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Abstract. Motor imagery electroencephalography (EEG) has been successfully 

used in the brain-computer interface (BCI) systems. Broad learning (BL) is an 

effective and efficient incremental learning algorithm with simple neural 

network structure. In this work, a novel EEG multi-classification method is 

proposed by combining with BL and common spatial pattern (CSP). Firstly, the 

CSP algorithm with the one-versus-the-test scheme is exploited to extract the 

discriminative multiclass brain patterns from raw EEG data, and then the BL 

algorithm is applied to the extracted features to discriminate the classes of EEG 

signals during different motor imagery tasks. Finally, the effectiveness of the 

proposed method has been verified on four-class motor imagery EEG data from 

BCI Competition IV Dataset 2a. Compare with other methods including ELM, 

HELM, DBN and SAE, the proposed method has yielded higher average 

classification test accuracy with less training time-consuming. The proposed 

method is meaningful and may have potential to apply into BCI field. 

Keywords: Electroencephalography  brain-computer interface  broad learning

 common spatial pattern 

1 Introduction 

The brain-computer interface (BCI) is a kind of communication and control system 

that does not depend on the brain’s normal output channels of peripheral nerves and 

muscles. Therefore, it can be a very helpful aid to the people suffering motor 

disabilities [1]. A popular paradigm for BCI is motor imagery (MI), i.e., the subjects 
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perform the imagination of movements and the imagined movements are distinguished 

by the system and translated into computer commands. 

Due to the characteristics of non-stationary, time-varying and inter-subject 

variability, EEG signals are difficult to analyze [2]. At present, the common spatial 

pattern (CSP) algorithm and its extensions are the most effective feature extraction 

methods of discriminating different patterns of EEG signals [3]. CSP is designed for 

two-class BCIs, which completes feature extraction by diagonalizing two covariance 

matrices simultaneously to construct an optimal filter [4]. Various multi-class 

approaches to extend CSP have been reported and have been shown to yield good 

experimental results [5]. 

In recent years, Deep learning has increasingly gained attention in the field of 

machine learning and artificial intelligence, and has been successfully applied in many 

engineering problems. Zheng [6] has used deep belief networks (DBN) to complete 

emotion classification based on EEG and achieve satisfactory results. Tabar [7] has 

investigated convolutional neural networks and stacked autoencoders (SAE) to classify 

motor imagery EEG signals. However, most of deep learning networks suffer from the 

time-consuming training process. Therefore, deep learning algorithms are generally 

difficult to meet the BCI system with high real-time requirements. 

Single layer feedforward neural networks (SLFN) have been widely applied to 

solve problems such as time-consuming and low accuracy [8]. The random vector 

functional-link neural network (RVFLNN) is a member of the SLFN that is effectively 

eliminates the drawback of the long training process and also it provides the 

generalization capability in function approximation [9]. But RVFLNN could not work 

well on remodeling high-volume and time-variety data in modern large data, a latest 

algorithm known as broad learning (BL) has been proposed by Philip Chen [10] in 

2017, which aims to offer an alternative way for deep learning and structure. BL is 

designed for the network through the broad expansion in both the feature nodes and the 

enhancement nodes, and then the incremental learning approach is developed for fast 

remodeling in broad expansion without a retraining process. 

In this paper, we explore the use of broad learning techniques for MI EEG signal 

classification. Although the BL method has strong adaptability, direct learning may not 

be able to extract the essential features of the EEG signal. Considering that CSP can 

effectively extract discriminatory information in multichannel EEG data associated 



with motor imagery and BL has fast training speed and good classification accuracy, a 

combination of them are applied to multiclass EEG classification. The rest of this paper 

is organized as follows. Section 2 presents briefly the related work consisting CSP and 

BL, and then gives the details of the proposed method. Section 3 then gives the 

experimental results and analysis on multiclass MI EEG data from BCI Competition IV 

Dataset 2a. Finally, the conclusion of this work is summarized in Section 4. 

2 Methods 

2.1 Multiclass Common Spatial Pattern 

In binary CSP, diagonalizing two covariance matrices simultaneously that the EEG 

signal’s variance between different modes can be maximized. The one-versus-the-rest 

based CSP (OVR-CSP) approach computes spatial patterns for each class against all 

others. It treats one of the situations as a class, and the remaining situation as another 

class, so that it can be converted into binary CSP for each type of model. 

EEG signal matrices 
i

X  ( 1,...,i C ) with dimension of N  by T , where N  is 

the number of channel, T  is the number of sampling points per channel, and C  is the 

number of MI tasks. The normalized covariance matrix for each class of EEG signal is 

denoted as: 
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where 
0

U  is the N N  unitary matrix of principal components, and   is the 

N N  diagonal matrix of eigenvalues. The whitening transformation matrix is then 

formed as: 
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decomposed as ' '

1 1 1 1
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1 1
I    , so the relationship of covariance matrix 

is expressed as: 
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The eigenvector corresponding to the first m  largest eigenvalues in 
1

U  is 

selected to design a spatial filter for the first type of mode. The projection direction can 

be expressed as: 

1 1, 1

T

m
P U H                                  (5) 

Projection direction 
j

P  of various motor imagery tasks can be calculated using Eq. 

