N

N
N

HAL

open science

A Design for a Collaborative Make-the-Flag Exercise
Matt Bishop

» To cite this version:

Matt Bishop. A Design for a Collaborative Make-the-Flag Exercise. 11th IFIP World Conference
on Information Security Education (WISE), Sep 2018, Poznan, Poland. pp.3-14, 10.1007/978-3-319-

99734-6_1 . hal-02125761

HAL Id: hal-02125761
https://inria.hal.science/hal-02125761
Submitted on 10 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-02125761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Design for a Collaborative Make-the-Flag
Exercise

Matt Bishop

University of California at Davis
mabishop@ucdavis.edu

Abstract. Many people know how to compromise existing systems, and
capture-the-flag contests are increasing this number. There is a dearth of
people who know how to design and build secure systems. A collaborative
contest to build secure systems to meet specific goals — a “make-the-
flag” exercise — could encourage more people to participate in cyber-
security exercises, and learn how to design and build secure systems.
This paper presents a generic design for such an exercise. It explores the
goals, organization, constraints, and rules. It also discusses preparations
and how to run the exercise and evaluate the results. Several variations
are also presented.

1 Introduction

Cybersecurity has become a major concern, and its lack a serious problem in
society. Exacerbating this problem is the poor quality of software and systems,
enabling attackers to exploit vulnerabilities that compromise security. This is
a product of many things, including the economics of the marketplace [3,4]
and a lack of programmers and system developers who understand how to craft
programs and systems that meet a specific set of security requirements, as well
as more generic robustness requirements.

In computer security curricula and competitions, a common exercise is to
have students find flaws in existing systems. In some cases, the organizers of com-
petitions make their own systems (such as DefCon’s Clemency system [1]). The
goal of these exercises and competitions (called “Capture-the-Flag” or “CTF”
contests) is to teach students how to find and exploit vulnerabilities, thereby
teaching them what to avoid doing.

A variant of these CTF competitions is to provide the contestants with an
existing system that is known to have vulnerabilities. They are given some period
of time, such as a month, to harden the system so that any vulnerabilities cannot
be exploited, and all attempts to do so are recorded. The systems are then
attacked by other teams or a “red team” and the contestants are given points for
the attacks they have blocked. These “Protect-the-Flag” (“PTF”) competitions
are more constructive than the CTF ones because the emphasis is on securing a
system, not breaching it.

Consider the ultimate goal of security. It is to create systems that satisfy
a specific set of requirements. The CTF competition focuses on showing an



existing system fails to do this. A PTF competition focuses on protecting an
existing but fundamentally non-secure system to prevent it from violating a set
of security requirements. Neither of these do what a “secure system” is to do:
demonstrate to some desired level of assurance that a system meets a set of
specific requirements, including security requirements.

This suggests an alternate exercise in which the contestants design and im-
plement a system to meet specific requirements, including security requirements.
This exercise, a “Make-the-Flag” (MTF) exercise, has the teams work from the
ground up to design and build a secure system, rather than work from the top
down to take a system apart. Such a exercise would of necessity involve a special-
purpose system because designing and implementing a general-purpose system
from scratch would take too long. This shifts the focus to creating secure sys-
tems, thereby decreasing the problem of a lack of practitioners who can do that.
It also forces students to pull together everything they have learned in com-
puter science classes — software engineering, robust programming, networking,
security, and so forth — to build a system that will be tested thoroughly for
vulnerabilities. It will also encourage academic programs to put more emphasis
on teaching this art of construction.

A second aspect of an MTF exercise is that it can be run collaboratively
rather than competitively. This makes it attractive to people who either find
competition distasteful or do not have confidence that they will score well on a
competition. In the collaborative form, team members can support members of
other teams as well as members of their own team. The teams compete against a
set of requirements, and the evaluation of a team’s effort results in a non-numeric
report of the quality of their work. Thus, there is no high or low score. Of course,
an MTF exercise can be run as a competition by providing numeric scores for
the components of the evaluation; we shall return to this later.

