2019 - International Symposium in Cluster, Cloud, and Grid Computing, May 2019, Larcana,
Cyprus. pp.1-10, �10.1109/CCGRID.2019.00026�. �hal-02110868v2�

https://inria.hal.science/hal-02110868v2
https://hal.archives-ouvertes.fr

Autotuning under Tight Budget Constraints:
A Transparent Design of Experiments Approach

Pedro Bruel∗†, Steven Quinito Masnada‡, Brice Videau∗, Arnaud Legrand∗, Jean-Marc Vincent∗, Alfredo Goldman†
†University of São Paulo

São Paulo, Brazil
{phrb, gold}@ime.usp.br

‡University of Grenoble Alpes
Inria, CNRS, Grenoble INP, LJK

38000 Grenoble, France
steven.quinito-masnada@inria.fr

∗University of Grenoble Alpes
CNRS, Inria, Grenoble INP, LIG

38000 Grenoble, France
{arnaud.legrand, brice.videau, jean-marc.vincent}@imag.fr

Abstract—A large amount of resources is spent writing, port-
ing, and optimizing scientific and industrial High Performance
Computing applications, which makes autotuning techniques
fundamental to lower the cost of leveraging the improvements
on execution time and power consumption provided by the latest
software and hardware platforms. Despite the need for economy,
most autotuning techniques still require large budgets of costly
experimental measurements to provide good results, while rarely
providing exploitable knowledge after optimization. The contri-
bution of this paper is a user-transparent autotuning technique
based on Design of Experiments that operates under tight budget
constraints by significantly reducing the measurements needed
to find good optimizations. Our approach enables users to make
informed decisions on which optimizations to pursue and when
to stop. We present an experimental evaluation of our approach
and show it is capable of leveraging user decisions to find the
best global configuration of a GPU Laplacian kernel using half
of the measurement budget used by other common autotuning
techniques. We show that our approach is also capable of finding
speedups of up to 50×, compared to gcc’s -O3, for some
kernels from the SPAPT benchmark suite, using up to 10×
fewer measurements than random sampling.

I. INTRODUCTION

Optimizing code for objectives such as performance and
power consumption is fundamental to the success and cost-
effectiveness of industrial and scientific endeavors in High
Performance Computing (HPC). A considerable amount of
highly specialized time and effort is spent in porting and
optimizing code for GPUs, FPGAs and other hardware ac-
celerators. Experts are also needed to leverage bleeding edge
software improvements in compilers, languages, libraries and
frameworks. The objective of techniques for the automatic
configuration and optimization of HPC applications, or au-
totuning, is to decrease the cost and time needed to adopt
efficient hardware and software. Typical autotuning targets
include algorithm selection, source-to-source transformations
and compiler configuration.

Autotuning can be studied as a search problem where
the objective is to minimize software or hardware metrics.
The exploration of the search spaces defined by code and
compiler configurations and optimizations presents interesting
challenges. Such spaces grow exponentially with the number
of parameters, and are also difficult to explore extensively
due to the often prohibitive costs of hardware utilization,
program compilation and execution times. Developing au-
totuning strategies capable of producing good optimizations

while minimizing resource utilization is therefore essential.
The capability of acquiring knowledge about an optimization
problem is also crucial in an autotuning strategy, since this
knowledge can decrease the cost of subsequent optimizations
of the same application or for the same hardware.

It is common and usually effective to use search meta-
heuristics such as genetic algorithms and simulated annealing
in autotuning. These strategies attempt to exploit local search
space properties, but are generally incapable of exploiting
global structures. Seymour et al. [1], Knijnenburg et al. [2],
and Balaprakash et al. [3], [4] report that these strategies
are not more effective than a naive uniform random sample
of the search space, and usually rely on a large number of
measurements or restarts to achieve performance improve-
ments. Search strategies based on gradient descent are also
commonly used in autotuning, and also rely on a large
number of measurements, but their effectiveness diminishes
significantly in search spaces with complex local structures.
Automated machine learning autotuning strategies [5], [6], [7]
are promising for building models for predicting important
parameters, but still rely on a sizable data set for training.

In summary, search strategies based on meta-heuristics,
gradient descent and machine learning require a large number
of measurements to be effective, and are usually incapable of
providing knowledge about search spaces to users. Since these
strategies are not transparent, at the end of each autotuning ses-
sion it is difficult to decide if and where further exploration is
warranted, and often impossible to know which parameters are
responsible for the observed improvements. After exploring a
search space, deducing any of the space’s global properties
confidently is impossible, since the space was automatically
explored with unknown biases.

The contribution of this paper is an autotuning strategy
that leverages existing knowledge about a problem by using
an initial performance model that is refined iteratively using
performance measurements, statistical analysis, and user input.
Our strategy places a heavy weight on decreasing autotuning
costs by using a Design of Experiments (DoE) methodology to
minimize the number of experiments needed to find optimiza-
tions. Each iteration uses Analysis of Variance (ANOVA) tests
and linear model regressions to identify promising subspaces
and parameter significance. An architecture- and problem-
specific performance model is built iteratively and with user

input, which enables making informed decisions about which
regions of the search space are worth exploring.

We evaluate the performance of our approach by optimizing
a Laplacian Kernel for GPUs, where the search space, the
global optimum, and a performance model approximation are
known. The budget of measurements was tightly constrained
on this experiment. Speedups and budget utilization reduction
achieved by our approach on this setting motivated a more
comprehensive performance evaluation. We chose the Search
Problems in Automatic Performance Tuning (SPAPT) [8]
benchmark suite for this evaluation, where we obtained diverse
results. Out of the 17 SPAPT kernels benchmarked, no speedup
could be found for three kernels, but uniform random sampling
performed well on all others. For eight of the kernels, our
approach found speedups of up to 50×, compared to gcc’s
-O3 with no code transformations, while using up to 10×
fewer measurements than random sampling.