(5). Sample X  is projected with the projection direction in j -type mode. 
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j
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   is the filtered signal, and 
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signal where M C m  . The variance of each component in Z  is normalized, and it 

can be calculated by logarithm as: 
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where var(z )p
 represents the variance of the thp  row component in Z . 

 1
= ,...,

M
F f f  is the feature vector of the sample, which is a set of normalized 

components from Z . 

2.2 Broad Learning 

In this section, we will elaborate on the specific implementation of this algorithm. 

The input of BL is first mapped to create a set of transferred feature that is the basic 

part of the enhancement node, and the incremental learning technique is used to 

update BL dynamically that can achieve satisfactory performance in training 

accuracy. 

Assume the input data set X  contains N  samples and each sample is m

-dimensional. For n  feature mappings, each mapping generates k  nodes, and 

feature mappings can be represented as the equation of the form 
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where 
ei

W  and 
ei

  are randomly generated matrices. The feature nodes are 

summarized as a set of nodes given by  1
, ,

n

n
Z Z Z . Similarly, the m -th group of 

enhancement node can be expressed as: 
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And the enhancement nodes are also summarized as  1,...,
m

mH H H . 

Next, the output expression is constructed for width learning as follows 
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where Y  is the output of the broad learning algorithm, and |
m n m

W Z H Y


     

are the connecting weights for the broad structure and can be easily computed through 

the ridge regression approximation of |
n m

Z H


    using Eq. (10). We can update the 

weight of the model by using the idea of incremental learning algorithm, and the 

classifier model is also updated. 

The pseudoinverse of the involved matrix are calculated by 
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The main idea of the BL algorithm is to achieve the required training accuracy as 

we expect by increasing the number of enhancement nodes or feature nodes. In this 

paper, the increases p  enhancement nodes can be completed by Eq.(11). 
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where 
1m

nk p

h
W




  is the weight vector, and 

1m

p

h




  is the bias. Both of these 

quantities are randomly generated. The new generation of weight and biases is 

generated by mapping features to the p  enhancement nodes. 

In [11], RVFLNN used the stepwise updating algorithm for adding a new 

enhancement node to the network. 



The pseudoinverse of 1mA   is calculated as 
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If mA  is of the full rank, then =0C  and no computation of pseudoinverse is 

involved in updating the pseudoinverse ( )mA   or weight matrix 
mW , and 

 
1 1

.
m m

n m

h h
C Z W A D 

 

    

Then, the new weights are calculated as 

1

m T

m

T

W DB Y
W

B Y





 
 
 

                            (14) 

To this end, the most important work of BL is finished that adds p  additional 

enhancement nodes. 

2.3 Our Algorithm 

The whole process of this work includes two stages: feature extraction and feature 

classification. The motor imagery EEG classification system can be described as the 

following steps: 

Step 1: The features of motor imagery EEG signal are mainly distributed in the 

frequency range of 8-30Hz, and thus the Butter-worth bandpass filter of 8-30 Hz is 

used to preprocess the data. 

Step 2: The OVR-CSP algorithm is used to extract the features of the filtered 

training data in Step 1. The projection direction of each filter can be obtained using 

Eq. (5). The training samples are projected in these projection directions and then Eq. 

(6) is used to calculate the feature vector F . 

Step 3: The extracted feature vector is used as the input of the BL algorithm, and 

each input vector is mapped as a feature node or an enhancement node, and the 

weight W  between the input and the output of network is calculated using these 

nodes and data labels. 



Step 4: When the training error threshold is not satisfied, we need to increase the 

number of enhancement nodes to improve the performance of the network, and the 

weights need to be updated using Eq. (14). By gradually adjusting the value of the 

weight matrix, the classifier model is approached in the end. 

Step 5: For a test sample, its feature is extracted according to Step 2, and then 

putted it into the BL classifier obtained by Step 4 to get its classification result. 

3 Experiments and discussion 

In this section, the experiments on real world EEG data from BCI Competition IV 

Dataset 2a were performed to verify the validity and practicability of our proposed 

algorithm, as compared with the other state-of-the-art approaches including ELM 

[12], HELM [13], DBN [14] and SAE [15]. 

3.1 Datasets and Settings 

The data of BCI Competition IV Dataset 2a was obtained from motor imagery 

experiment with normal subjects, in which the task was to control a feedback bar (in a 

screen, according to a cue randomly provided) by means of imagination of several 

specific movements. It contains data acquired from 9 healthy subjects that execute 

four-class mental imagery tasks, namely the imagination of movement of the left 

hand, right hand, both feet, and tongue. Two sessions, one for training and the other 

for evaluation. Each session comprised 288 trials of data recorded with 22 EEG 

channels and 3 monopolar electrooculogram (EOG) channels. 