In this paper, we explore how a collaborative MTF exercise might be orga-
nized and run.

2 Background

Traditional CTF competitions are exercises in which contestants set up systems
containing a “flag,” or indicator. The object of the competition is to capture as
many flags from other teams’ systems while preventing the capture of your flag.
Scoring takes into account both the number of flags captured and the number
of times the contestants’ own flag has been captured.

Several versions of this basic format exist. MIT Lincoln Labs held a CTF
contest for Boston-area universities with the goal of providing practical cyber-
security education [15]. They distributed the system as a virtual machine, en-
couraged the students to study it, and before the contest provided five lectures
on various aspects of cybersecurity and vulnerabilities. The final lecture was a
lab exercise in which students worked through various challenges using Google’s
Gruyere service [8]. The score for the exercise depended on defense, calculated as
a weighted sum of confidentiality, integrity, and availability measures, and then



combined with a weighted measure of offense, or the capture of other teams’
flags. The organizers released two plug-ins, one near the beginning of the con-
test and the other near the end, that had to be added to the systems. Failure to
do so diminished the availability score.

Every DefCon has a CTF contest. In one DefCon CTF contest, the “flag”
was a data file, and a “capture” was defined as corrupting that file. So the goal
was to corrupt as many opponent’s data files as possible without allowing yours
to be corrupted. Cowan’s team used this to test their Immunix server [6].

The U.S. military schools run a PTF, the Cyber Defense Exercise (CDX),
annually. In some competitions, the schools could choose their own network ar-
chitectures and associated security architecture [10]. In another [2], each military
school was given control of enterprise systems that were poorly managed. In all
exercises, the systems were on an isolated, closed network. The teams had to
identify vulnerabilities and ameliorate them as well as secure the networks, and
do so within a given time and budget. The U.S. National Security Agency then
provided a red team to attack, and that team used only publicly available ex-
ploits. The students were scored on their ability to keep services running in the
face of attacks as well as their success in detecting the attacks and defending the
systems. They also had to submit reports and respond to requests.

The Collegiate Cyber Defense Competition (CCDC) is a civilian CTF run
the same way as the CDX [5,12]. The students are presented with a business
environment, including a web server, email, and other services. It emphasizes
the operational aspects of securing the network infrastructure, as well as solving
business problems. A red team acts as adversary, with limits similar to those
of the CDX red team. The CCDC has grown from a small competition among
Texas schools to a U.S. national competition. The traditional edition of the
International CTF Competition [14] also uses this scheme.

Vigna describes three versions of these exercises [13]. The Red Team/Blue
Team exercise is essentially a CTF exercise, with one set of participants playing
the role of attackers (Red Team) and the other playing the role of defenders (Blue
Team). The CTF exercise again split the participants into two teams, with each
team attacking the other team’s system and detecting (not preventing) attacks
on its system by the other team. Another exercise, called the Treasure Hunt,
had two teams compete to complete given tasks in a specific period of time, and
the competition was to do so first within that time.

The Cyber Security Exercise Workshop [7], sponsored by the U.S. National
Science Foundation, considered four types of exercises: defensive exercises; small,
internal CTF competitions; national CTF competitions; and semester-long CTF
competitions. It described organizational and logistical issues in establishing a
CTF cybersecurity exercise.

A perceptive paper [11] discussed ways to involve members of groups that are
traditionally underrepresented in the cybersecurity field, such as females. The
paper presented several ways to make cybersecurity competitions more attrac-
tive, and how to support the participation of these members. Interestingly, its
scope was restricted to competitions; it did not consider collaboration at all.



Some of the CTF exercises require that the system be protected, which typi-
cally requires the design of configurations to harden the systems; in some cases,
the contestants may have to write programs. The difference is that the focus of
the MTF contest is to design and implement a system from the ground up as
opposed to hardening something that exists. Further, the focus of this work is
on collaboration.