The rest of this paper is organized as follows. Section II
presents related work on source-to-source transformation,
which is the main optimization target in SPAPT kernels, on
autotuning systems and on search space exploration strategies.
Section III discusses the implementation of our approach in
detail. Section IV discusses the DoE, ANOVA, and linear
regression methodology we used to develop our approach.
Section V presents the results on the performance evaluation
on the GPU Laplacian Kernel and on the SPAPT benchmark
suite. Section VI discusses our conclusions and future work.

II. BACKGROUND

This section presents the background and related work
on source-to-source transformation, autotuning systems and
search space exploration strategies.

A. Source-to-Source Transformation

Our approach can be applied to any autotuning domain
that expresses optimization as a search problem, although
the performance evaluations we present in Section V were
obtained in the domain of source-to-source transformation.
Several frameworks, compilers and autotuners provide tools
to generate and optimize architecture-specific code [9], [10],
[11], [12], [13]. We used BOAST [10] and Orio [9] to perform
source-to-source transformations targeting parallelization on
CPUs and GPUs, vectorization, loop transformations such as
tiling and unrolling, and data structure size and copying.

B. Autotuning

John Rice’s Algorithm Selection framework [14] is the
precursor of autotuners in various problem domains. In 1997,
the PHiPAC system [15] used code generators and search
scripts to automatically generate high performance code for
matrix multiplication. Since then, systems approached differ-
ent domains with a variety of strategies. Dongarra et al. [16]
introduced the ATLAS project, that optimizes dense matrix
multiplication routines. The OSKI [17] library provides auto-
matically tuned kernels for sparse matrices. The FFTW [18]

library provides tuned C subroutines for computing the Dis-
crete Fourier Transform. Periscope [19] is a distributed online
autotuner for parallel systems and single-node performance. In
an effort to provide a common representation of multiple paral-
lel programming models, the INSIEME compiler project [20]
implements abstractions for OpenMP, MPI and OpenCL, and
generates optimized parallel code for heterogeneous multi-core
architectures.

A different approach is to combine generic search algo-
rithms and problem representation data structures in a single
system that enables the implementation of autotuners for
different domains. The PetaBricks [13] project provides a
language, compiler and autotuner, enabling the definition and
selection of multiple algorithms for the same problem. The
ParamILS framework [21] applies stochastic local search al-
gorithms to algorithm configuration and parameter tuning. The
OpenTuner framework [22] provides ensembles of techniques
that search the same space in parallel, while exploration is
managed by a multi-armed bandit strategy.

C. Search Space Exploration Strategies

Figure 1 shows the contour of a search space defined by
a function of the form z = x2 + y2 + ε, where ε is a local
perturbation, and the exploration of that search space by six
different strategies. In such a simple search space, even a
uniform random sample can find points close to the optimum,
despite not exploiting geometry. A Latin Hypercube [23]
sampling strategy covers the search space more evenly, but
still does not exploit the space’s geometry. Strategies based
on neighborhood exploration such as simulated annealing
and gradient descent can exploit local structures, but may
get trapped in local minima. Their performance is strongly
dependent on search starting point. These strategies do not
leverage global search space structure, or provide exploitable
knowledge after optimization.

Simulated Annealing DOpt. Linear Model DOpt. Quadratic Model

Random Sampling Latin Hypercube Sampling Gradient Descent

x

y

Figure 1: Exploration of the search space, using a fixed budget
of 50 points. The red “+” represents the best point found by
each strategy, and “×”s denote neighborhood exploration

Measurement of the kernels optimized on the performance
evaluations in Section V can exceed 20 minutes, including
the time of code transformation, compilation, and execution.
Measurements in other problem domains can take much longer
to complete. This strengthens the motivation to consider search
space exploration strategies capable of operating under tight
budget constraints. These strategies have been developed and
improved by statisticians for a long time, and can be grouped
under the DoE term.

The D-Optimal sampling strategies shown on the two
rightmost bottom panels of Figure 1 are based on the DoE
methodology, and leverage previous knowledge about search
spaces for an efficient exploration. These strategies provide
transparent analyses that enable focusing on interesting sub-
spaces. In the next section we describe our approach to
autotuning based on the DoE methodology.

III. AUTOTUNING WITH DESIGN OF EXPERIMENTS

An experimental design determines a selection of experi-
ments whose objective is to identify the relationships between
factors and responses. While factors and responses can refer
to different concrete entities in other domains, in computer
experiments factors can be configuration parameters for algo-
rithms and compilers, and responses can be the execution time
or memory consumption of a program. Each possible value of
a factor is called a level. The effect of a factor on the measured
response, without the factor’s interactions with other factors,
is the main effect of that factor. Experimental designs can be
constructed with different goals, such as identifying the main
effects or building an analytical model for the response.

In this section we discuss in detail our iterative DoE
approach to autotuning. Figure 2 presents an overview of our
approach, with numbered steps. In step 1 we define the factors
and levels that compose the search space of the target problem,
in step 2 we select an initial performance model, and in step 3
we generate an experimental design. We run the experiments in
step 4 and then, as we discuss in the next section, we identify
significant factors with an ANOVA test in step 5. This enables
selecting and fitting a new performance model in steps 6 and
7. The new model is used in step 8 for predicting levels for
each significant factor. We then go back to step 3, generating a
new design for the new problem subspace with the remaining
factors. Informed decisions made by the user at each step guide
the outcome of each iteration.

Step 1 of our approach is to define target factors and which
of their levels are worth exploring. Then, the user must select
an initial performance model in step 2. Compilers typically
expose many 2-level factors in the form of configuration flags,
and the performance model for a single flag can only be a lin-
ear term, since there are only 2 values to measure. Interactions
between flags and numerical factors such as block sizes in
CUDA programs or loop unrolling amounts are also common.
Deciding which levels to include for these kinds of factors
requires more careful analysis. For example, if we suspect the
performance model has a quadratic term for a certain factor,
the design should include at least three factor levels. The

ordering between the levels of other compiler parameters, such
as -O(0,1,2,3), is not obviously translated to a number.
Factors like these are named categorical, and must be treated
differently when constructing designs in step 3 and analyzing
results in step 5.

