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Abstract. We analyze the stability of a system of differential equations with a threshold defined
delay arising from a model for platelet production. We consider a maturity-structured population
of megakaryocyte progenitors and an age-structured population of platelets, where the cytokine
thrombopoietin (TPO) increases the maturation rate of progenitors. Using the quasi-steady-state
approximation for TPO dynamics and the method of characteristics, partial differential equations
are reduced to a system of two differential equations with a state-dependent delay accounting for
the variable maturation rate. We start by introducing the model and proving the positivity and
boundedness of the solutions. Then we use a change of variables to obtain an equivalent system
of two differential equations with a constant delay, from which we prove existence and uniqueness
of the solution. As linearization around the unique positive steady state yields a transcendental
characteristic equation of third degree, we introduce the main result, a new framework for stability
analysis on models with fixed delays. This framework is then used to describe the stability of the
megakaryopoiesis with respect to its parameters. Finally, with parameters being obtained and esti-
mated from data, we give an example in which oscillations appear when the death rate of progenitors
is increased 10-fold.

Key words. Megakaryopoiesis, platelet, oscillations, stability, state-dependent delay, transcen-
dental equation.
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1 Introduction

1.1 Objectives The aim of this work is to study the stability of a new system
of two delay-differential equations with state-dependent delays. We use a change of
variable introduced by Smith [51] to obtain an equivalent system of delay-differential
equation with a distributed delay. Then we analyze the stability of this system using
an adaptation of the framework proposed by Beretta & Kuang [6]. Meanwhile, a
new model of platelet production is formulated relying solely on the regulation of the
maturation process of progenitor cells. The stability analysis presented before is then
applied to explore the potential sources of oscillations in platelet count.

1.2 Biological background
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Platelets, megakaryocytes and disorders Platelets are the blood cells in
charge of preserving the structural integrity of the blood vessels. Among the smallest
cells in the human body (2-3 pm), they originate from the hematopoietic stem cells
(HSC) located in the bone marrow. It is well known that HSC generate also other
blood cells like white blood cells (WBC, 10-30 pm) and red blood cells (RBC, 6-8
pm). Although lacking a nucleus like the latter, the generating process of platelets
is different as it cannot be traced back to a cell which excluded its nucleus. Instead,
large differentiated HSC called megakaryocytes undergo endomitosis, that is multiple
divisions of the nucleus without division of the cytoplasm. This process increases
the ploidy of the cell (the number of DNA copies it contains), modifies the structure
of its cytoplasm, and platelets result from the fragmentation of this modified cyto-
plasm. Platelet counts are usually between 150,000/ uL and 450, 000/ 1L of blood, and
platelet counts whose distance to this norm is clinically significant exhibit two kinds of
pathologies: thrombocytopenia (below 150,000 platelets per uL) and thrombocytosis
(above 500,000/uL) [22]. Both of these disorders may lead to severe complications.
On one hand, aggravated thrombocytopenia (< 50,000/xL) may be associated with
morbidity and complications in medical management of patients with conditions such
as cancer, liver disease or chronic hepatitis C virus (HCV) infection [1]. On the other
hand, aggravated thrombocytosis may induce thrombotic complications and (counter-
intuitively) bleeding associated with illness and death [46]. These two disorders may
also be involved in a condition known as cyclic thrombocytopenia (CT) [52], where
platelet count oscillates between very low (1 x 10%/uL) to normal or very high levels
(2000 x 103 /uL) with a period usually between 20 and 40 days. Although the patho-
genesis of CT is not clear, most cases are thought to belong to one of the following
two categories. Autoimmune cyclic thrombocytopenia corresponds to patients with
a highs level of platelet-specific antibodies, such that the destruction rate of platelet
is increased although megakaryocyte levels are normal; and amegakaryocytic CT cor-
responds to patients with the presence of specific antibodies targeting either mature
megakaryocytes or megakaryocyte progenitors, i.e. with an increased megakaryocyte
destruction rate. Both involve autoimmune antibodies, resembling immune thrombo-
cytopenia purpura (ITP): it often implies misdiagnosis, leading patients with CT to
receive risky medical treatments (corticosteroids and splenectomy, i.e. removal of the
spleen) with no result [26].

Figure 1.1 depicts a clinical case of cyclic oscillations in platelet count, where the
patient was found to be positive for antibodies targeting megakaryocyte progenitors
and mature megakaryocytes [58].

Platelet regulation: role of the thrombopoietin Since the platelet discov-
ery, megakaryopoiesis has been thought to be regulated by a similar mechanism as in
erythropoiesis (production process of RBC). It has been believed indeed that low cell
count was stimulating the release of a cytokine enhancing platelet production. But
while such a cytokine, coined “thrombopoietin” (TPO), was identified with certainty
in the 1990s [33], it was later found that TPO level regulation was carried out by TPO
receptors on the surface of platelets and other megakaryocytic cells [15, 47].Similarly,
many attempts were carried out to pinpoint the exact phase point where TPO would
act on the megakaryocytic cell line. Results ranged from stem cells expansion [50]
and reduced apoptosis in megakaryocytes [57] to an amplification of the endomitosis
phase, where a bigger nucleus would imply more platelets per megakaryocyte [9]. But
regarding this last hypothesis, several studies rose the question of the potency for TPO
levels to control platelet production through endomitosis enhancement. First, Zimmet



A MODEL FOR MEGAKARYOPOIESIS 3

N

o
—_
ol

9
é
[o2]
o
15} 510 01% |\
€ o 10t o
5,0 E Wo Lol
g10 o 5% [
— 5t
[0} L
< 5
©
a o 0
0 50 100 150 10 20 30 40 50
Time (days) Period (days)

Figure 1.1: (a) Cyclical oscillations of platelet counts over 160 days, as they appear
in the case report by Zent et al. [58]. The blue dashed line represents the average
platelet level 20.3 x 109 /kg (that is, 284 x 103 /uL), and the red dashed line represents
the limit for aggravated thrombocytopenia 3.8 x 10%/kg (that is, 50 x 103/uL). (b)
The corresponding normalized Lomb periodogram associates potential periods 7" with
a score P(T) (blue line). Using p = NeP(™) (red dotted lines) where N is the number
of data point as an approximation of the significance level [23], we see that a period
30 < T < 33 days is significant (p < 0.001).

et al. explored the in vivo effect of the over-expression of cyclin D3 [59]. Their mea-~
surements showed that despite the increasing ploidy of transgenic mice, the difference
between platelet counts was not significant. Later, two studies by Ng et al. [41] and
Meyer et al. [40] were conducted to assess the potency of megakaryocyte progenitors
to be fully responsible for the increased production of platelets if needed. Disabling
TPO interaction with mature megakaryocytes and platelets (through altering respec-
tively the production of ¢-Mpl receptors [41] and the expression of the kinase Jak2
[40]), both teams observed a significant increase in platelet production. Therefore,
whether the action of TPO on endomitosis is dispensable is an open question.