3 The Make-the-Flag Exercise

An MTF exercise has several steps: organizing the contest, preparing the teams,
running the exercise, and then evaluating the results. Doing so involves several
groups.

— The teams are groups that are participating in the exercise. Their goal is to
build a robust, secure system.

— The managers of the exercise set the requirements to be met, the components
of the system to be used, and any additional constraints (such as when and
for how long the exercise is to run, and who may participate).

— The testers test the systems at the end of the competition. They do not
score the results numerically; instead, they provide written reports that can
be given to the teams.

— The judges evaluate the results of the testing and of the exercise in gen-
eral. They determine the effectiveness of each system based upon the this
evaluation.

The managers and judges are together called the organizers, and the testers
and judges are together called the evaluators.

Teams are not ranked against one another; instead, the systems are evaluated
and the evaluation serves as the results. This emphasizes that the goal of this
exercise is cooperation, not competition.

3.1 Organizing the Contest

In this step, the organizers meet to determine the goals and rules of the contest,
and to organize themselves into the managers and judges.

Goals The generic goals of the teams in an MTF exercise are twofold. First,
develop a system that meets the requirements stated by the organizers. Second,
ensure the system is robust, in the sense that generic attacks such as buffer
overflows do not result in the system entering a compromised state.

Each contest also has more specific goals for the teams to meet. The organiz-
ers must decide what those goals are, and to what level they are to be specified.
One approach is to present an objective, leaving teams to determine how best
to meet it.



Example. The objective of this MTF exercise is to develop a small computer
system that will manage a set of street lights on corners. Lights opposite one
another are to be paired so they are always the same color. When one set is red
(stop), the other set is green (go). The computer is to be managed through an
Internet connection. |

Rules Given this objective, the teams must develop a set of requirements, show
that a system meeting the requirements will meet the objective, and then develop
the system. In doing so, they will also have to develop the necessary network
protocols, command interface and language, and output protocols. Further, they
must document these thoroughly enough so that people who were not the devel-
opers can configure and use the system. This approach thus offers the teams the
maximum degree of freedom, while teaching them to document their interfaces
and other external features of their system thoroughly enough for the evaluators
to be able to use and to test their system.

The disadvantage is that each system developed in the contest is likely to
have completely different interfaces. This makes the utility of the system more
difficult to evaluate, especially if it is to be used in a particular environment. It
also increases the time needed for thorough testing. In this case, the objective
should include some details of inputs and outputs:

Example. The objective of this MTF exercise is to develop a small computer
system that will manage a set of street lights on corners. Lights opposite one
another are to be paired so they are always the same color. When one set is red
(stop), the other set is green (go). The lights will be connected using the con-
nector described in the addendum, and controlled using the protocol described
there. The computer will accept inputs as described in the addendum, both over
the network and from a command-line interface. |

The addendum specifies the interfaces with the external environment, limit-
ing what the computer can do but providing a standard interface for all teams
to implement. Thus, they need not document the protocols or the command-line
interface unless they add extensions, in which case those must be documented.

An exercise to construct a simple firewall gives another example of a very
detailed set of requirements,

Example. The objective of this MTF exercise is to develop a simple firewall
system that will accept or reject network packets based on rulesets. The man-
agers have devised a little language for the ruleset. The specific requirements
are:

1. The system must receive packets on one network interface.

2. The system must either forward the packets over another interface, or discard
them, as dictated by the ruleset.

3. The system must accept rulesets written in the RULESET language; see the
addendum.

4. The system must provide a command-line interface; see the addendum.



5. Once started, the system will run until a SHUTDOWN command is entered
at the user interface or until powered down. |

In addition, the managers provide the addendum describing the RULESET
language and the command-line interface.

In addition to meeting the requirements and objective, the teams must de-
velop systems that are robust in the sense that they will handle error conditions
in a reasonable manner — providing informative error messages, rejecting the
bad input, and taking other actions as appropriate. For example, if the traffic
light system receives inputs telling it to turn all lights green, the system should
reject that input; if something fails, then the system should have the lights fail
safe, that is, all either turn red or enter some other specified state. If the firewall
system has too many rules, it should inform the user of the overflow, and reject
the excess rules; it should not simply ignore all rules.