We decided to use D-Optimal designs because their con-
struction techniques enable mixing categorical and numerical
factors in the same screening design, while biasing sampling
according to the performance model. This enables the auto-
tuner to exploit global search space structures if we use the
right model. When constructing a D-Optimal design in step 3
the user can require that specific points in the search space are
included, or that others are not. Algorithms for constructing D-
Optimal designs are capable of adapting to these requirements
by optimizing a starting design. Before settling on D-Optimal
designs, we explored other design construction techniques
such as the Plackett-Burman [24] screening designs shown
in the next section, the contractive replacement technique
of Addelman-Kempthorne [25] and the direct generation al-
gorithm by Grömping and Fontana [26]. These techniques
have strong requirements on design size and level mixing,
so we opted for a more flexible technique that would enable
exploring a more comprehensive class of autotuning problems.

After the design is constructed in step 3, we run each
selected experiment in step 4. This step can run in parallel
since experiments are independent. Not all target programs
run successfully in their entire input range, making runtime
failures common in this step. The user can decide whether
to construct a new design using the successfully completed
experiments or to continue to the analysis step if enough
experiments succeed.

After running the ANOVA test in step 5, the user should
apply domain knowledge to analyze the ANOVA table and
determine which factors are significant. Certain factors might
not appear significant and should not be included in the
regression model. Selecting the model after the ANOVA test
in step 6 also benefits from domain knowledge.

A central assumption of ANOVA is the homoscedasticity
of the response, which can be interpreted as requiring the ob-
served error on measurements to be independent of factor lev-

Run
Experiments

Run ANOVA
Select Model

Fit Model

Predict & Fix
Factor Levels

Define Search
Space

Select
Initial Model

Generate
Design

User Input

1

2

4

5

6

7

83

Figure 2: Overview of the DoE approach to autotuning
proposed in this paper

els and of the number of measurements. Fortunately, there are
statistical tests and corrections for lack of homoscedasticity.
Our approach uses the homoscedasticity check and correction
by power transformations from the car package [27] of the
R language.

We fit the selected model to our design’s data in step 7, and
use the fitted model in step 8 to find levels that minimize the
response. The choice of the method used to find these levels
depends on factor types and on the complexity of the model
and search space. If factors have discrete levels, neighborhood
exploration might be needed to find levels that minimize
the response around predicted levels. Constraints might put
predicted levels on an undefined or invalid region on the search
space. This presents challenge, because the borders of valid
regions would have to be explored.

In step 8 we also fix factor levels to those predicted to
achieve best performance. The user can also decide the level
of trust placed on the prediction at this step, by keeping other
levels available. In step 8 we perform a reduction of problem
dimension by eliminating factors and decreasing the size of the
search space. If we identified significant parameters correctly,
we will have restricted further search to better regions. In
the next section we present a simple fictional application
our approach that illustrates the fundamentals of the DoE
methodology, screening designs and D-Optimal designs.

IV. DESIGN OF EXPERIMENTS

In this section we first present the assumptions of a tradi-
tional DoE methodology using an example of 2-level screening
designs, an efficient way to identify main effects. We then
discuss techniques for the construction of efficient designs for
factors with arbitrary numbers and types of levels, and present
D-Optimal designs, the technique used in this paper.

A. Screening & Plackett-Burman Designs

Screening designs identify parsimoniously the main effects
of 2-level factors in the initial stages of studying a problem.
While interactions are not considered at this stage, identifying
main effects early enables focusing on a smaller set of fac-
tors on subsequent experiments. A specially efficient design
construction technique for screening designs was presented
by Plackett and Burman [24] in 1946, and is available in the
FrF2 package [28] of the R language [29].

Despite having strong restrictions on the number of factors
supported, Plackett-Burman designs enable the identification
of main effects of n factors with n + 1 experiments. Factors
may have many levels, but Plackett-Burman designs can only
be constructed for 2-level factors. Therefore, before construct-
ing a Plackett-Burman design we must identify high and low
levels for each factor.

Assuming a linear relationship between factors and the
response is fundamental for running ANOVA tests using a
Plackett-Burman design. Consider the linear relationship

Y = βX+ ε, (1)

where ε is the error term, Y is the observed response,
X = {1, x1, . . . , xn} is the set of n 2-level factors, and

β = {β0, . . . , βn} is the set with the intercept β0 and the
corresponding model coefficients. ANOVA tests can rigorously
compute the significance of each factor, we can think of that
intuitively by noting that less significant factors will have
corresponding values in β close to zero.

The next example illustrates the screening methodology.
Suppose we wish to minimize a performance metric Y
of a problem with factors x1, . . . , x8 assuming values in
{−1,−0.8,−0.6, . . . , 0.6, 0.8, 1}. Each yi ∈ Y is defined as

yi =− 1.5x1 + 1.3x3 + 3.1x5+ (2)

− 1.4x7 + 1.35x28 + 1.6x3x5 + ε.

Suppose that, for the purpose of this example, the computation
is done by a very expensive black-box procedure. Note that
factors {x2, x4, x6} have no contribution to the response, and
we can think of the error term ε as representing not only noise,
but our uncertainty regarding the model. Higher amplitudes of
ε might make isolating factors with low significance harder to
justify.

To study this problem efficiently we decided to construct
a Plackett-Burman design, which minimizes the experiments
needed to identify significant factors. The analysis of this
design will enable decreasing the dimension of the problem.
Table I presents the Plackett-Burman design we generated.
It contains high and low values, chosen to be −1 and 1,
for the factors x1, . . . , x8, and the observed response Y. It
is a required step to add the 3 “dummy” factors d1, . . . , d3
to complete the 12 columns needed to construct a Plackett-
Burman design for 8 factors [24].

So far, we have performed steps 1, 2, and 3 from Figure 2.
We use our initial assumption in Equation (1) to identify the
most significant factors by performing an ANOVA test, which
is step 5 from Figure 2. The results are shown in Table II,
where the significance of each factor is interpreted from the
F-test and Pr(> F) values. Table II uses “∗”, as is convention
in the R language, to represent the significance values for each
factor.