Previous mathematical modeling approaches The progress made regarding bi-
ological knowledge is nicely paralleled with the evolution of mathematical models for
thrombopoiesis, starting in 1979 with Wichmann et al. [56]. Using three compart-
ments corresponding to HSC, megakaryocytes (whose proliferation is up-regulated by
TPO) and assuming a platelet-regulated TPO production, authors successfully repro-
duced the overshoot that is observed following platelet depletion induced by exchange
transfusion. The same authors later introduced an age-structure in their model via
the McKendrick-Von Foerster partial differential equation, although they focused only
on platelet survival [55]. This idea was extended six years later by Eller et al. [21]
where the McKendrick-Von Foerster equation was also used to describe the dynamics
of HSC and of megakaryocytes: authors proved existence and uniqueness of solutions,
but stability results remained limited [27]. From 2000 onward two tendencies arose.
The first was dedicated to obtaining results on the effect of chemotherapy and irradi-
ations in medical treatment on megakaryopoiesis. Building upon previous successes
reproducing the dynamics of granulopoiesis under heavy and/or repetitive stress [48],
Scholz et al. [49] developed a model of megakaryopoiesis under chemotherapy with
successful simulations of both cell count and TPO levels [49]. Results of the same
quality were obtained later by Wentz et al. [54] with a model of megakaryopoiesis
under radiations. Unfortunately, these last models seem, to the best of our knowledge,
unfit for an extensive analytical work due the tendency to use successive compart-
ments. The second tendency focused on oscillatory dynamics once TPO was purified,
allowing measurements of TPO level [29]. Indeed, preliminary works [10, 53] involving
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delay differential equations were updated by Santillan et al., leading to a model where
transition dynamics from different levels of ploidy is up-regulated by TPO [45]. Au-
thors reproduced both stable and oscillating platelet counts, but no analytic account
was given of this change of stability. Modeling of megakaryocyte growth was later
changed from discrete ploidy classes to continuous megakaryocyte volume in a paper
by Apostu et al. integrating each of the three hematopoietic lineages [2]. Exploring
the effect of changes of the accelerated peripheral destruction of platelets on stability,
the hypothesis of a Hopf bifurcation as the source of oscillations was formulated but
not verified. This gap was filled nine years later when the same group managed to fit
a refined model to both stable and oscillating platelets count from clinical data [34]:
stability analysis revealed that there was indeed a Hopf bifurcation occurring along
the parameter changes, inducing oscillations.

However, according to the experimental work presented above, these models might
be more complicated than needed. In this paper, our aim is to answer the following
question: is a TPO-induced increase in progenitor growth sufficient to produce a
model with the ability to produce oscillatory behaviors consistent with CT pathogen-
esis? Considering this single feedback leads to a simpler model, implying that a more
extensive stability analysis can be performed. We build a framework to explore the
impact that different changes in parameters have on the onset of oscillations.

Our paper is organized as follows. We start with a description of the dynamics
of progenitors, platelets and TPO with non-linear differential equations (section 2)
that we reduce to a system of threshold-delay differential equations using the quasi-
steady state approximation. We then prove the well-posedness of our model as well
as the boundedness and positivity of the solution (section 3). Next, we transform this
system into a standard functional differential equation system using the change of
variable described by Smith [51], and use this new formulation to prove existence and
uniqueness of solutions (section 4). It is followed by the main result, a new framework
for stability analysis on models with a fixed delay, adapted from Beretta et al. [6], with
more specific results for a special kind of third-order characteristic equation (section
5). Finally, we apply this framework to our model of megakaryopoiesis to show that
an increase in the death rate of megakaryocyte progenitors induces oscillations in the
amount of platelets (section 6).

2 A maturity-structured model for megakaryopoiesis In our model we con-
sider three quantities.
e The megakaryocyte progenitors count: upon commitment, HSCs are assumed
to enter the progenitors compartment with a constant rate, and mature with
a speed up-regulated by the TPO blood level, hence we use a maturity-
structured model. The total amount of progenitors is written M (cells/kg).
e The platelets count: the platelets are only affected with a random decay, not
by TPO level, hence we use an age-structured model. The total amount of
platelets is written P (cells/kg).
e And finally, TPO blood level , which is considered quasi-stationary with re-
gards to the two other quantities. The concentration of TPO in the blood is
written 7' (pg/mL).

2.1 Megakaryocyte progenitor dynamics

2.1.1 Progenitors as a maturity-structured population Megakaryocyte
progenitors (MkPs) appear when the division of an HSC gives birth to two commit-
ted cells. We represent them with a maturity structure, assuming that they divide
again once they reached maturity x = 1. The maturity = increases with a speed
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V(T(t), M(t), P(t)) as the cells progress in the maturation process, depending on the
current state of the system. We give a formulation of V'(.) in section 2.3, but un-
til then we write V() = V(T(t), M(t), P(t)) for a lighter reading. Readers should
nevertheless keep in mind that our model remains autonomous.

This maturity-structured population is described by the following equation:

%m(t,x) + (,%(V(t)m(t,x)) =—om(t,z), 0<x<1,t>0
(2.1) m(t,0) = x/V(t), t>0,
m(0,x) = mo(x), 0<z<L

Here, m(t, z) represents the number of MkPs of maturity = at time ¢, such that
when a MKP reaches maturity x = 1 it releases its platelets and is removed from
the MkP population. § > 0 is the constant death rate of progenitors, x > 0 is the
constant arrival rate of HSC into the progenitors compartment, V : Ri — RY is
a strictly positive, continuous increasing function representing the TPO-dependent
maturation speed of progenitors (we recall that we write V(t) = V(T(t), M(t), P(t))
for a lighter reading), and mo € C%([0,1]) is the distribution of progenitors at time
t = 0. This system is represented in Figure 2.1. For details on the derivation of the
boundary condition, see Craig et al. [16] (section 3.3).

9
M(t)

———»Im(t,0)=x/V(t) m(t1)

o4

o

L dx/dt=V(t)

Figure 2.1: The maturity-structured model for megakaryopoiesis as presented in sec-
tion 2.1.1: as detailed in System (2.1), progenitors arrive from the pool of HSC, they
die randomly with a rate d, they mature with a rate V(t) until they reach maturity
1, where they release platelets and disappear.

2.1.2 A differential equation for progenitors count: method of char-

acteristics We introduce ¢; > 0 the solution of fot V(y) dy =1, and for all ¢t > t; we
define 7(¢) > 0 as the solution of

t
/ Vy)dy = 1.
t—7(t)

At a time t, 7(t) represents the time that MkPs who are maturing at time ¢ have
spent maturing ; that is, if a MkP is of maturity 1 at time ¢, then it entered the MkP
compartment at time ¢ — 7(t).

The method of characteristics on system (2.1) then implies that for ¢t > ¢1, we
have

(2.2) m(t,1) = m(t — 7(t),0)e 2™,
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1
The total number of progenitors is / m(t,x)dx and denoted by M(t). When
0

we differentiate this integral, we combine the first two equations of system (2.1) with
Equation (2.2) to obtain the following differential equation on M (t) for ¢ > ¢1:

(2.3) M'(t) = =M (t) + k[1 = V()e D /V(t - 7(1))].

While the method of characteristics also yields an expression for 0 < ¢ < t; of
M'(t), it is out of the scope of this paper which focuses on long-term dynamics.

2.2 An age-structured population of platelets Progenitors undergo successive
divisions until they become megakaryocytes. But the number of these divisions is
currently unknown, and we believe that one TPO-induced division might already
capture detailed dynamics. Therefore, we consider that when it reaches maturity, the
progenitor divides itself into two mature megakaryocytes which immediately shed a
constant quantity of A platelets each. It implies that this quantity A needs to be
increased above the standard interval [1000, 3000] [28] for the platelet count to reach
its real order of magnitude, accounting for the missing divisions.

We assume that platelets are age-structured with decay v > 0 such that p(t,a)
represents the amount of platelets of age a at time ¢. We obtain the following equations
for t > ty:

0 0
ap(tv (Z) + %p(tv a) - —’Yp(t, a)v

p(t,0) = 2Am&e“”(“

(= (1))
p(t,00) = 0 and p(0,a) = po(a).

3

This system is represented in Figure 2.2.

o .

M (t) m(t,1)V(t) l
—

———»Im(t,0)=k/V(t) m(t,1)

L dx/dt=V(t)

Figure 2.2: Model of megakaryopoiesis where M(t) and P(t) are the total

amount of megakaryocyte progenitors and platelets respectively.