Constraints The organizers must also decide on other aspects of the exercise.
The first is the time for the contest: when it starts and how long the teams have.
The second is what equipment, and other financial limits, are necessary for each
team, and how it will be procured.

Time is a complex constraint. Some team members will be students and their
schedules will require attention to schoolwork, especially when examinations are
being given. Similarly, non-students will have job-related constraints. So the
organizers should aim for a time that minimizes the disruption of the schedules
of the expected team members. It will not be possible to accommodate everyone’s
schedule, but the organizers should position the contest so the team members
can devote maximum effort to the contest.

The financial constraints are also critical, and simulate real-world constraints.
The simplest method for handling them is for the organizers to procure a set
of hardware and software, and loan each team what is needed. If the objective
allows the use of commodity hardware (such as PCs), then the organizers can
expect the teams to have their own available, although the organizers should
have some financial aid available for teams who have neither the equipment
nor the support of their institution to purchase the equipment. The organizers
should make any additional constraints, financial and otherwise, explicit before
the exercise starts.

Organization At this point, the organizers need to assemble the teams. This
is a recruiting and marketing issue, and techniques similar to those used in CTF
contests should work. Word-of-mouth, reaching out to faculty in cybersecurity
programs, to cybersecurity clubs, and other groups will be helpful, as will the
organizers determine an enticing set of prizes. Also, the organizers should seek
industry and government sponsorship and support, because those groups are

! This is from an incident where the author and his students were testing a firewall.
The bug was quickly fixed.



attempting to improve the state of commercial and non-commercial software and
systems, and so should be happy to support such a contest. Their support will
encourage teams to form, because the contest will be a showcase for their talents.
Indeed, as with many CTF exercises, once the MTF exercise runs successfully a
few times, little recruiting will be necessary.

3.2 Preparing the Teams

Once the teams are organized, they must learn the rules and objectives of the
MTF contest. The organizers must be explicit is what is, and is not, allowed. For
example, must the teams use the equipment that the organizers supply, or may
the teams use their own equipment. If the latter, the organizers need to specify
any constraints — for example, that a USB-3 port will be required to connect
some specialized peripherals, or that the system is to use particular drivers that
the organizers will supply. Given that many MTF contests will require the teams
to develop special-purpose systems, whether the teams must develop their own
system supervisor or whether they can use a commodity system like picoLinux
or Windows CE must also be specified.

An interesting question is whether cross-team collaboration should be en-
couraged. As this is not a competition, cross-team collaboration may provide
the teams with fresh ideas. It also improves the assurance aspect of the systems,
as teams can co-operate to test each others’ systems and point out problems
that would otherwise not be discovered until the testing phase of the exercise.
The organizers should make any limits clear to all.

Another question is whether there are constraints on software development.
The organizers can specify that a particular language, set of libraries, or devel-
opment environment is to be used, as well as a particular software development
methodology. If they do this the organizers must also determine how the teams
are to demonstrate that they have used the specified methodology and environ-
ment. In some sense, such a detailed specification would violate the purpose of
the contest. If the goal is to encourage teams to meet the requirements, then
how they meet those requirements should be left up to the team. As the cliché
says, “You can tell me what to do or how to do it. If you want to tell me both,
you do it!”

Once the organizers have presented the objectives, requirements, and rules,
undoubtedly teams will have questions. The more clarity the organizers can
provide at the beginning of the contest, the better prepared the teams will be
to meet the objectives. The organizers should emphasize the non-competitive
nature of the exercise by making the questions and answers available to all
teams.

It will be critical to emphasize the collaborative nature of the exercise, and
ensure the teams realize the only competition is against themselves — they build
the requisite system, provide evidence it does what it is supposed to, and have
the system do so in the face of both regular and malicious testing. Every team
that does this wins. Conceivable, all teams could win; similarly, all teams can
lose. But team A winning does not interfere in any way with team B winning.



