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RGB-D TRACKING OF COMPLEX SHAPES USING COARSE OBJECT MODELS

Agniva Sengupta, Alexandre Krupa, Eric Marchand
Univ Rennes, Inria, CNRS, IRISA, France

ABSTRACT
This paper presents a framework for accurately tracking ob-
jects of complex shapes with joint minimization of geometric
and photometric parameters using a coarse 3D object model
with the RGB-D cameras. Tracking with coarse 3D model is
remarkably useful for industrial applications. A technique is
proposed that uses a combination of point-to-plane distance
minimization and photometric error minimization to track
objects accurately. The concept of ‘keyframes’ are used in
this system of object tracking for minimizing drift. The
proposed approach is validated on both simulated and real
data. Experimental results show that our approach is more
accurate than existing state-of-the-art approaches, especially
when dealing with low-textured objects with multiple co-
planar faces.

Index Terms— Visual tracking, object tracking

I. INTRODUCTION

The research related to localizing and tracking simple
geometric shapes is extensive [1] and is being studied since
a long time [2]. Existing approaches for real-time, 6 degrees
of freedom (DoF) object tracking can be broadly divided into
three categories. The first group consists of algorithms that
uses probabilistic models for tracking shapes. For example,
[3] aims to maximize the discrimination between background
and foreground of a scene while simultaneously tracking the
6DoF pose of an object with known 3D model. However, this
method used only RGB images as input. [4] extended this
method to depth cameras, adding more cues like local image
appearance, depth discontinuities, optical flow, and surface
normal to inform the segmentation decision in a conditional
random field model. Similar approaches have been used to
track articulated objects [5] with remarkable precision, but
the tracking of articulated joints remain beyond the scope of
our discussion. Particle filtering based approaches have been
parallelized using GPU and implemented towards tracking
rigid objects [6]. A probabilistic generative model based
tracker using 3D signed distance field (SDF) was proposed
in [7], but it needs accurate object model. The second group
of algorithms use learning based techniques to track objects.
[8] proposes a pose estimation technique of complex objects
under heavy clutter, but needs color gradient information
of the model for training. However, in our approach, we
assume that the accurate model of the object, as well as
any color/texture based model are not available. [9], [10]

and [11] propose increasingly accurate techniques for pose
estimation, but they cannot be considered real time. [12] and
[13] are both a dynamic SLAM algorithm utilizing Mask R-
CNN for segmentation and performs object tracking as a
byproduct. The per-object tracking accuracy is never evalu-
ated explicitly. The third group of algorithms use well known
minimization techniques to track objects using geometric and
photometric constraints. Among these approaches, Iterative
Closest Point (ICP) is a popular algorithm [14] that has
been used extensively. Many variants of ICP have been
proposed for probabilistic [15] implementation of point set
registration. KinectFusion [16] is a popular research work
for tracking and reconstruction of static scene using RGB-
D sensor. In this context, SLAM and object tracking have
been tackled interchangeably by the same authors [17], while
some others have used KinectFusion as a tool for bench-
marking their own object tracking algorithm [7]. CoFusion
[18] is a dynamic SLAM system that uses a combination
of dense ICP and photometric error minimization between
the model and the current frame to track objects. The
approach we propose, in terms of the framework for object
tracking, is somewhat closer to CoFusion [18]. However,
we do not undertake explicit motion segmentation, we are
not interested in reconstruction and we use the concept of
keyframes. Moreover, the presence of coarse object model
makes it a different problem statement altogether.

In this paper we focus on the high-accuracy tracking of
rigid, complex shapes with approximately known geometry
using depth cameras. We consider the coarse model to be
a highly decimated, minimal representation of the object
model (instead of a high-polygonal, detailed CAD model),
containing very few triangular faces at best. The model does
not contain any color or textural information. This is easy to
generate and can also be rendered without a depth scanner
(e.g: using manual measurements), making it suitable for
various industrial applications. Our approach is significantly
robust to measurement errors in the coarse model. We are
interested in tracking all the 6 degrees of freedom [19]
of the object. The proposed approach is validated both
quantitatively and qualitatively in the subsequent sections.
The key contributions of this paper are:

• Combining point-to-plane distance minimization and
photometry for tracking of complex objects using
coarse model

• Using the concept of ‘keyframe’ in object tracking for



increased robustness
• Accurate tracking of objects with inaccurate and coarse

object models

II. METHOD

The proposed approach to track rigid objects is a combina-
tion of point-to-plane distance minimization and photometric
error minimization between frames.

II-A. Notation
We work with two types of data: 1) calibrated and

registered depth and grayscale images provided by a depth
camera, and 2) simulated data containing 3D points along
with their corresponding grayscale intensity. Using con-
ventional notations, we denote the depth data as Ω =(
(P1, c1), .....(PN , cN )

)
, where Pi = (Xi, Yi, Zi) and ci

is the image intensity value of the point Pi, expressed in
the camera centered coordinate frame. We define a function
π(·) that acts upon any 3D point and projects it to an image
plane using the pinhole camera model such that pi = π(Pi).
The function ci = I(pi) provides the image intensity of the
point pi. ∇Ii,x and ∇Ii,y gives the gradient of the image
along X and Y axis.