We see on Table II that factors {x3, x5, x7, x8} have at least
one “∗” of significance. For the purpose of this example, this
is sufficient reason to include them in our linear model for the
next step. We decide as well to discard factors {x2, x4, x6}

Table I: Randomized Plackett-Burman design for factors
x1, . . . , x8, using 12 experiments and “dummy” factors
d1, . . . , d3, and computed response Y

x1 x2 x3 x4 x5 x6 x7 x8 d1 d2 d3 Y

1 -1 1 1 1 -1 -1 -1 1 -1 1 13.74
-1 1 -1 1 1 -1 1 1 1 -1 -1 10.19
-1 1 1 -1 1 1 1 -1 -1 -1 1 9.22
1 1 -1 1 1 1 -1 -1 -1 1 -1 7.64
1 1 1 -1 -1 -1 1 -1 1 1 -1 8.63
-1 1 1 1 -1 -1 -1 1 -1 1 1 11.53
-1 -1 -1 1 -1 1 1 -1 1 1 1 2.09
1 1 -1 -1 -1 1 -1 1 1 -1 1 9.02
1 -1 -1 -1 1 -1 1 1 -1 1 1 10.68
1 -1 1 1 -1 1 1 1 -1 -1 -1 11.23
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5.33
-1 -1 1 -1 1 1 -1 1 1 1 -1 14.79

Table II: Shortened ANOVA table for the fit of the naive
model, with significance intervals from the R language

F value Pr(> F) Signif.

x1 8.382 0.063 ·
x2 0.370 0.586
x3 80.902 0.003 ∗∗
x4 0.215 0.675
x5 46.848 0.006 ∗∗
x6 5.154 0.108
x7 13.831 0.034 ∗
x8 59.768 0.004 ∗∗

from our model, due to their low significance. We see that
factor x1 has a significance mark of “·”, but comparing F-test
and Pr(> F) values we decide that they are fairly smaller than
the values of factors that had no significance, and we keep
this factor.

Moving forward to steps 6, 7, and 8 in Figure 2, we will
build a linear model using factors {x1, x3, x5, x7, x8}, fit the
model using the values of Y we obtained when running our
design, and use model coefficients to predict the levels of each
factor that minimize the real response. We can do that because
these factors are numerical, even though only discrete values
are allowed.

We now proceed to the prediction step, where we wish to
identify the levels of factors {x1, x3, x5, x7, x8} that minimize
our fitted model, without running any new experiments. This
can be done by, for example, using a gradient descent algo-
rithm or finding the point where the derivative of the function
given by the linear regression equals to zero.

Table III compares the prediction for Y from our linear
model with the selected factors {x1, x3, x5, x7, x8} with the
actual global minimum Y for this problem. Note that fac-
tors {x2, x4, x6} are included for the global minimum. This
happens here because of the error term ε, but could also be
interpreted as due to model uncertainty.

Using 12 measurements and a simple linear model, the pre-
dicted best value of Y was around 10× larger than the global
optimum. Note that the model predicted the correct levels for
x3 and x5, and almost for x7. The linear model predicted
wrong levels for x1, perhaps due to this factor’s interaction
with x3, and for x8. Arguably, it would be impossible to
predict the correct level for x8 using this linear model, since a
quadratic term composes the true formula of Y . As we showed
in Figure 1, a D-Optimal design using a linear model could
detect the significance of a quadratic term, but the resulting
regression will often lead to the wrong level.

Table III: Comparison of the response Y predicted by the
linear model and the true global minimum. Factors used in
the model are bolded

x1 x2 x3 x4 x5 x6 x7 x8 Y

Lin. -1.0 – -1.0 – -1.0 – 1.0 -1.0 -1.046
Min. 1.0 -0.2 -1.0 0.6 -1.0 0.4 0.8 0.0 -9.934

We can improve upon this result if we introduce some
information about the problem and use a more flexible design
construction technique. Next, we will discuss the construction
of efficient designs using problem-specific formulas and con-
tinue the optimization of our example.

B. D-Optimal Designs

The application of DoE to autotuning problems requires
design construction techniques that support factors of arbitrary
types and number of levels. Autotuning problems typically
combine factors such as binary flags, integer and floating point
numerical values, and unordered enumerations of abstract
values. Because Plackett-Burman designs only support 2-level
factors, we had to restrict factor levels to interval extremities
in our example. We have seen that this restriction makes it
difficult to measure the significance of quadratic terms. We
will now show how to optimize our example further by using
D-Optimal designs, which increase the number of levels we
can efficiently screen for and enables detecting the significance
of more complex terms.

To construct a D-Optimal design it is necessary to choose
an initial model, which can be done based on previous
experiments or on expert knowledge of the problem. Once
a model is selected, algorithmic construction is performed
by searching for the set of experiments that minimizes D-
Optimality, a measure of the variance of the estimators for
the regression coefficients associated with the selected model.
This search is usually done by swapping experiments from
the current candidate design with experiments from a pool of
possible experiments, according to certain rules, until some
stopping criterion is met. In the example in this section and in
our approach we use Fedorov’s algorithm [30] for constructing
D-Optimal designs, implemented in R in the AlgDesign
package [31].

In our example, suppose that in addition to using our
previous screening results we decide to hire an expert in our
problem’s domain. The expert confirms our initial assumptions
that the factor x1 should be included in our model since
it is usually significant for this kind of problem and has a
strong interaction with factor x3. She also mentions we should
replace the linear term for x8 by a quadratic term for this
factor.

Using our previous screening and the domain knowledge
provided by our expert, we choose a new performance model
and use it to construct a D-Optimal design using Fedorov’s
algorithm. Since we need enough degrees of freedom to fit our
model, we construct the design with 12 experiments shown in
Table IV. Note that the design includes levels −1, 0, and 1
for factor x8. The design will sample from different regions
of the search space due to the quadratic term, as was shown
in Figure 1.