3.3 Running the Exercise

This part is divided into two phases. The first is the development phase; the
second, the testing phase.

During the development phase, the teams design and implement their systems
in accordance with the rules. Their ultimate goal is to convince the evaluators
that their system meets the stated requirements and objectives. Accumulating
assurance evidence — evidence that the system meets the requirements provided
by the application of specific techniques such as requirements tracing — is part
of the way to show this.

The organizers may define both the form and the content of the documenta-
tion of the development process. The manner in which that content is gathered
is up to the teams. What does matter is how they write the documentation.
Documentation that organizes the methods used to gather assurance evidence,
that describes how those methods were applied and the results of their applica-
tion, will provide information that customers — here, the evaluators — can use
to determine how well the system meets its requirements. Te documentation also
provides information that the evaluators can use to assess the interfaces through
which people communicate with the system.

Part of gathering assurance evidence is testing. The documentation needs to
describe the testing in enough detail so others can reproduce the tests and verify
the results. In some cases, repeating a test may produce different results; for
example, a race condition may occur infrequently, so one test will trigger it but
others will not. These test results should be identified as occurring intermittently,
so the evaluators understand that the results of repeated tests will vary. The
developers should explain why this occurs.

Undoubtedly, in some cases the developers will not be able to conduct al the
tests they think of. The tests that are not run should still be described, so the
evaluators know what the developers would do with more time.

The description of each test should follow the concepts used in the flaw
hypothesis methodology’s flaw hypothesis generation step [9]. Each test attempts
to validate a hypothesis or claim. That claim is to be stated, and the testing
methodology shown to demonstrate or refute the claim. The developers then
state the results, noting anything unexpected, and state whether the results
support the claim.

When the time period for the exercise ends, the developers submit their
system and documentation to the evaluators.

3.4 Evaluating the Results

The job of the evaluators is to determine whether the system meets the require-
ments and objectives of the exercise, as well as other factors such as usability
and robustness.

The evaluator can use techniques such as source code analysis to look at the
quality of the system. In some cases, the exercise will specify use procedures; in
others, the developers will need to design these procedures to enable the system



to meet its requirements. In either case, as security is a product of the system
and how and under what conditions it is to be used, the evaluators need to
consider these procedures as part of the security of the system.

The teams submit documentation that assembles assurance evidence, and the
methods used to collect it. The reason is to provide a road map for the evaluators.
The evaluators look at what was tested, and possibly repeat the validation steps
in that document. The evaluators also look at what was not tested to find areas
that the teams either did not think of or did not test.

The evaluation itself is qualitative, not quantitative. Knowing one system
scored 5 out of a possible 10 points, and another 7 out of 10, says nothing about
the significance of the difference. The causes of the ratings may speak to the same
aspect of the system, in which case the difference in scores may be significant, or
they may speak to different aspects of the system, in which case the difference in
scores is not significant. Hence a qualitative description will provide information
that the team members can learn from.

4 Variations on This Theme

Variations of the exercise proposed here provide other benefits. The exercise can
be framed as a competition, in which case a quantitative evaluation is necessary.
The teams can also act as testers to provide preliminary feedback before the
evaluation phase of the exercise.

Cooperative Competition. Many institutions and groups desire a ranking of re-
sults, as well as (or rather than) a detailed evaluation. This exercise can be
changed into a competition by the judges assigning team rankings based upon
their evaluation. If the organizers wish to base the rankings on specific num-
bers of points, they should assign points to each requirement, and a general
point count to “robustness.” The testers would evaluate each aspect of the re-
quirements and robustness to which points were assigned, and the judges would
determine the number of points to be assigned.

The critical aspect here is that the teams receive more than just a numeric
ranking or point score. They need to learn what problems the testers found,
because problems teach more than success.