We also consider the model of the object for
tracking. We represent it as a surface 3D mesh
composed of a set of planes given by M ={
{n1, d1,Q1}, {n2, d2Q2}.....{nM , dM ,QM}

}
where

nj = (nXj , n
Y
j , n

Z
j ) is the normal to the j-th plane of the

mesh which lies at a perpendicular distance of dj from the
origin of the camera-centered coordinate frame. Qj denotes
the set of vertices of the bounding triangle for every plane.
The n-th frame from the depth sensor (or from a simulated
data) is denoted by Cn, while certain frames get tagged
as keyframes Cn ⇒ CK

n . O denotes the object centered
coordinate frame. These keyframes serve as the reference
for photometric tracking for all subsequent frames. We use

the notation ATB =

[
ARB

AtB

0 1

]
to denote the rigid

transformation from any arbitrary Cartesian frame A to
B, where T ∈ SE(3). In between frames, the motion of
the object with respect to its previous pose is denoted by
q = (AtB , θu), where θ and u are the angle and axis of
the rotation ARB . The time derivative of q is given as
n−1vn = δq, where v ∈ se(3) is the velocity screw.

II-B. Tracking
For each frame, we minimize two cost functions that de-

pend on a geometric term based on point-to-plane alignment
and a photometric term that minimizes the intensity differ-
ence between the predicted image (based on an estimate of
inter-frame transformation) and the projected image (from
the point cloud).

Point-to-plane Distance Minimization: For the geomet-
ric term, we minimize the point-to-plane distance between
the 3D points in the n-th frame Ωn, with respect to the set of
planes registered with the point cloud in the previous frame
Ωn−1. This is given by minimizing the distance error:

edist
i (nqn−1) =

((
nRn−1Pi +

ntn−1
)
· nk

)
− dk (1)

where i denotes a specific point in the pointcloud and k
is the index of the plane in the object model, to which it
corresponds. We address the topic of this correspondence in
the next subsection.

The cost function is optimized using Gauss-Newton opti-
mization and the Jacobian is obtained by partial differentia-
tion of eq. (1) with respect to nqn−1, given by:

Jdist
i =

[
n>k

[
nk

]
×Pi

>
]

(2)

Photometric Minimization: The initial estimate for the
transformation between the last keyframe CK

p and the cur-
rent data frame Cn used in photometry is given by: pTn =(
nTO ·

(
pTO

)−1)−1
where p denotes the frame number for

the last keyframe. Starting with this initial estimate of the
transformation between the last keyframe and current frame,
the image intensity error we seek to minimize for each image
point is given as:

eimg
i

(
pqn

)
= Ik

(
π
(
Pi

))
− In

(
π
(
pRnPi +

ptn
))

(3)

The Jacobian used for this minimization is:

Jimg
i = ∇Ii ·Ai (4)

where ∇Ii =
[
∇Ii,x ∇Ii,y

]
and Ai = f · Bi, given

f =

[
fx 0
0 fy

]
, fx and fy being the focal lengths and:

Bi =

[
− 1

Z 0 X
Z2

XY
Z2 −(1 + X2

Z2 )
Y
Z

0 − 1
Z

Y
Z2 −(1 + Y 2

Z2 ) −XY
Z2 −X

Z

]
(5)

Optimization: The pose update is given by:

v = −λ
(
WJ

)+
We (6)

where J =
(
Jdist
1 ,Jdist

2 , · · ·,Jimg
1 ,Jimg

2 , · · ·
)

and e =(
edist
1 , edist

2 , · · ·, γeimg
1 , γeimg

2 , · · ·
)

are the stacked Jacobian
matrices and error vectors respectively. v can be interpreted
as the velocity screw acting on the camera that transforms
it from data frame n-1 to n. The pose update is given as
n−1Tn = n−1T̂n∆T, where ∆T = exp(v) and n−1T̂n

represents the previous estimate of the transformation. Here,
γ = edist

eimg
is computed only once per frame, at the first

iteration. γ serves as a scaling factor to ensure that the
point-to-plane distance error and the photometric error are
at a similar order of magnitude. W is a diagonal matrix of
weights obtained from the m-estimator for being robust to
outliers. We use Tukey biweight operator as the m-estimator



[20]. For any given residual ei, we define the Tukey operator
as:

ρ(ei,K) =

{(
e6
i

6 +
K2e4

i

2 +
K4e2

i

2

)
if |ei| < K

1
6K

6 else
(7)

where K = 4.7σ̂ and σ̂ =
{
1.48×Median(|ei − ẽj |)

}
II-C. Point Correspondence

As indicated in eq. (1), there is a need to associate every
3D point Pi with one of the planes of the model, which
can be represented by the tuple {nk, dk,Qk}, the k-th plane
of M. At every frame, we know the value of Cn−1TO. We
project the 3D points Qk for all visible planes into the image
obtained in the current frame. This gives us a set of 2D
polygons in the image, each representing one of the visible
faces. All the points in the image (xi, yi) that intersects with
a particular plane obtained from π

(
Qk

)
are considered to be

associated with this plane.