We now fit this model using the results of the experiments in
our design. Table V shows the model fit table and compares the
estimated and real model coefficients. This example illustrates
that the DoE approach can achieve close model estimations
using few resources, provided the approach is able to use user

Table IV: D-Optimal design constructed for the factors
{x1, x3, x5, x7, x8} and computed response Y

x1 x3 x5 x7 x8 Y

-1.0 -1.0 -1.0 -1.0 -1.0 2.455
-1.0 1.0 1.0 -1.0 -1.0 6.992
1.0 -1.0 -1.0 1.0 -1.0 -7.776
1.0 1.0 1.0 1.0 -1.0 4.163
1.0 1.0 -1.0 -1.0 0.0 0.862

-1.0 1.0 1.0 -1.0 0.0 5.703
1.0 -1.0 -1.0 1.0 0.0 -9.019

-1.0 -1.0 1.0 1.0 0.0 2.653
-1.0 -1.0 -1.0 -1.0 1.0 1.951
1.0 -1.0 1.0 -1.0 1.0 0.446

-1.0 1.0 -1.0 1.0 1.0 -2.383
1.0 1.0 1.0 1.0 1.0 4.423

input to identify significant factors, and knowledge about the
problem domain to tweak the model.

Table VI compares the global minimum of this example
with the predictions made by our initial linear model from
the screening step, and our improved model. Using screening,
D-Optimal designs, and domain knowledge, we found an opti-
mization within 10% of the global optimum while computing
Y only 24 times. We were able to do that by first reducing the
problem’s dimension when we eliminated insignificant factors
in the screening step. We then constructed a more careful
exploration of this new problem subspace, aided by domain
knowledge provided by an expert. Note that we could have
reused some of the 12 experiments from the previous step to
reduce the size of the new design further.

We are able to explain the performance improvements we
obtained in each step of the process, because we finish steps
with a performance model and a performance prediction. Each
factor is included or removed using information obtained in
statistical tests, or expert knowledge. If we need to optimize
this problem again, for a different architecture or with larger
input, we could start exploring the search space with a less
naive model. We could also continue the optimization of
this problem by exploring levels of factors {x2, x4, x6}. The
significance of these factors could now be detectable by
ANOVA tests since the other factors are now fixed. If we still
cannot identify any significant factor, it might be advisable to
spend the remaining budget using another exploration strategy
such as uniform random or latin hypercube sampling.

Table V: Correct model fit comparing real and estimated
coefficients, with significance intervals from the R language

Real Estimated t value Pr(> |t|) Signif.

Intercept 0.000 0.050 0.305 0.776
x1 -1.500 -1.452 -14.542 0.000 ***
x3 1.300 1.527 15.292 0.000 ***
x5 3.100 2.682 26.857 0.000 ***
x7 -1.400 -1.712 -17.141 0.000 ***
x8 0.000 -0.175 -1.516 0.204
x2
8 1.350 1.234 6.180 0.003 **

x1x3 1.600 1.879 19.955 0.000 ***

Table VI: Comparison of the response Y predicted by our
models and the true global minimum. Factors used in the
models are bolded

x1 x2 x3 x4 x5 x6 x7 x8 Y

Quad. 1.0 – -1.0 – -1.0 – 1.0 0.0 -9.019
Lin. -1.0 – -1.0 – -1.0 – 1.0 -1.0 -1.046
Min. 1.0 -0.2 -1.0 0.6 -1.0 0.4 0.8 0.0 -9.934

The process of screening for factor significance using
ANOVA and fitting a new model using acquired knowledge
is equivalent to steps 5, 6, and 7 in Figure 2. In the next
section we evaluate the performance of our DoE approach in
two scenarios.

V. PERFORMANCE EVALUATION

In this section we present performance evaluations of our
approach in two scenarios that differ on search space size and
complexity.

A. GPU Laplacian Kernel

We first evaluated the performance of our approach in a
Laplacian Kernel implemented using BOAST [10] and target-
ing the Nvidia K40c GPU. The objective was to minimize
the time to compute each pixel by finding the best level
combination for the factors listed in Table VII. Considering
only factors and levels, the size of the search space is 1.9×105,
but removing points that fail at runtime yields a search space
of size 2.3× 104. The complete search space took 154 hours
to be evaluated on Debian Jessie, using an Intel Xeon E5-
2630v2 CPU, gcc version 4.8.3 and Nvidia driver version
340.32.

We applied domain knowledge to construct the following
initial performance model:

time_per_pixel ∼ y_component_number+
1

y_component_number
+

load_overlap+ temporary_size +

vector_length+ lws_y+
1

lws_y
+ (3)

elements_number+ threads_number +

1

elements_number
+

1

threads_number
.

This performance model was used by the Iterative Linear
Model (LM) algorithm and by our D-Optimal Design approach
(DLMT). LM is almost identical to our approach, described
Section III, but it uses a fixed-size random sample of the
search space instead of generating D-Optimal designs. We
compared the performance of our approach with the following
algorithms: uniform Random Sampling (RS); Latin Hypercube
Sampling (LHS); Greedy Search (GS); Greedy Search with
Restart (GSR); and Genetic Algorithm (GA). Each algorithm
performed at most 125 measurements over 1000 repetitions,
without user intervention.

Since we measured the entire valid search space, we could
use the slowdown relative to the global minimum to compare
algorithm performance. Table VIII shows the mean, mini-
mum and maximum slowdowns in comparison to the global

Table VII: Parameters of the Laplacian Kernel

Factor Levels Short Description

vector_length 20, . . . , 24 Size of support arrays
load_overlap true, false Load overlaps in vectorization
temporary_size 2, 4 Byte size of temporary data
elements_number 1, . . . , 24 Size of equal data splits
y_component_number 1, . . . , 6 Loop tile size
threads_number 25, . . . , 210 Size of thread groups
lws_y 20, . . . , 210 Block size in y dimension

minimum, for each algorithm. It also shows the mean and
maximum budget used by each algorithm. Figure 3 presents
histograms with the count of the slowdowns found by each of
the 1000 repetitions. Arrows point the maximum slowdown
found by each algorithm. Note that GS’s maximum slowdown
was left out of range to help the comparison between the other
algorithms.