Here the link between the incoming flux of platelets and flux of maturing MkPs
is straightforward, for ¢ > ¢;:

V(t) o= 0T()

p(t,0) = 24.m(t, )V (t) = 24.e " Om(t — 7(t),0)V (t) = 2A/<;‘~/(t — )

+oo
Now if we account for the total population of platelets P(t) = / p(t,a)da, we
0
get the following differential equation for ¢t > ¢;:

A ppy - V) s
(2.4) 0 = PO+ 2 .
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2.3 The cytokine TPO up-regulates the maturation process As stated pre-
viously, the platelet production increases with TPO, and it has been observed that the
acceleration of the division dynamics is a sufficient mechanism to obtain a complete
feedback mechanism [40, 41]. As announced in section 2.1.1, we now fully denote
the speed of maturity given by V(t) = V(T(t), M(t), P(t)). As T(t) the quantity of
TPO is “perceived” by progenitors through their ¢-Mpl receptors, we assume that
maturation rate is a function of the TPO available through this mechanism, leading
to the following for ¢ > 0:

(2.5) V(T(t) = afm

+ .
We use a saturating function of T'(t), representing the binding dynamics of the ¢-MPL
and TPO complex (see further). We add a fix coefficient 5 to account for the obser-
vations that megakaryopoiesis is still happening without an effective TPO feedback
(10% of the normal count [17], possibly due to stimulation by other cytokines).
TPO itself is produced constitutively by the liver, stable in plasma [35], and
cleared through binding to c-Mpl receptors on circulating platelets and progenitors
[18, 35]. We formulate the binding dynamics with a Hill function and obtain the
following differential equation for ¢t > 0:

d )"
—T(t) =Tproa — M(t P(t)—%—.
7 L(0) = Tproa — ar(anM(t) +ap ())Kgu-T(t)n
Similarly to Colijn et al. ([14], equation (10)) or earlier Bernard et al. ([7],
Appendix A), we assume that the process of TPO binding to ¢-Mpl is much faster
than changes in the number of progenitors and platelets, implying that dynamics
dT

equilibrium is reached at any time for TPO, i.e. %;-(t) ~ 0 for all ¢. This is called the

“quasi-steady-state approximation”, and it leads to:

()"
2. 0="T,r0d — M(t Pt) ——,
(2.6 ot = (aas M) + ap P(D) g
such that if ap(ap M (t) + apP(t)) > Tproa We have

T(t)n _ Tprod/aT
Kp+T#)"™  amM(t)+apP(t)

What we see here is that if ap(ap M (t) + apP(t)) is less than Tpyoa, there is no T
such that dT'/dt = 0. This implies that if ap(an M (t) + apP(t)) get closer to Throd,
T virtually goes to infinity.

Using this expression, the equation (2.5) gives V the maturation rate as a function
of M(t) and P(t), t > 0:

Tprod/aT

(27)  VITE) =ViewM®) +apP(t) = o o

+ 8.

The system formed with equations (2.3), (2.4) and (2.7) is our age and maturity-
structured system of thrombopoiesis dynamics , as shown in Figure 2.3. In the next
section, we formulate it as a system of threshold-defined delay differential equations.
We also show that the solutions are positive and bounded.
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o7 >
,
M(©)
L» m(t,0)=k/V(T(t)) m(t,1)
L dx/dt=V(T(t))
. A

Figure 2.3: The quantities of megakaryocytes M (t) and P(t) down-regulate the total
amount of TPO T'(¢t) which in turn up-regulates the speed of maturation of MkP.

3 A system of threshold-defined DDEs for megakaryopoiesis Using Equa-
tion (2.7) in Equations (2.3) and (2.4), we obtain the following system for ¢ > ¢;:
(3.1)

d _ W1 V(e M(t) + apP(t)) =07 (1)
aM ) = M)+ = el =)
4pt) = —P(t) + 24k V(e M(1) + apP(t)) e 070,

V(anM(t —7(t)) + apP(t —7(t)))

where 7(t) is such that ftt_T(t) V(apM(s) + apP(s))ds =1 from (2.2).

We introduce a new variable, and note W (t) = ap M (t) + apP(t) for all ¢ >,
which represents the total amount of c-Mpl receptors in the system. We prove the
following basic properties:

PROPOSITION 3.1. Assume that initial conditions M(s), P(s) are such that
W(s) > Tproa/ar for s € [0,t1], 2Aap > ay and apk > Tproq/ar max(d,y). Then
solutions of System (3.1) are non-negative and eventually bounded, and W (t) stays
above Tproq/ar for allt > 1;.

Proof. We divide the proof into three steps.
1. Eventual boundedness of the solutions: if ¢ is such that vP(t) + 2A5M (t) >
2Ak, then
dP dM
+2A—— = —yP(t) —2A0M 2Ak < 0.
ry = ~P(t) OM(t)+2Ax <0
This implies that if P(¢1) and M (¢1) are finite, P(t) and M(t) remain finite
for all ¢ > 1, i.e. the system is bounded (as both variables are non-negative).
2. Positivity of the solutions: assume that there exists a ¢ > t; such that P(¥) =
0 and M (t) > 0. Therefore

i o . V(OKMM(i)) 6_67—&)
") P M= @)+ arPT— )

which is always positive. This implies that P is always positive.
In order to prove the positivity of M, we recall that it is defined as M(t)

fo m(t, z) dz. On the other hand, we know that for all ¢ > ¢; and all z € [0, 1],
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there exists a o(t, ) € R% such that fttia(m) V(y)dy = z, and the method

of characteristics implies m(t,z) = m(t — o(t,z),0)e % %*) Finally, for all
t>1ty, m(t,0) = k/V(apP(t) + apM(t)) is positive, implying the positivity
of m(t,z) for all ¢ > t;, € [0,1], which in turns implies the positivity of
M (t) for all t > ¢;.

3. W(t) stays above Tproa/cr for all ¢ > ¢1: we write

aw
dt

V(W (t))e ™

(t) = ap(® = NP = W) + r[an + 24ap — an) e

We first notice that given M (t) > 0, W(t) > apP(t) such that
ap(d —y)P(t) — W (t) > — max(d, v)W(¢).

Therefore if W(t) = Tprod/cr, we use 2Aap > ayp, kay > TZ—‘;dmax(é, )

aw aw
and the positivity of V to obtain W(t) > (0. Because W(t) > 0 when
W(t) = Tproa/ar, then there exists W > Tppoq/ar such that W(t) = W

dw
implies ﬁ(t) > 0: W(t) > Tproa/cr for all t > 0. O

Provided that initial conditions satisfy the conditions given in Proposition 3.1,

System (3.1) is a closed system of differential equations with a delay defined by thresh-
old (TD-DDE). But in order to study the stability of our system, in the next section
we transform it into a system of functional differential equations using a change of
variable. We also use this formulation to obtain a result on existence and uniqueness
of the solutions.
4 A change of variable transforms the TD-DDE model into a system of
functional differential equations Following Smith’s method [51], we introduce a
new time variable . It is linked to the original time scale by the function ¢, which for
every solution (M (t), P(t)),t > 0 associates to every 6 > 0 the value #(f) such that

1(0)
(4.1) V(apM(s)+ apP(s))ds = 6.
0
This function represents the “physiological” time scale along which the maturation of
progenitors is a linear process.
We see that by definition of the function 7, if 0 is such that #(8) > ¢1, then

1(0—1)
/ V(apM(s)+ apP(s))ds=0—1
0

7(6) (0)
— / Vian M(s) + apP(s))ds — / Vian M(s) + apP(s))ds,
0 t(0)—T(t(6))