Teams as Testers. To give experience in testing systems, the teams themselves
can act as testers.?

One way to do this is to give the teams access to all systems during the testing
step. Then each team would test the systems, and provide reports to both the
team that developed the system and the judges. The test reports would describe
the tests conducted in sufficient detail that others can reproduce them. The
judges would then evaluate the systems based on the test reports. If the teams
test the system, the judges should also evaluate the test reports themselves.

2 Thanks to Dan Ragsdale for this suggestion.



A second way eliminates the students as evaluators. The MTF exercise is
structured into three rounds, in the following order:

1. Development round. In this round, the teams build their systems. This round
proceeds as the MTF exercise described above.

2. Test round. In this round, the teams are given access to one another’s sys-
tems. They then carry out the testing. As in the other version, the test
reports are made available to the other teams and the evaluators.

3. Repair round. The teams fix the problems found in the previous round.

After the third round, the testers, and the judges then evaluate both the
results of the testing and the reports from the test round. The results of the
exercise depend on both the system’s quality and the quality of each team’s
testing.

5 Conclusion

This paper explored an alternative to a traditional CTF contest. This alternative
is constructive, in that the goal is to create a secure system rather than find holes
in an existing system. While the latter is instructive and necessary to teaching
students how to “think like an attacker,” the former gives the students experience
in creating hardened systems. It allows them to practice the principles of secure
development, implementation, and evaluation.

The other aspect is an emphasis on collaboration rather than competition.
CTF exercises can be intimidating, particularly to those who have never partic-
ipated in one, or who feel themselves overmatched by more experienced play-
ers. The Make-the-Flag exercise encourages teamwork that helps team members
learn from one another and from a qualitative evaluation of their work. In col-
laborative exercises, there is no penalty for aiding another team, so the learning
can cross team boundaries. This type of exercise will be appealing to those who
are not by nature competitive.

One could also picture a CTF contest run collaboratively. Such an exercise
would follow the pattern of the CCDC or CDX, except that the teams would
work together to help each other secure their systems. They would compete as
one group against the red team testers, and their goal would be to minimize the
success of that team. The scoring or evaluation would require the red team to
keep careful track of what they tried, and what worked and what did not, so the
other teams could receive a detailed evaluation of each of their systems. Such
a framing would allow teams to try different approaches and see which ones
worked best, without the fear of “losing” or “winning” due to these different
implementations.

Competitive exercises, and exercises emphasizing attacks, have their place.
But many potential cybersecurity students are dissuaded from following that
field because of this emphasis. Emphasizing collaboration and construction may
draw them in, to the benefit of the field, the profession, and the community. It
is an idea worth trying.



Acknowledgements

Thanks to Dan Ragsdale of Texas A&M University and Kara Nance of the Vir-
ginia Polytechnic Institute and State University for helpful discussions. The au-
thor gratefully acknowledges support of the National Science Foundation under
Grant Numbers DGE-1303211 and OAC-1739025, and a gift from Intel Corpo-
ration. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, Intel Corporation or the University
of California at Davis.

References

10.

. The cLEMCy architecture (Jul 2017), https://blog.legitbs.net/2017/07/the-

clemency-architecture.html

Adams, W.J., Gavas, E., Lacey, T., Leblanc, S.: Collective views of
the NSA/CSS cyber defense exercise on curricula and learning objectives.
In: Proceedings of the Second Workshop on Cyber Security FExperimen-
tation and Test. USENIX Association, Berkeley, CA, USA (Aug 2009),
https://www.usenix.org/legacy/event /cset09/tech/full_papers/adams.pdf
Anderson, R.: Why information security is hard—an economic perspec-
tive. In: Proceedings of the 17th Annual Computer Security Applications
Conference. IEEE Computer Society, Los Alamitos, CA, USA (Dec 2001).
https://doi.org/10.1109/ACSAC.2001.991552