All algorithms performed relatively well in this kernel,
with only GS not being able to find slowdowns smaller than
4× in some runs. As expected, other search algorithms had
results similar to RS. LM was able to find slowdowns close
to the global minimum on most runs, but some runs could
not find slowdowns smaller than 4×. Our approach reached a
slowdown of 1% from the global minimum in all of the 1000
runs while using at most fewer than half of the allotted budget.

We implemented a simple approach for the prediction step
in this problem, choosing the best value of our fitted models on
the complete set of valid level combinations. This was possible
for this problem since all valid combinations were known. For
problems were the search space is too large to be generated,
we would have to either adapt this step and run the prediction
on a sample or minimize the model using the differentiation
strategies mentioned in Section IV-A.

This kernel provided ideal conditions for using our ap-
proach, where the performance model is approximately known
and the complete valid search space is small enough to be
used for prediction. The global minimum also appears to not
be isolated in a region of points with bad performance, since
our approach was able to exploit space geometry. We will now
present a performance evaluation of our approach in a larger
and more comprehensive benchmark.

B. SPAPT Benchmark Suite

The SPAPT [8] benchmark suite provides parametrized CPU
kernels from different HPC domains. The kernels shown in

Table VIII: Slowdown and budget used by 7 optimization
methods on the Laplacian Kernel, using a budget of 125 points
with 1000 repetitions

Mean Min. Max. Mean Budget Max. Budget

RS 1.10 1.00 1.39 120.00 120.00
LHS 1.17 1.00 1.52 98.92 125.00
GS 6.46 1.00 124.76 22.17 106.00
GSR 1.23 1.00 3.16 120.00 120.00
GA 1.12 1.00 1.65 120.00 120.00
LM 1.02 1.01 3.77 119.00 119.00
DLMT 1.01 1.01 1.01 54.84 56.00

max

max

max

max

max

max

R
S

LH
S

G
S

G
S

R
G

A
LM

D
LM

T

1 2 3 4

0

1000

0

1000

0

1000

0

1000

0

1000

0

1000

0

1000

Slowdown compared to the optimal solution

C
ou

nt

Figure 3: Distribution of slowdowns in relation to the global
minimum for 7 optimization methods on the Laplacian Kernel,
using a budget of 125 points over 1000 repetitions

Table IX are implemented using the code annotation and
transformation tools provided by Orio [9]. Search space sizes
are larger than in the Laplacian Kernel example. Kernel factors
are either integers in an interval, such as loop unrolling and
register tiling amounts, or binary flags that control paralleliza-
tion and vectorization.

We used the Random Sampling (RS) implementation avail-
able in Orio and integrated an implementation of our approach
(DLMT) to the system. We omitted the other Orio algorithms
because other studies using SPAPT kernels [3], [4] showed that
their performance is similar to RS regarding budget usage.
The global minima are not known for any of the problems,
and search spaces are too large to allow complete measure-
ments. Therefore, we used the performance of each application
compiled with gcc’s -O3, with no code transformations, as a
baseline for computing the speedups achieved by each strategy.
We performed 10 autotuning repetitions for each kernel using
RS and DLMT, using a budget of at most 400 measurements.
DLMT was allowed to perform only 4 of the iterations shown
in Figure 2. Experiments were performed using Grid5000 [32],
on Debian Jessie, using an Intel Xeon E5-2630v3 CPU and
gcc version 6.3.0.

The time to measure each kernel varied from a few seconds
to up to 20 minutes. In testing, some transformations caused
the compiler to enter an internal optimization process that did
not stop for over 12 hours. We did not study why these cases
delayed for so long, and implemented an execution timeout
of 20 minutes, considering cases that took longer than that to
compile to be runtime failures.

Similar to the previous example, we automated factor
elimination based on ANOVA tests so that a comprehensive

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
● ●

●
●●
●●●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●
●

●●

●●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●
●

●

●

●●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●●●

●●

●

●

●

●

●●

●
●
●●
●

●
●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●

●

●
●●

●

●

●

●●

●
●

●

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

10−2 10−1 100 10−2 10−1 100 10−2 10−1 100 10−2 10−1 100 10−2 10−1 100

10−2 10−1 100

0

200

400

0

200

400

0

200

400

Best Cost in Seconds

Ite
ra

tio
n

w
he

re
 B

es
t w

as
 F

ou
nd

●

●

RS
DLMT

−O3

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

Figure 4: Cost of best points found on each run, and the iteration where they were found. RS and DLMT found no speedups
with similar budgets for kernels marked with “[0]” and blue headers, and similar speedups with similar budgets for kernels
marked with “[=]” and orange headers. DLMT found similar speedups using smaller budgets for kernels marked with “[+]”
green headers. Ellipses delimit an estimate of where 95% of the underlying distribution lies

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0

3

6

9

12

0

2

4

6

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

10.0

12.5

0

3

6

9

12

0

3

6

9

12

0

2

4

6

0.0

2.5

5.0

7.5

10.0

12.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0

1

2

3

0

3

6

9

0.0

2.5

5.0

7.5

Count

C
os

t i
n

S
ec

on
ds

RS
DLMT

−O3

[+] gesummv [+] lu [+] mvt [+] seidel [+] jacobi

[=] dgemv3 [=] adi [=] trmm [+] bicgkernel [+] mm [+] tensor

[0] hessian [0] fdtd [0] correlation [=] gemver [=] atax [=] stencil3d

Figure 5: Histograms of explored search spaces, showing the real count of measured configurations. Kernels are grouped
in the same way as in Figure 4. DLMT spent fewer measurements than RS in configurations with smaller speedups or with
slowdowns, even for kernels in the orange group. DLMT also spent more time exploring configurations with larger speedups