1(6)—7(1(6))
= / V(ap M(s) + apP(s))ds.
0

Because V is a positive function, the integral is always positive, which implies
that €(0 — 1) = #(0) — 7((0)). Next we notice that Equation (4.1) implies, for § > 1,

o d [1O di(0)

V(apM(E(0)) + apP(t(6))).
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For all 6 > 1, we now define M(0) := M (t(6)), P(8) := P(¢(9)), W(0) := W (t(0)).
We then deduce from above

7(£(0)) = 1(6) — (£(0) — 7(£(9))) = 1(6) — (6 — 1) =

where Wy(.) is defined on [—1,0] by Wy(r) = W(0 + ).
We define 79 : C° = R as 79 : ¢ > fE1 1/V(¢(r))dr and we use (3.1) to obtain,
for 6 > 1:

n Hefé‘ro(Wg)
) = S o) IL) — (— (o) + 24"V ey

Reproducing the calculation for M, Equation (3.1) becomes, for 6 > 1,
M _ k] ]
o TVW)) Yov(e) vwe -1))"

AP —yP(0) | 2Ake oo0V)
a9~ yW) YW -1))°

M(9) 1 e 970(We)

(4.2)

We notice that for 6 > 1,

dW  ap(6 —y)P(0) — SW(0) anr e 9m0(We)
= ey ey A vone - )
allowing us to write (4.2) of the form:
(4.3)
M . ap(5 — ’Y)P(@) - (SW(@) i H[ N (QAOAP — (l]y[)67570(we)
o Y(W(0)) Y(W()) YW —1)) ’
dP — —P(0) 2 Ake9m0(We)
a0 - YWe) T Yome—1))
Now defining for all w € R, f(w) :=1/V(w) = v , Equation (4.3)

B anrod/aT + Bw
becomes, for 6 > 1,

O (0) = (ap(6 = 7YP(6) - SW()) S V(E)
(1.0 + o FOV(O)) + (24ap — ax)e= 0% FOW(E — 1)),
O0) = —PO)F V() + 245e=000%) FOV - 1),

where 7 is defined as 15(¢) = f£)1 f(é(r))dr. We use this formulation to obtain
existence and uniqueness of the solutions.

PROPOSITION 4.1. We assume that apy < 2Aap. For every positive initial data
M(s),P(s) for 6 € [0,1] such that W(0) > Tproa/ar for 0 € [0,1], there exists a
unique solution of (4.4) on 6 > 1 which is non-negative and bounded.

Proof. Boundedness and positivity are deduced from the previous section. To
show that the solution exists and is unique, we introduce x(8) = (W(6),P(0)),
such that system (4.3) writes x(t) = G(x:) = g(x:(0)) + h(x¢) where x;(.) is
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defined on [~1,0] by x¢(r) = x(t + r), and functions g = (g1,92) € C(R?),
h = (hy,he) : C*(R?) — R? are defined as

ap(d —y)xg — dx1 + aymk
g(X)Zf(x1)< " ! —2fyx2 1 " >>

h(p) = ke 0 /2 Frdr (g (1)) (2Aag; aM) .

We give the outline of the proof that G is Lipschitz continuous, which according to
Diekmann et al. [20] (section VII.6), implies that for every continuous initial condition
(0),0 € [0, 1], a unique solution exists.

We show that G is Lipschitz continuous by defining for all neighborhood N €
C1(R?) of 4, a constant Ly such that for all x € N,

(4.5)
| 91((0)) = g1(x(0)) | + [ 92(%(0)) — g2(x(0)) |
+ [ h1(¥) = ha(x) | + | ha(¥) — ha(X) |

< Lymax{ sup |¢1(t) —xi(t) |, sup |va2(t) — x2(t)},
te[—1,0] te[—1,0]

where 1Y = 1;(0), A; = x;(0) — ¥9,i = 1,2. We define

Ly =F|ap(d — ) = 8| + F{°|(ap(6 — v)MS + and MY + ank| + [MIF° + FY|
+24(1 + ap) — au|k|EnFL + S1FyY,

where I = geaﬁ(tgafo] [f(1(0)]), FT = gleafvi(ten[ljifo] [f (er(1))]), M3 = glea§|¢z(0)|,

S; = sup |¥i(t) — xi(t)|,t = 1,2, and Ey is a strictly positive value such that for
te[—1,0]

all ¢, x € N,
| e 0/ fam)dr _ =0 [2 fentrDdr | - g

which exists as the image of a bounded domain by f is bounded and the exponen-
tial function is locally Lipschitz continuous. Simple calculations then show that Ly
satisfies (4.5): we prove existence and uniqueness of solutions. |

Finally, we introduce the function 6 ) : C3(Ry) — Cop([0,+00]), defined as
9(.,,) : (M(0),P(9))o>0 — g(M(V)yp(.)), where g(M(')y'p(.)) is a function which associates
t € [0,+00] to a value O nq(.) p(.))(t) such that

OISR TSN 1
/ ds =t.
0 V(apy M(s) + apP(s))

Therefore, if (M(8),P(8))e>0 is a solution of System (4.2) for § > 1, then
(M(B(t)), P(0(t))¢>0 is solution of (3.1) for ¢ > O am(yp())(1).

With this new formulation of our model, we study the stability of our system
using a more general formulation of (4.4). In order to study the onset of oscillations,
we focus our work more particularly on possible changes in stability due to Hopf
bifurcations.
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5 Stability analysis for the delay-differential system Consider a generalized
formulation of our system,

DY 0) = (@p(5 —)P(O) — W) FOV(0)
(5.1) +wlan fOV(0)) + (2Aap — anr)e V) F V(0 - 1))],
dP

g0 = PO FOV(O)) + 2Ake =TV F(W(G — 1)),

where f is a continuous function on R such that f(0) = 0 and f is strictly increasing
on R, (unlike in (4.4) where f is specifically defined as 1/V).
We assume that

(528,) QACVP Z apg,
(5.2b) aprk/ max(0,7) > xo,
for some value xy > 0. Therefore, according to Proposition 3.1, W(0) > z for
6 € [0,1] implies W(6) > x¢ for § > 0.
We start by identifying the steady states.
5.1 Equilibrium We consider an equilibrium (W, Py) of (5.1), such that

{ 0= [ap(d —v)Po — W] f W) + /i[aMf(Wo) + (2Aap — a]\/[)e_éf(w‘))f(VVo)]7
0= *’}/'Pof(Wo) + 2Al€ef5f(wo)f(W0).

For every Py > 0, the point (0,Pp) is a steady state. But as mentioned above,
assumptions (5.2a) and (5.2b) implies that this steady state can be ignored if we
assume that W(6) > xo for 6 € [0, 1].

We introduce the function u defined for all X € I, := ]zo, +00) by

2A
u(X) = X = a5+ (S5 = e 0],

We have the following result:

THEOREM b5.1. If condition (5.2b) holds, then the system (5.1) has a steady state
(W, Po) such that Wy > xo defined as a solution of

{Wo = IQ[OLM/(S—F(QA%—%)B*‘V(WO)]’

(5:3) Py = 24Are %Mo)/~

Furthermore, if (5.2b) is verified and 2Aa,d —yaps > 0, then this steady state is
the only one such that Wy > xg.

Indeed, if (Wy, Po) with Wy > 1z is an equilibrium, then Wy is a root of w.
The condition (5.2b) implies that 0 is contained in the image of I, by w, and
2A0,8 — yapr > 0 implies that w is strictly increasing on I, (as f is an increasing
function on I,,). Therefore the theorem is proved.

From this point on we assume that 2Aa,6 — yapr > 0.