Considering the complexity of EEG signal, the training and test samples need to 

be preprocessed, and the effect of parameters C  and s  on the results should be 

considered, and the optimal values of parameters are obtained by using the artificial 

fish swarm algorithm to iterate 20 times. After determining the 0.12267C   and 

0.89107s  , the number of feature windows 
1

N , nodes of each window 
2

N  and 

enhancement layer nodes 
3

N  in the BL algorithm also should be determined. In this 

paper, the best case is determined as 
1

9N  , 
2

8N   and 
3

55N  . 

After that, the number of enhancement nodes in the BL algorithm is increased 

with 2 each to improve the training accuracy. For each dataset, the training procedure 

is stopped when training error threshold is satisfied. The test experiments will be 

conducted in ten runs on each learning method and the average results are provided. 



3.2 Experimental results 

In the experiment of this paper, several algorithms including ELM, DBN, SAE 

and HELM are selected for comparison. The results are shown in Table 1. 

Table 1. Classification accuracy of each algorithm on data set BCI Competition IV Dataset 2a 

Methods ELM DBN SAE HELM Our method 

A01 78.18±0.0015 72.05±0.0241 74.08±0.0173 81.00±0.0001 79.16±0.0104 

A02 47.65±0.0021 46.39±0.0236 45.50±0.0058 48.11±0.0013 49.37±0.0125 

A03 78.49±0.0005 80.07±0.0052 78.78±0.0001 76.93±0.0010 78.44±0.0096 

A04 62.88±0.0019 60.97±0.0272 60.28±0.0028 62.93±0.0008 64.99±0.0131 

A05 37.78±0.0008 38.19±0 37.94±0.0018 37.57±0.0012 39.20±0.0096 

A06 48.97±0.0025 44.27±0.0017 43.83±0.0137 50.89±0.0011 49.83±0.0113 

A07 81.97±0.0010 76.18±0.0181 76.01±0.0077 80.30±0.0011 83.54±0.0123 

A08 82.46±0.0013 80.83±0.0247 77.77±0.0027 81.53±0.0010 82.92±0.0048 

A09 73.88±0.0071 70.08±0.0307 79.20±0.0101 73.92±0.0071 75.17±0.0129 

Mean 65.81 63.22 63.71 65.90 66.91 

In the Table 1, the results showed that our method yielded the best mean testing 

accuracy. Specifically, our method gained the best mean accuracy on subjects A02, 

A04, A05, A07, and A08, while HELM performed best on subjects A01 and A06, and 

DBN achieved the best result on subject A03, and SAE performed best on subject 

A09. The mean accuracy of our algorithm is 1.1% higher than the ELM algorithm, 

3.2% higher than the SAE algorithm, 0.99% higher than the HELM algorithm and 

3.69% higher accuracy than the DBN algorithm. 

Training time-consuming is used to demonstrate the time complexity of an 

algorithm. So, table 2 presents the training time of different algorithms. 

Table 2. The training time of each algorithm in the dataset BCI Competition IV Dataset 2a 

Methods ELM DBN SAE HELM BL 

Train time(s) 0.0127 0.0247 0.0137 0.2550 0.0153 

Among the five classification algorithms, ELM is the most efficient one, while 

SAE, BL and DBN are relatively comparable, and HELM is the least time efficient. 

The training time of the proposed method is less than DBN, and H-ELM. These 

results show that our method can achieve excellent trade-off between classification 

accuracy and computational cost. 

3.3 Discussion 



The proposed method exhibited an excellent performance in both classification 

and computational efficiency, which verifies the effectiveness of the BL algorithm in 

EEG signal classification. When compared with the ELM as well as DBN, SAE and 

H-ELM with deep architecture, BL achieved relatively better performance by its 

novel strategy of weight updates. Furthermore, our method gained the best mean 

testing accuracy on subjects A02, A04, A05, A07 and A08, but the individual 

difference in EEG signals cannot be completely eliminated. For example, the SAE 

achieved better mean testing accuracy on subject A09. In terms of computational 

efficiency, the dataset with small sample size is used in this paper to experiment.  

4 Conclusion 

In this paper, we have proposed a novel multi-task motor imagery EEG 

classification framework using BL and OVR-CSP. Different from the general 

methods, the proposed method adopted the width architecture of BL and learned from 

the input data using the CSP method to extract the essential features of the signal. 

This framework yielded the best mean testing accuracy in all five methods. It is 

observed that learning time of our method is smaller than some multilayer 

architecture of deep learning simultaneously. However, the BL algorithm used in this 

paper only considers the impact of the increase of the enhancement nodes, and the 

combined impact of the feature nodes and enhancement nodes is not considered. It 

may affect the performance of the classifier. Therefore, the follow-up work is 

necessary to research. 
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