W. Z. Zhao and S. H. Du, Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.8, pp.4544-4554, 2016.

H. C. Qu, X. J. Liang, S. C. Liang, and W. J. Liu, Dimensionality-varied deep convolutional neural network for spectral-spatial classification of hyperspectral data, Journal of Applied Remote Sensing, vol.12, issue.1, p.16007, 2018.

Y. T. Qian and M. C. Ye, Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation, IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, vol.6, issue.2, pp.499-515, 2013.

Y. F. Gu, C. Wang, and D. You, Representative multiple kernel learning for classification in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.7, pp.2852-2865, 2012.

T. H. Chan, K. Jia, and S. Gao, PCANet: A simple deep learning baseline for image classification?, IEEE Transactions on Image Processing, vol.24, issue.12, pp.5017-5032, 2015.

Y. S. Chen, Z. H. Lin, and X. Zhao, Deep learning-based classification of hyperspectral data, IEEE Journal of Selected topics in applied earth observations and remote sensing, vol.7, issue.6, pp.2094-2107, 2014.

Y. S. Chen, X. Zhao, and X. P. Jia, Spectral-spatial classification of hyperspectral data based on deep belief network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, issue.6, pp.2381-2392, 2015.

B. Pan, Z. W. Shi, and N. Zhang, Hyperspectral image classification based on nonlinear spectral-spatial network, IEEE Geoscience and Remote Sensing Letters, vol.13, issue.12, pp.1782-1786, 2016.

J. Yue, W. Zhao, and S. Miao, Spectral-spatial classification of hyperspectral images using deep convolutional neural networks, Remote Sensing Letters, vol.6, issue.6, pp.468-477, 2015.

Y. Li, H. Zhang, and Q. Shen, Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network, Remote Sensing, vol.9, issue.1, p.67, 2017.