5.2 Linearization about (W,,P,) Before linearizing about the equilibrium, we

re-write (5.1) as
(o)) =2((3) - (30— 0))-(50))
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where for X,Y € R? and ¢ € C°([-1,0]), H denotes

H(X,Y,¢) =

(ap(8 =) X2 = 6X1 + ran) f(X1) + £(2Aap — app)e”* I O0D T f(vy)
VX f(X1) + 2Ake 0 IS SO dr gy ‘

Using (5.3), we compute Jo, the Jacobian of H with respect to X applied at the
point (Po, Wo):

—__ (@Aar = an)re IO FI(Wo) + 6 W) —ap(6 = 7)f (W)
o 2Are=850W) f1 (W) W) )

We also compute J; and J, the Jacobian of H with respect to Y and ¢ respec-
tively, both applied at the point (Py, Wp):

Ti= <2Aa1;A O‘M 8) Rf Wo)e 0% and T = ~6f (W) Ty

We set p(8) = P(0) — Py and w(f) = W(0) — Wy. Then (4.3) linearised about
(Wo, Po) is

w(@)) - (w(@)) -+ (w(& 1)) f w(@ +r)dr

. = Ji +J +Jo .

(p(9) "\ p(0) F\p(0-1) 2\ SO pO+r)dr

5.3 Characteristic equation We equate p(f) and w(f) to e*?, obtaining the fol-
lowing expression

A()\) Y <5f(WO) —ap(d — ’y)f(WO)> .
0 ’Yf(Wo)
(5.4) 24ap —anr 0\ o o
( o 0) SFWVo) £1 (W) (1 — e~ —|—§f(WO)/_le)\ dr).

This gives the characteristic equation det(A(\)) = 0. We verify easily that the as-
sumption 2Adap > yays implies det(A(0)) > 0, hence A # 0. This means that the
integral in (5.4) is computed so that

0
]
5fWo) / e dr = 7f(;\/\70) (1—e?).
-1
Therefore, if we multiply both sides of the equation det(A())) = 0 by A, we get
det(A(X)) = 0, a new equation which has the same roots plus A = 0 with:

N+ A fWo) —Aap(d—v)f(Wo)
(\) = ( 0 TN Aw?(wo) ) +

A
(QAaP —an g) eSS0V W) (A + 8F (W) (1 — 7).



14 L. BOULLU, L. PUJO-MENJOUET, J. WU

Now, we compute det(A(X)):

(
det(A(N) = A+ X2 (7 +8)F (Wo) + A28 (Wo)? + we™ 7OV 1" (Wo) (A + 6/ (W)
(1 - 6_>\) [)\2(2140[12 — Oz]\/[> + )\f(Wo)(ZAOép(S — ’)/Oz]\/[ﬂ .

For A # 0, det(A(X)) = 0 is equivalent to
(5.5) N+ a2+ DA+ e+ (AN + g —c)e ™ =0,

where
a=ay+ay b=b+ci+5fWo)az, c=3df(Wo)eci,
d= —az, g = _(cl + 5f(W0)a’2)7
with
ai :(’V-‘F(S)f(W()) > 0, (IQZK(2AOZP—OZM) > 0,
by =75f(Wo)? >0, c1 = KfW)(24aps — yanr) > 0,
and K = ke~ V) /().
5.4 A framework for stability analysis Equation (5.5) is a third-order transcen-
dental equation. In Beretta et al. [6], authors proposed a geometric method to assess

whether or not a change in the delay 7 affects the stability of a given system. That
is for a characteristic equation of the form

(5.6) D\, 1) := PO\, 7) + Q(\,T)e ™ =0,

where P, @ are polynomials in A with 7-dependent complex coefficients. This relies
on detecting the appearance of purely imaginary eigenvalues, which corresponds to a
Hopf bifurcation leading to a change in stability.

However, in our case, the delay is fixed at 7 = 1 by construction. Therefore, to
study Hopf bifurcations, we need to adapt Beretta’s framework: we study the changes
in eigenvalues of transcendental equations with respect to a variable v € R} which is
not the delay. In such a case the characteristic equation is written:

(5.7) D\, v) =P, \) +Q(v,\)e > =0,

where P, () are polynomials in A with v-dependent complex coefficients, which we
divide between real and imaginary part as

(5.8) P(\v)=Pr(\v)+iPr(\v), QW\v)=Qr(\v)+iQr(\v).
Now, we define w(v) as the solution of
(5.9) Flw,v) = |Pliw, V)] — |Q(iw, 1) =0,

and I C R the subset such that there exists a solution w(v) if and only if v € T.
For every such v, we define two functions

{1/)(”) = —Pr(iw(v), v)Qi(iw(v),v) + Pr(iw(v),v)Qr(iw(v),v),
¢(v) = Prliw(v),v)Qr(iw(),v) + Prliw(),v)Qr(iw,v),

and then a third

(5.10)
arctan(—y(v)/¢(v)), if
/2, if

1/}% > 0,0(v) <0,
V() =
C(v) =< m/2+ arctan(—¢(v)/op(v)), if zZ((u) >

Y(v) <

Qr +Q7,0(v) =0,
0
0,6(v) < 0.

37/2, if
27 + arctan(—(v)/o(v)),  if
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Finally, for all n € N we introduce a function S, (v) defined for v € I by
(5.11) Sp(v) == w(v) — (¢(v) + 2nm).

Given these notations, we state the following result:

LEMMA 5.2. Assume that w(v) is a positive real root of (5.9) defined for v € I,
and at some v* € I,
Sp(v*) =0 for somen € N.

Then a pair of simple conjugate pure imaginary roots Ay (v*) = iw(¥*), A_(v*) =
—iw(v*) of (5.7) exists at v = v* which crosses the imaginary axis from left to right
if o(v*) > 0 and crosses the imaginary azxis from right to left if o(v*) < 0, where

ds, (v) }

dRe A
— F/ * * } . {
} 51gn{ Y (w(v"),v") ¢ sign P
Proof. First, we notice that if A\ = iw then the equation (5.7) is equivalent to

dv ‘A:iw(u*)

(5.12) o(v*) = sign{

—Pgr(iw, v)Q (iw,v) + Pr(iw, v)Qr(iw, V)
|Q(iw, v)[? 7
—Pr(iw, v)Qr(iw, v) + P (iw, v)Q; (iw, v)
|Q(iw, v)[? '
Let iw(v) be a root of (5.7): the above system implies that F(w(v),v) = 0. Moreover,

as in [6], we easily prove that it also implies that if {(v) is given by (5.10), then
¢(v) €10,27] and

sin(w) =

cos(w) =

_PR(iw(V)a V)Qf(iw(y)’ V) + P[(iw(l/), V)QR(iW(V)7 V)

sin(C(v) = Qi (), v) 2 ’
= Prliw(®), )Qr(iw(v), v) + Pyliw(), 1)Q(iwv),v)
cos(((v)) = |Q(iw(v), v)[?

This implies that A (v*) = iw(v*), A\_(v*) = —iw(v*) are a pair of pure imaginary
roots of (5.7) if and only if F(w(v*),r*) = 0 and there exists n € N such that
w(v*) — (0(v*) + 2nm) = 0.