Anderson, R., Moore, T.: Information security economics — and beyond. In: Ad-
vances in Cryptology — Proceedings of Crypto 2007. Lecture Notes in Com-
puter Science, vol. 4622, pp. 68-91. Springer Berlin Heidelberg (Aug 2007).
https://doi.org/10.1007 /978-3-540-74143-5_5

Conklin, A.: The use of a collegiate cyber defense competition in information secu-
rity education. In: Proceedings of the Second Annual Conference on Information
Security Curriculum Development. pp. 16-18. ACM, New York, NY, USA (Sep
2005). https://doi.org/10.1145/1107622.1107627

Cowan, C., Arnold, S., Beattie, S., Wright, C., Viega, J.: Defcon capture the flag:
Defending vulnerable code from intense attack. In: Proceedings of the 2003 DARPA
Information Survivability Conference and Exposition. IEEE Computer Society, Los
Alamitos, CA, USA (Apr 2003). https://doi.org/10.1109/DISCEX.2003.1194878
Hoffman, L.J., Rosenberg, T., Dodge, R., Ragsdale, D.: Exploring a national cy-
bersecurity exercise for universities. IEEE Security & Privacy 3(5), 27-33 (Sep
2005). https://doi.org/10.1109/MSP.2005.120

Leban, B., Bendre, M., Tabriz, P.: Web application exploits and defenses (2017),
https://google-gruyere.appspot.com/

Linde, R.R.: Operating system penetration. In: Proceedings of the AFIPS ’75 Na-
tional Computer Conference. pp. 361-268. ACM, New York, NY, USA (May 1975).
https://doi.org/10.1145/1499949.1500018

Mullins, B.E., Lacey, T.H., Mills, R.F., Trechter, J.M., Bass, S.D.: How the cy-
ber defense exercise shaped an information-assurance curriculum. IEEE Security&
Privacy 5(5), 40-49 (Sep 2007). https://doi.org/10.1109/MSP.2007.111



11.

12.

13.

14.

15.

Pusey, P., Gondree, M., Peterson, Z.: The outcomes of cybersecurity competitions
and implications for underrepresented populations. IEEE Security & Privacy 14(6),
90-95 (Nov 2016). https://doi.org/10.1109/MSP.2016.119

Pusey, P., OBrien, C.W., Lightner, L.: Preparing for the collegiate cyber
defense competition (CCDC): A guide for new teams and recommendations
for experienced players. National Cyberwatch Center, Largo, MD, USA (Jan
2015), https://www.nationalcyberwatch.org/resource/resource-guide-preparing-
for-the-collegiate-cyber-defense-competition-ccdc-a-guide-for-new-teams-and-
recommendations-for-experienced-players-2/

Vigna, G.: Teaching network security through live exercises. In: Irvine, C.; Arm-
strong, H. (eds.) Proceedings of the IFIP TC11/WGIL8 Third Annual World Con-
ference on Information Security Education. IFIP Advances in Information and
Communication Technology, vol. 125, pp. 3-18. Springer, Boston, MA, USA (Jun
2003). https://doi.org/10.1007/978-0-387-35694-5_2

Vigna, G., Borgolte, K., Corbetta, J., Doupe, A., Fratantonio, Y., Invernizzi, L.,
Kirat, D., Shoshitaishvili, Y.: Ten years of iCTF: The good, the bad, and the ugly.
In: Proceedings of the 2014 USENIX Summit on Gaming, Games, and Gamifica-
tion in Security Education. USENIX Association, Berkeley, CA, USA (Aug 2014),
https://www.usenix.org/conference/3gsel4/summit-program/presentation/vigna
Werther, J., Zhivich, M., Leek, T., Zeldovich, N.: Experiences in cy-
ber security education: The MIT lincoln laboratory capture-the-flag exer-
cise. In: Proceedings of the Fourth Workshop on Cyber Security Experi-
mentation and Test. USENIX Association, Berkeley, CA, USA (Aug 2011),
http://static.usenix.org/legacy/events/cset11/tech/final_files/Werther.pdf