Table IX: Kernels from the SPAPT benchmark used in this
evaluation

Kernel Operation Factors Size

atax Matrix transp. & vector mult. 18 2.6 × 1016

dgemv3 Scalar, vector & matrix mult. 49 3.8 × 1036

gemver Vector mult. & matrix add. 24 2.6 × 1022

gesummv Scalar, vector, & matrix mult. 11 5.3 × 109

hessian Hessian computation 9 3.7 × 107

mm Matrix multiplication 13 1.2 × 1012

mvt Matrix vector product & transp. 12 1.1 × 109

tensor Tensor matrix mult. 20 1.2 × 1019

trmm Triangular matrix operations 25 3.7 × 1023

bicg Subkernel of BiCGStab 13 3.2 × 1011

lu LU decomposition 14 9.6 × 1012

adi Matrix sub., mult., & div. 20 6.0 × 1015

jacobi 1-D Jacobi computation 11 5.3 × 109

seidel Matrix factorization 15 1.3 × 1014

stencil3d 3-D stencil computation 29 9.7 × 1027

correlation Correlation computation 21 4.5 × 1017

evaluation could be performed. We also did not tailor initial
performance models, which were the same for all kernels.
Initial models had a linear term for each factor with two
or more levels, plus quadratic and cubic terms for factors
with sufficient levels. Although automation and identical initial
models might have limited the improvements at each step of
our application, our results show that it still succeeded in
decreasing the budget needed to find significant speedups for
some kernels.

Figure 4 presents the speedup found by each run of RS
and DLMT, plotted against the algorithm iteration where that
speedup was found. We divided the kernels into 3 groups
according to the results. The group where no algorithm found
any speedups contains 3 kernels and is marked with “[0]”
and blue headers. The group where both algorithms found
similar speedups, in similar iterations, contains 6 kernels and
is marked with “[=]” and orange headers. The group where
DLMT found similar speedups using a significantly smaller
budget than RS contains 8 kernels and is marked with “[+]”
and green headers. Ellipses delimit an estimate of where 95%
of the underlying distribution lies, and a dashed line marks the
-03 baseline. In comparison to RS, our approach significantly
decreased the average number of iterations needed to find
speedups for the 8 kernels in the green group.

Figure 5 shows the search space exploration performed by
RS and DLMT. It uses the same color groups as Figure 4, and
shows the distribution of the speedups that were found during
all repetitions of the experiments. Histogram areas correspond-
ing to DLMT are usually smaller because it always stopped at
4 iterations, while RS always performed 400 measurements.
This is particularly visible in lu, mvt, and jacobi. We also
observe that the quantity of configurations with high speedups
found by DLMT is higher, even for kernels on the orange
group. This is noticeable in gemver, bicgkernel, mm and
tensor, and means that DLMT spent less of the budget
exploring configurations with small speedups or slowdowns,
in comparison with RS.

Analyzing the significant performance parameters identified
by our automated approach for every kernel, we were able
to identify interesting relationships between parameters and
performance. In bicgkernel, for example, DLTM identified
a linear relationship for OpenMP and scalar replacement
optimizations, and quadratic relationships between register and
cache tiling, and loop unrolling. This is an example of the
transparency in the optimization process that can be achieved
with a DoE approach.

Our approach used a generic initial performance model for
all kernels, but since it iteratively eliminates factors and model
terms based on ANOVA tests, it was still able to exploit global
search space structures for kernels in the orange and green
groups. Even in this automated setting, the results with SPAPT
kernels illustrate the ability our approach has to reduce the
budget needed to find good speedups by efficiently exploring
search spaces.

VI. CONCLUSION

The contribution of this paper is a transparent DoE approach
for program autotuning under tight budget constraints. We
discussed the underlying concepts that enable our approach
to reduce significantly the measurement budget needed to
find good optimizations consistently over different kernels
exposing configuration parameters of source-to-source trans-
formations. We have made efforts to make our results, figures
and analyses reproducible by hosting all our scripts and data
publicly [33].

Our approach outperformed six other search heuristics,
always finding a slowdown of 1% from the global optimum
of the search space defined by the optimization of a Laplacian
kernel for GPUs, while using at most half of the allotted
budget. In a more comprehensive evaluation, using kernels
from the SPAPT benchmark, our approach was able to find
the same speedups as RS while using up to 10× fewer
measurements. We showed that our approach explored search
spaces more efficiently, even for kernels where it performed
similarly to random sampling.

We presented a completely automated version of our ap-
proach in this paper so that we could perform a thorough
performance evaluation on comprehensive benchmarks. De-
spite using the same generic performance model for all
kernels, our approach was able to find good speedups by
eliminating insignificant model terms at each iteration. This
means that our approach can still improve the performance of
applications using unspecialized models that incorporate only
general knowledge about algorithm performance. We would
incur some budget overhead in this case while insignificant
terms are removed.

In future work we will explore the impact of user input and
expert knowledge in the selection of the initial performance
model and in the subsequent elimination of factors using
ANOVA tests. We expect that tailored initial performance
models and assisted factor elimination will improve the solu-
tions found by our approach and decrease the budget needed
to find them.

Our current strategy eliminates completely from the model
the factors with low significance detected by ANOVA tests. In
future work we will also explore the effect of adding random
experiments with randomized factor levels. We expect this will
decrease the impact of removing factors wrongly detected to
have low significance.

Decreasing the number of experiments needed to find op-
timizations is a desirable property for autotuners in problem
domains other than source-to-source transformation. We intend
to evaluate the performance of our approach in domains
such as High-Level Synthesis and compiler configuration for
FPGAs, where search spaces can get as large as 10126, and
where we already have some experience [34].

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations. This work was
partly funded by CAPES, Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior, Brazil, funding code 001.

REFERENCES

[1] K. Seymour, H. You, and J. Dongarra, “A comparison of search
heuristics for empirical code optimization.” in CLUSTER, 2008, pp. 421–
429.

[2] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle, “Combined selection
of tile sizes and unroll factors using iterative compilation,” The Journal
of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003.

[3] P. Balaprakash, S. M. Wild, and P. D. Hovland, “Can search algorithms
save large-scale automatic performance tuning?” in ICCS, 2011, pp.
2136–2145.