The proof of the geometric criterion (5.12) is similar to that of Lemma 2.1 of
Beretta et al. [6]. Differentiating both sides of (5.7) by v gives

dx P'(\v) + QL (A v)e
dV P,/\(Aal/) +(Ql)\()‘7y) —Q(A,V))e_)‘.
The same (5.7) also gives e* = —gEZ’§;7 such that

(d)\)*l _ (_ P{(\v) n Q\(\,v) B 1)/(PL(/\, V) L()\,y)).

dv P(r,)) QW) P(r,\) QN

Assume that A = iw(v), where w(v) is a solution of (5.9), then

613 (Q)_l _ —P{ )P\ v) + Q4 (A )Q(\ v) — | P(iw, v)?
‘ dv PL(Av)P(\,v) — Q, (A )Q(\,v)
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Now we remark that iP} (iw,v) = P, (iw,v) and iQ} (iw, v) = Q.,(iw, v), hence:

— P} (iw, ) P(iw, v) + Q) (iw, 1) Q(iw, V)
(5.14) =i[(Pp,Pr+ P, Pr) — (Q,Qr + Q1,QI)]
—[(P1,Pr— PrPg,) — (Q1,Qr — Q1Qf,)]-
We notice that differentiating (5.9) with respect to v gives
(5.15) Fl(w,v)o' + F(w,v) =0, velI,
where
F, =2[(Pp Pr+ P Pr) = (QR,Qr+ Q1 Q1)
F,  =2[(Pg, Pr+ P, Pr) — (Q,Qr + Q7,Q1)].
Therefore, (5.14) becomes
— P (iw, v) P(iw, v) + Q) (iw, v)Q(iw, v)
F (w, v
=il (- PP~ Q1 @r - QiQn )
Similarly, we have
P\ v)P(iw,v) — Q) (\,v)Q(iw,v)
F(w,v) .
= ) by Py - PP - (@1.Qr - QuQR))
Using these two equalities and (5.15), (5.13) becomes
(Q)fl _ =2(U + |P(iw,v)|?) + iF,,(w,v)
dv B —w'F (w,v) + 2iV

:(2(U + |Piw, v) |2 )’ F (w,v) + 2V ! (w, 1)+

(AU + |Pio, ) )V = ' Fl(w,)%) ) /(@) F (w0, v)? + 4V2)
where
U:=(P,Pr— PiPp,) — (Qr,Qr — QIQr.,),
V= (P;,Pr— PrPp ) — (Q,Qr — Q1Q%,)-
This implies that

day -1 , 2F! (w,v)
7 _ P 2 / w ) ]
Re((g,) )= (U+IPGw)P) +V) (W)2F,(w, )2 + 4V
Therefore, we have
dRe A

sign{dT|)\=iw} = sign {F(,'J(w, 1/)} sign {V + (U + | P(iw, V)\Q)w/}
Finally we use S,,(v) = w(v) — (((v) + 2n7) to get
S (v) =uw'(v) — 0 (v).

Since 0'(v) = f‘g&;it‘)/lz, we conclude:
dRe A
sign{%’k_i } :sign{FL(w,u)}sign{S,’l(l/)}. 0
v =iw

This lemma provides a tool to analyze any characteristic equation of the form
(5.7). Because our model of platelet production induces Equation (5.5) which is of
degree three, we now apply this lemma to a transcendental equation of degree three.



A MODEL FOR MEGAKARYOPOIESIS 17

5.5 Application to a system with a third-degree transcendental equation
Using the framework presented above on System (5.1), we obtain the following result:

PROPOSITION 5.3. Let v be a parameter of System (5.1) among A,d,v, ap,ay
as defined in Section 2. Let p(v) := 2Aapd — yayy.
1. Let v = vy the solution of p(v) = 0. Then

(Wo, Po) = (kapr /8, 2Ake0F (roaa/0) /)

is a locally asymptotically stable equilibrium of (5.1).
2. Suppose that v takes a value v* such that p(v*) > 0. Then if equation (5.9)
has a positive solution, it s unique and given by

w = \JAKe=310V) 1 (W) Aarp (8 — 1) (W) — v2F (Wh)?.

where v* replaces the appropriate parameter.

In addition, suppose that for such a value v* of v, p'(v*) > 0 (respectively
p'(v*) <0). We consider two possible cases.

(a) If for all 7 € [0,v*] (resp. U € [v*,4+o0]) and all n € N we have
Sp(T) #£0 (where S, is given by (5.11)), then the equilibrium of the
system for v = v* is locally asymptotically stable.

(b) Suppose there exists a sequence of pairs (n, v;)i=o,....r with v; < v* (resp.
v; > v*), such Sy, (v;) = 0. We index the pairs such the sequence
(Vi)i=0,....1 is increasing (resp. decreasing). Then, when v = vy a Hopf
bifurcation occurs at (Wo, Po) and periodic solutions appear.

Moreover, Wy, Po) for v =v* is a locally asymptotically stable equilib-

rium if and only if
I
Zsign Sy, (vi) ¢ = 0.
>_sen {8, )}

Otherwise, Wy, Po) is an unstable equilibrium.

We remark that 1y exists if and only if max,(Sp(r)) > 0 and max, (Sy(v)) —
min,, (So(v)) > 2.

Proof. We present the proof in several steps.
1. We start by noticing that if 2Aapd — yap, = 0 and 2Aap — ap; = 0, then
d = v such that Equation (5.5) becomes

0 =22+ 2X6f(Wo) + 82 FWo)?2 = (A + 6f(Wp))?%.

There is a negative double root A = —§f(W,) < 0, implying that the equi-
librium is locally asymptotically stable.

In the case where 2Aapd — yapr = 0 and 2Aap — apr > 0, Equation (5.5)
for A # 0 is equivalent to

(5.16) M4 aX+b+dre™ +ge =0,
with

a=(y+08)fWo) + KQ2Aap —aypr), d=-K((2Aap — ay),
b=0fWo)> +5fWo)K(2Aap — anr), g=—0fWo)K(2Aap — anr).
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From Beretta et al. [6], we know that if A = iw is a solution of this charac-
teristic equation, then we have

P retad | i)
w2d? + g2 B K(2Aap — aypy)

cos(w) = > 1.
Therefore, it is impossible for (5.16) to have purely imaginary roots. Com-
bined with the fact that all eigenvalues have a negative real part for
2Aap — apr = 0, it implies that (Wy, Py) is always a locally asymptotically
stable equilibrium of (5.1) for 2Aapd — yaps = 0 and 2Aap — apr > 0.

. In the case of (5.1), the characteristic equation is written in the form of (5.7),

where
(5.17) D(v,A) = A2 + a()A? + b()A + c(v) + (d()X? + g(W)X — c(v))e™,
such that the decomposition of D given by (5.7) and (5.8) gives

Pr(iw,v) = c — aw?, Qg(iw,v) = —dw? — ¢,
Priw,v) = w? —bw, Qliw,v) = gw.

This implies that F(w,v) = w?(w* + pw? + ¢), and since we excluded 0 as a
solution, (5.9) is equivalent to

(5.18) Wt pw?+qg=0,

with p = a® — 2b — d? and ¢ = —2ac + b?> — 2cd — g%. We apply this to our
case with

a=a+az, b=bi+ci+5fWoaz, c¢=03df(Wp)ei,
d= —asz, g = _(Cl + 5f(W0)a2)7

with
a1 = (14 0)fON), a2 = K2Aap — an),

by =v5fWo)?, 1 = Kf(Wo)(24apd — yayy),
and K = ke~ V) /(W) We easily show that

_ gt 6 f(Wo)*

0= 02 F(OV0)* [4K Aap(y = 8) +7°F (W) O

Because p > ¢, Equation (5.18) has one non-zero positive root, and at the
condition that ¢ < 0. In such a case, this root is given by

wlv) = \| PN KA () F0Ve) 2T OV,

Finally, as w(v) is the largest of the roots of F(w,v) and lim F(w,v) = +oo,
w—00

the derivative of F' at w(v) is always positive. Therefore, the geometrical
criterion (5.12) is now given by
v=r* }

S() = {dsgy(z/)
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According to Lemma 5.2, as v shifts away from vy the number of pairs of

conjugate roots with a positive real part is given by . ; sign{SﬁLi(yi)}
Noticing that (W, Py) is a locally asymptotically stable equilibrium of (5.1)
if and only if all roots of Equation (5.7) have negative real part, we complete

the proof. 0

In the next section, we use this criterion to assess the impact of an increase of
megakaryocyte progenitors death rate on the stability of our system.

