M. Asada, H. Karl-f-macdorman, Y. Ishiguro, and . Kuniyoshi, Cognitive developmental robotics as a new paradigm for the design of humanoid robots, Robotics and Autonomous Systems, vol.37, issue.2, pp.185-193, 2001.

A. Baranes and P. Oudeyer, Intrinsically motivated goal exploration for active motor learning in robots: A case study, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp.1766-1773, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00541769

C. Castellini, F. Orabona, G. Metta, and G. Sandini, Internal models of reaching and grasping, Advanced Robotics, vol.21, issue.13, pp.1545-1564, 2007.

D. Corbetta, L. Sabrina, R. F. Thurman, Y. Wiener, J. L. Guan et al., Mapping the feel of the arm with the sight of the object: on the embodied origins of infant reaching, Frontiers in psychology, vol.5, p.576, 2014.

D. Aaron, S. Souza, S. Vijayakumar, and . Schaal, Learning inverse kinematics, IEEE/RSJ International Conference on Intelligent Robots and Systems, vol.1, pp.298-303, 2001.

K. Gooey, . Bradfield, . Talbot, U. Morgan, and . Proske, Effects of body orientation, load and vibration on sensing position and movement at the human elbow joint, Experimental brain research, vol.133, issue.3, pp.340-348, 2000.

M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella et al., Body schema in robotics: a review, IEEE Transactions on Autonomous Mental Development, vol.2, issue.4, pp.304-324, 2010.
DOI : 10.1109/tamd.2010.2086454

URL : http://summerschool2011.esmcs.eu/wp-content/uploads/2011/03/HoffmannEtAl_BodySchemaInRoboticsReview_2010.pdf

H. Jiang, Z. Wang, X. Liu, X. Chen, Y. Jin et al., A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior, 2017 IEEE International Conference on, pp.6127-6133, 2017.

I. Michael, D. E. Jordan, and . Rumelhart, Forward models: Supervised learning with a distal teacher, Cognitive science, vol.16, issue.3, pp.307-354, 1992.

N. Kofinas, E. Orfanoudakis, and M. G. Lagoudakis, Complete analytical forward and inverse kinematics for the nao humanoid robot, Journal of Intelligent & Robotic Systems, vol.77, issue.2, pp.251-264, 2015.
DOI : 10.1007/s10846-013-0015-4

D. Luo, F. Hu, Y. Deng, W. Liu, and X. Wu, An infantinspired model for robot developing its reaching ability, Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pp.310-317, 2016.
DOI : 10.1109/devlrn.2016.7846840

D. Luo, F. Hu, T. Zhang, Y. Deng, M. Nie et al., Human-inspired internal models for robot arm motions, Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, p.5469, 2017.

G. Metta, Babybot: a study into sensorimotor development, 2000.

D. Nguyen-tuong and J. Peters, Model learning for robot control: a survey, Cognitive processing, vol.12, issue.4, pp.319-340, 2011.
DOI : 10.1007/s10339-011-0404-1

J. Martin, A. Pickering, and . Clark, Getting ahead: forward models and their place in cognitive architecture, Trends in cognitive sciences, vol.18, issue.9, pp.451-456, 2014.

L. Bryan, . Riemann, M. Scott, and . Lephart, The sensorimotor system, part ii: the role of proprioception in motor control and functional joint stability, Journal of athletic training, vol.37, issue.1, p.80, 2002.

N. E. Daniel-j-robin, R. K. Berthier, and . Clifton, Infants' predictive reaching for moving objects in the dark, Developmental Psychology, vol.32, issue.5, p.824, 1996.

M. Rolf, J. Jochen, and . Steil, Efficient exploratory learning of inverse kinematics on a bionic elephant trunk, IEEE transactions on neural networks and learning systems, vol.25, pp.1147-1160, 2014.

G. Schillaci, V. V. Hafner, and B. Lara, Coupled inverse-forward models for action execution leading to tool-use in a humanoid robot, ACM/IEEE international conference on Human-Robot Interaction, pp.231-232, 2012.

. Cs-sherrington, On the proprio-ceptive system, especially in its reflex aspect, Brain, vol.29, issue.4, pp.467-482, 1907.

D. Tolani, A. Goswami, and N. I. Badler, Real-time inverse kinematics techniques for anthropomorphic limbs, Graphical models, vol.62, issue.5, pp.353-388, 2000.
DOI : 10.1006/gmod.2000.0528

URL : http://www.cis.upenn.edu/~badler/gmod/0528a.pdf

M. Daniel and . Wolpert, Computational approaches to motor control, Trends in cognitive sciences, vol.1, issue.6, pp.209-216, 1997.

Z. Daniel-m-wolpert and M. Ghahramani, An internal model for sensorimotor integration, Science, vol.269, issue.5232, p.1880, 1995.