[4] ——, “An experimental study of global and local search algorithms
in empirical performance tuning,” in International Conference on High
Performance Computing for Computational Science. Springer, 2012,
pp. 261–269.

[5] D. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable
models for fast, dynamic tuning of input-dependent code,” in Parallel
& Distributed Processing, 2017. IPDPS 2017. IEEE International Sym-
posium on. IEEE, 2017, pp. 307–316.

[6] T. L. Falch and A. C. Elster, “Machine learning-based auto-tuning for en-
hanced performance portability of OpenCL applications,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 8, 2017.

[7] P. Balaprakash, A. Tiwari, S. M. Wild, and P. D. Hovland, “Auto-
MOMML: Automatic Multi-objective Modeling with Machine Learn-
ing,” in High Performance Computing: 31st International Conference,
ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016,
Proceedings, M. J. Kunkel, P. Balaji, and J. Dongarra, Eds. Springer
International Publishing, 2016, pp. 219–239.

[8] P. Balaprakash, S. M. Wild, and B. Norris, “SPAPT: Search problems
in automatic performance tuning,” Procedia Computer Science, vol. 9,
pp. 1959–1968, 2012.

[9] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on. IEEE, 2009,
pp. 1–11.

[10] B. Videau, K. Pouget, L. Genovese, T. Deutsch, D. Komatitsch, F. De-
sprez, and J.-F. Méhaut, “BOAST: A metaprogramming framework to
produce portable and efficient computing kernels for hpc applications,”
The International Journal of High Performance Computing Applications,
p. 1094342017718068, 2017.

[11] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A
scalable auto-tuning framework for compiler optimization,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on. IEEE, 2009, pp. 1–12.

[12] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan, “POET: Param-
eterized optimizations for empirical tuning,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. IEEE,
2007, pp. 1–8.

[13] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, PetaBricks: a language and compiler for algorithmic
choice. ACM, 2009, vol. 44, no. 6.

[14] J. R. Rice, “The algorithm selection problem,” in Advances in Computers
15, 1976, pp. 65–118.

[15] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing
matrix multiply using PHiPAC: a portable, high-performance, ANSI C
coding methodology,” in Proceedings of International Conference on
Supercomputing, Vienna, Austria, 1997.

[16] J. J. Dongarra and C. R. Whaley, “Automatically tuned linear algebra
software (ATLAS),” Proceedings of SC, vol. 98, 1998.

[17] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in Journal of Physics:
Conference Series, vol. 16, no. 1. IOP Publishing, 2005, p. 521.

[18] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the fft,” in Acoustics, Speech and Signal Processing, 1998. Proceed-
ings of the 1998 IEEE International Conference on, vol. 3. IEEE, 1998,
pp. 1381–1384.

[19] M. Gerndt and M. Ott, “Automatic performance analysis with
Periscope,” Concurrency and Computation: Practice and Experience,
vol. 22, no. 6, pp. 736–748, 2010.

[20] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini, P. Gschwandtner,
T. Fahringer, and H. Moritsch, “A multi-objective auto-tuning frame-
work for parallel codes,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference for. IEEE,
2012, pp. 1–12.

[21] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS:
an automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, no. 1, pp. 267–306, 2009.

[22] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd Interna-
tional Conference on Parallel Architectures and Compilation Techniques.
ACM, 2014, pp. 303–316.

[23] R. Carnell, lhs: Latin Hypercube Samples, 2018, R package version
0.16. [Online]. Available: https://CRAN.R-project.org/package=lhs

[24] R. L. Plackett and J. P. Burman, “The design of optimum multifactorial
experiments,” Biometrika, vol. 33, no. 4, pp. 305–325, 1946.

[25] S. Addelman and O. Kempthorne, “Some main-effect plans and orthog-
onal arrays of strength two,” The Annals of Mathematical Statistics, pp.
1167–1176, 1961.

[26] U. Grömping and R. Fontana, “An algorithm for generating good mixed
level factorial designs,” Beuth University of Applied Sciences, Berlin,
Tech. Rep., 2018.

[27] J. Fox and S. Weisberg, An R Companion to Applied Regression,
2nd ed. Thousand Oaks CA: Sage, 2011. [Online]. Available:
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

[28] U. Grömping, “R package FrF2 for creating and analyzing fractional
factorial 2-level designs,” Journal of Statistical Software, vol. 56, no. 1,
pp. 1–56, 2014. [Online]. Available: http://www.jstatsoft.org/v56/i01/

[29] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2018. [Online]. Available: https://www.R-project.org/

[30] V. V. Fedorov, Theory of optimal experiments. Elsevier, 1972.
[31] B. Wheeler, AlgDesign: Algorithmic Experimental Design, 2014, R

package version 1.1-7.3. [Online]. Available: https://CRAN.R-project.
org/package=AlgDesign

[32] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, ser. Communications in Computer and Information
Science, I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan, Eds.
Springer International Publishing, 2013, vol. 367, pp. 3–20.

[33] P. Bruel, “Git repository with all scripts and data,” https://github.com/
phrb/ccgrid19, accessed: 2018-10-14.

[34] P. Bruel, A. Goldman, S. R. Chalamalasetti, and D. Milojicic, “Auto-
tuning high-level synthesis for FPGAs using OpenTuner and LegUp,”
in International Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2017.

https://CRAN.R-project.org/package=lhs
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://www.jstatsoft.org/v56/i01/
https://www.R-project.org/
https://CRAN.R-project.org/package=AlgDesign
https://CRAN.R-project.org/package=AlgDesign
https://github.com/phrb/ccgrid19
https://github.com/phrb/ccgrid19

	Introduction
	Background
	Source-to-Source Transformation
	Autotuning
	Search Space Exploration Strategies

	Autotuning with Design of Experiments
	Design of Experiments
	Screening & Plackett-Burman Designs
	D-Optimal Designs

	Performance Evaluation
	GPU Laplacian Kernel
	SPAPT Benchmark Suite

	Conclusion
	References