6 Application of the framework for stability analysis on the megakary-
opoiesis model

6.1 Choice of parameters Except for the expansion rate A, our choice of pa-
rameters is a combination of what is found in the literature and what is deducible
from fitting our model to single values available in the literature (like P* the average
platelet count). Below, we give details for parameters requiring calculation or fitting.
Other parameters are given in Table 6.1.

e By fitting a Go model for HSC differentiation and renewal to mouse data,

Mackey [37] managed to infer the rate of differentiation and the rate of random
death of HSC. We use the inferred value for HSC death rate as the death rate
of megakaryocyte progenitors: § = 0.069 days™*.
Furthermore, the product of the inferred value for HSC differentiation rate
0.010 days~! and the value for HSC density 1.1 x 10° cells/kg obtained
from mice data by Bernard et al. [7] gives us the differentiation rate to
the megakaryocytic line

k=1.1x10°% x 0.010/3 = 3.7 x 10® cells/kg*days ™",

where we assume that HSC differentiate equally to all three hematopoietic
cell lines.

e Using the mean platelet volume of 6.6 fL. (6.6 x 10~!°L) obtained by Paulus
[42] and considering a platelet as a perfect sphere, we compute the area of
the surface of a platelet as ap = 17 x 107?m? = 17 pm?. The area of
megakaryocyte progenitors surface is computed using a diameter of 10 pum
[32] and considering them as a perfect spheres also we get

ay = 475% = 314 pm?.

The amount of ¢-Mpl receptor per platelet is evaluated in [35] to be on av-
erage ap = 56. Considering that the amount of ¢-Mpl on the surface of a
megakaryocytic cell is proportional to the area of its surface, we get

an = ap ™ —1.04 % 10°.
ap

o If we fit the differential equation P’'(t) = —yP(t) using linear regression to
the platelet disappearance curve available in [29], we obtain a death rate for
platelet of v = 0.27 day ™.

e Using the average platelet count per liter of blood Py from [43] and assuming

5L of blood for a person of 70kg we get:

Py =284 x 109 x 5/70 = 20.28 x 10? platelets/kg.
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e According to Li et al. [35], platelets binding sites for TPO have an average
binding dissociation affinity K7 = 163pM = 163 x 10~ *2mol/L. We convert
this value to pg/mL, using the molecular mass of TPO 35 kg/mol [24]:

Kr =57x10"? kg/L = 5.7 x 10 pg/ml.

e When the c-Mpl receptors are de-activated, the platelet count drop to P_ =
Py/10 [17] and f(Wp) takes the value 1/3. Therefore, (5.3) implies

8= 5/(10g(2A,‘<¢) — log('yP,)).

e Knowing the normal value of platelet count Py and (5.3), we obtain the value
of f(Wy) at steady state as f(Wy) = (log(24k) — log(vPy))/5. We use this
value to first compute Wy from (5.3), and then « from (2.5):

o = (1/£0m) - g) LELTE)
0
The value of W is also used to compute Tpyod/cr from the quasi-steady state
approximation (2.6):
Tprod _ WOTSL
ar  KR+T3

Name Interpretation Unit Value Source
K Progenitors input rate cells/kg*day ' | 3.7 x 10 [7, 16]
4] progenitors death rate days™* 0.069 [37]

ay | TPO receptor per progenitor | receptor/MkP | 1.04 x 103 | [32, 35, 42]
o Platelet death rate days ™! 0.27 [29]
ap Tpo receptor per platelet receptor /Pl 56 [35]
Py Average platelet count Pl./kg 20.28 x 10° [25]
P Pl. count without TPO — 10% [17]
n TPO clearance hill coefficient - 2 19]
Kr TPO half-max clearance pg/ml 5.7 x 103 [24, 35]
To Mean TPO concentration pg/ml 80.1 [43]

Table 6.1: Parameters obtained independently from our model.

Recall from the introduction that cyclical thrombocytopenia can be explained
through two different pathogenesis: platelet-specific antibodies and antibodies target-
ing megakaryocytes and progenitors. Therefore, Table 6.1 and Proposition 5.3 tell us
that our model cannot reproduce platelet-specific antibodies-induced CT. Indeed, ~,
the platelet death rate, is larger than that of progenitors, d, while Proposition 5.3 says
that v < § is a necessary condition for oscillations to appear. Therefore, oscillations
cannot be obtained through increasing the platelet destruction rate, i.e. . In the
opposite, Proposition 5.3 is compatible with the pathogenesis of amegakaryocytic CT,
which corresponds to an increase of §.

6.2 An increase in progenitors death rate § leads to oscillations then
a return to stability With the parameters chosen as above, changes of stability
occurs only when A > 7.5 x 107. As announced in section 4, the amplitude of A needs
to account both for the fragmentation of platelets from megakaryocytes and for the
successive divisions of progenitors not represented in our model. Figure 6.1 represents
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the result of stability analysis when setting A = 26 x 2000, that is accounting for
a total of 17 divisions before platelet shedding with 2000 platelets per shed by each
megakaryocyte [28]. The results are presented using the time variable ¢ corresponding
to the system (3.1): solutions are computed from system (5.1), then transformed as
explained at the end of section 4.

Evolution of Sn((S) as J increases

ft]

0 050 1 1.5 260, 25 3 35 4
5 (days™)

Figure 6.1: The scores Sp(d) (dark blue line) and S1(6) (light blue line) are plotted
against . Sg(d) intersects with 0 (dashed red line) twice, as indicated by the black
dotted lines, for 6y = 0.6 (first vertical line) and for §; = 2.14 (second vertical line).

We see that (0,0.6) and (0,4.02) are the only two pairs (n,0) € N xR, such that
Sn(d) = 0. Using Proposition 5.3, we deduce the stability of our system from the
above graph as follows:

e From 0 = yap/(2Aap), i.e. such that p(d) = 0, to § = 9 = 0.67, there are
no pair (n;,d;) € N x [d, dp] such that Sy, (d;) = 0. Therefore the equilibrium
is locally asymptotically stable.

e As dp is the smallest value of § such that for some n € N (here n = 0) we
have S,,(6) = 0, a Hopf bifurcation occurs at § = do.

e (0,00) and (0,8,), where §; = 4.02, are the only pairs of N x R, such that
S, (0;) = 0. Plus, S;(dp) > 0 and S;(01) < 0. Therefore, first, for ¢ € [dg, 1]
the equilibrium gets unstable and solutions are oscillating as shown on Figure
6.2. Second, for 6 > d; we have ), sign S}, (d;) = 0 such the equilibrium is
locally asymptotically stable.

Overall our system generates oscillations upon an increase in the death rate of
megakaryocytes, reproducing qualitatively the pathogenesis of amegakaryocytic cyclic
thrombocytopenia [26].

7 Discussion Previous attempts to build a model of megakaryopoiesis were based
on the assumption that the enhancement by TPO of endomitosis, with enhancement
of progenitor division, is the key to understanding dynamics in platelet count. This
assumption led to the successful reproduction of periodic dynamics as observed in
cyclic thrombocytopenia, but stability analysis could not give a clear interpretation
of how CT is explained through the parameters [2, 34]. Therefore we have decided
to explore a new hypothesis based on recent biological results [40, 41], that is that
the main action of TPO is to enhance progenitors division. We considered a popu-
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Figure 6.2: Long term behavior of platelet count: when the death rate of progenitors
isset to d = 1 days™ ', we have § € [00, 61] such that the quantity of platelets oscillates,
as predicted by Proposition 5.3.

lation of progenitors structured in maturity with TPO increasing maturation speed,
a population of platelet structured in age and the concentration of TPO, with the
hypothesis of quasi-steady-state for TPO concentration with respect to the quantity
of platelets and progenitors. This led to a system of two delay-differential equation
with a state-dependent delay. We started with a preliminary analysis of this model,
showing well-posedness of the system, as well as eventual boundedness and positivity
of the solutions. These results required to assume that 2Aap > «apy, that is that the
amount of c-Mpl receptors that appear when a megakaryocyte sheds its platelets is big-
ger than the amount of c-Mpl receptors of this megakaryocyte (in accordance with all
available biological data, see Table 6.1). It also required aprk > Tproa/cr max(d, ),
that is to ensure that the rate of production of ¢-Mpl receptors is big enough for the
quasi-steady-state equilibrium to be possible at all time. Next, we used the change
of variable proposed by Smith [51] to transform the state-dependent delay into a fix
delay. It allowed to prove that given the conditions exposed earlier for positivity and
well-posedness, the solution to our system exists and is unique. This new formulation
was then used to perform a stability analysis of our system. Upon linearization, we
established that the stability of the unique non-trivial equilibrium is assessed using a
transcendental polynomial of degree 3. We decided to adapt the framework proposed
by Beretta et al. [6] to analyze the effect of parameters other than the delay on the
stability of equilibriums. It resulted in a new geometrical criterion for the appearance
of eigenvalues with positive real parts. This framework was then used on the charac-
teristic equation of the system describing megakaryopoiesis, leading to a result linking
changes in parameters of the system to the occurrence of Hopf bifurcations, that is
the onset of periodic solutions. Finally, parameters of the model were obtained and
computed from existing literature, such that the ability of our model to reproduce
qualitatively the pathogenesis of amegakaryocytic CT could be evaluated. Parameters
were used to compute the evolution of the geometrical criterion mentioned earlier as
the megakaryocyte death rate d increases. It revealed that increasing the death rate
of progenitors lead to the onset of oscillations in platelet count, in agreement with
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observations of amegakaryocytic CT cases [26].

Because Lemma 5.2 is given for the general form (5.7), it could be used for any
model with a threshold-defined delay differential equation transformed into a equation
with fixed delay using [51]. Although the threshold used to define the delay might be
different from 1 (for example in [16]), the function of maturation or aging speed V(.)
is a tool rather than the exact description of a quantitative process: rescaling it to
bring the threshold to 1 has little consequence. Moreover, we expect that Lemma 5.2
can be adapted to a version of Equation (5.7) with e~™ instead of e=*. However, it
is unlikely that Lemma 5.2 could be adapted for systems with more than one delay
like that of Langlois et al. [34]. Unlike Lemma 5.2, Proposition 5.3 relies on the
fact that our model yields a characteristic equation of the form (5.17). We did not
have to modify our initial model in order to obtain this particular form, therefore
we expect it to appear in other problems than platelet production. However, up to
now previous works relied on characteristics equations too complicated to obtain an
explicit expression for w(v) as we did, and when stability was studied analytically,
authors of [11, 30, 39] chose to fix the maturation speed to V(t) := 1. Proposition
5.3 could therefore be adapted to other systems (among which other hematopoietic
cells lines), providing a compromise between mathematical analysis and accuracy with
respect to biology.

Regarding biology, our goal was to assess whether underlying anomalies observed
in CT patients could indeed be the changes leading to oscillations. We provided
an example in which oscillations appear when the death rate of progenitors § is in-
creased 10-fold, which is consistent with the pathogenesis of amegakaryocytic CT.
The conceptual way in which oscillations appear, however, is not compatible with
cases characterized by anti-platelet antibodies, as explained at the beginning of sec-
tion 6. Langlois et al. [34] were successful in generating oscillations in a model of
megakaryopoiesis after an alteration of the platelet destruction mechanism, namely
an increase in the maximal removal rate of platelets by macrophages. Therefore we
plan on adding a macrophage-mediated clearance of platelets to our model in order
to reproduce qualitatively both amegakaryocytic and autoimmune cyclic thrombocy-
topenia.

Additionally, we could not reproduce the quantitative features of cyclic throm-
bocytopenia: as our example shows, we did not manage to produce a simulation of
platelet count matching the amplitude observed in CT patients (fluctuations of a span
above 7 x 10? platelets/kg [26]). Currently, the amplitude is only accessible through
numerical simulations of solutions, such that an exhaustive exploration of the effect
of parameters on amplitude is a heavy computational task: we could try to see if an
explicit expression of the amplitude as a function of parameters can be obtained via a
simplification of the model, as it can be seen for example in [44]. On the other hand,
we might obtain simulations closer from clinical data if we increase the complexity of
our modeling of the expansion of progenitors. Indeed, our choice of a TPO-dependent
speed of cell division (rather than overall volume expansion as in [34]) together with
the necessity of an A >> 3000 implies that a progenitor divides multiple times as
it goes from one end of the compartment M (see Figure 2.1) to the other. Taking
this feature into account in the computation of the concentration on c-Mpl receptors
(instead of aprM(t) + apP(t) currently) could be enough to reproduce the clinical
features of CT. An example of a model for megakaryopoiesis with multiple compart-
ments, although with a fixed division time 7, is found in [8].

The system formed with equations (2.3), (2.4) and (2.7) is such that the tools
developed in [51] can be used to obtain a system of differential equations with a fixed
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delay on which the tools developed in [6] can be used. However, subsequent versions of
the model might not be suitable for such a transformation, and it might be necessary
to perform the stability analysis on the state-dependent delay formulation following
works like [3, 31] or even on the age- and maturity-structured PDEs formulation using
results on Hopf bifurcation such as [13, 36]. This is the object of our future work.

Problem (5.7) has been addressed in its general form by Pontryagin: using func-
tions F'(w) and G(w) defined as respectively the real and imaginary part of D (iw,v),
he proved a theorem giving sufficient conditions for all eigenvalues to have a negative
real part [5] (section 13.6). This theorem was applied by Cahlon & Schmidt [12] to
a transcendental characteristic equation of third degree of a more general form than
(5.17). However, we did not use these results for our problem: on one hand the neces-
sary condition for stability (theorem 3.1) can not be applied to our problem as (5.17)
is studied for A # 0, and on the other hand computations necessary for the “gen-
eral algorithmic stability test” renders this test unfit for finding changes in stability.
Nevertheless, many results for simpler characteristic equations relying on this same
theorem from Pontryagin is found in [5, 12]. Other results for characteristic equa-
tions of second degree are found in [4, 51]: these results cannot be extended to our
problem because our characteristic equation involves Wy, a term given by an implicit
function of parameters of interest. Some authors encountered the same problem in
two papers on erythropoiesis [11, 39], and each time a geometrical method specific to
the model was developed to find Hopf bifurcations. Finally, other authors also relied
on exclusively numerical methods to handle more complicated forms of (5.7). In [34],
Langlois et al. used a method from Mahaffy [38] to compute the eigenvalues of a char-
acteristic equation of degree 4 with three distinct delays. Computations show that as
four parameters vary linearly from values associated with normal platelet count (i.e.
a stable solution) to values associated with CT patients (i.e.) an oscillating solution),
the eigenvalues cross the imaginary axis from left to right. In comparison, our work
allows to study the specific effect of each parameter on the stability.
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