II-D. Selection of Keyframe
We use keyframes to reduce drift in frame-to-frame

photometric tracking. The estimate of the transformation
between the last keyframe and the current frame is given
by CkTCn . We decompose this transformation matrix into
the translational component (tx, ty, tz) and the θu rotational
component. We define a variable pk, such that:

pk =

{
1 if ||(tx, ty, tz)|| > 0.05 or θ > 0.15

0 else
(8)

Here, the distance threshold is in millimetre while the
angular threshold is expressed in radian.

III. RESULTS
For quantitative analysis of the tracker, we generate three

short sequences of simulated RGB-D dataset, comprising
of three objects: a marmalade container, a coffee machine
and a simulated car. A very minimalist model is used to
track these objects. We do not require the model to be
continuous or topologically closed. We end up with a very
rough approximation of the shape of the object, comprising
of 24, 48 and 62 faces for the three objects respectively.
Initialization of the tracker is done using the ViSP library
[21], by matching keypoints detected in the very first image
with those extracted in the training images using an approach
similar to [22]. Interested readers may look into more recent
techniques, such as [8], [23] and [24] for handling the
initialization problem. Only a few model-free tracking and
reconstruction algorithm are publicly available along with
their open source code (e.g: [16], [18]), but none of them
are directly applicable to model-based object tracking with
RGB-D data. We compare the proposed method with two
recent approaches: a) ‘edge + keypoint + depth tracker’from
[25] (denoted in the figures as ViSP), and b) stacked error

minimization of point-to-plane distance with photometric
error, without using keyframes (denoted as No KF). No
KF is close to the tracking module of [18]. However, we
use keyframes instead of coarse-to-fine spatial pyramid. The
proposed approach is denoted as PA in the figures.

The comparison of the output of the various tracking
methods1 with the ground-truth is summarized in Table I.
The marmalade container sequence (Fig. 1a) shows accurate
tracking with all the approaches. The proposed approach
manages to outperform the other two methods, although by a
small margin. In the coffee machine sequence, the proposed
approach outperforms ViSP significantly. As shown in frame
275 of Fig. 1b, ViSP shows a noticeable drift while tracking
a set of co-planar faces with not enough image features in
it. This is the only instance where the tracking resulted in a
visually noticeable drift. No KF alone, does not solve the
issue of the drift completely, but the proposed approach
eliminates the visible drift and the positional tracking is
83.09% better than that of ViSP. Simulated car is a bit
more challenging sequence due to larger inter-frame motion
towards the end. No KF shows very low accuracy in this
sequence. In the rotation, ViSP outperforms the proposed
approach by average of 0.51◦ over the entire sequence.
This drift is not noticeable visually, and happens because a
combination of a large number of robust feature points and
edges makes it easier for ViSP to track the overall orientation
of the car, while larger inter-frame motion disadvantages the
photometric minimization. However, the proposed approach
is more accurate than ViSP in terms of translation.

Across the three sequences, it can be concluded that the
proposed approach performs better than both No KF and
ViSP. For brevity, we show the tracking error plots of only
ViSP and the proposed approach in Fig. 2a and Fig. 2b. For
the real dataset, all the object models were constructed using
manual measurements of the object. The banana model is
only a rough approximation of the shape of the real banana.
Both the box and the car got accurately tracked (for visual
validation, refer to Fig. 3), despite the obvious inaccuracies
in the model. The proposed approach was not affected by the
moderate occlusion of the objects by the hand. There were
some slippage of the model from the actual object while
tracking the banana. However, it never completely looses
tracking.

We tested our algorithm on an Intel Core i7-6600U CPU
with 16 GB RAM. Running on a single core of the system,
without SSE optimization and without using any GPU, the
basic C++ code written for implementing the proposed
approach achieves a runtime of 100 - 160 ms per frame,
including data capture, tracking and display on a simple GUI.
It can be envisaged that with either SSE optimization or with
the use of GPU, the overall algorithm can run much faster,
if required.

1All results can be viewed at: vimeo.com/316228510

https://vimeo.com/316228510


(a) Marmalade Container: Frame number:
50, 627, 650

(b) Coffee Machine: Frame number: 25, 275,
600

(c) Simulated Car: Frame number: 6, 200,
553

Fig. 1: Comparison of tracking results from ‘ViSP Generic Tracker’ [25] (ViSP - first row), ’Point-to-plane + Photometry
without Keyframes’ (No KF - second row) and the ’Proposed Approach’ (PA - third row)

Marmalade Container Coffee Machine Simulated Car

(a)

Marmalade Container Coffee Machine Simulated Car

(b)

Fig. 2: Comparison of a) Translation along X, Y, Z axis, plotted against groundtruth (GT), and b) Rotation (in radian)
along X, Y, Z axis, plotted against groundtruth (GT). X-axis shows the frame number, Y-axis represents the translation and

rotation respectively

Fig. 3: Tracking results from real data captured using Intel
RealSense for a) a box, b) a toy car, c) a banana

IV. CONCLUSION
We present an algorithm that accurately tracks the pose

of a complex object. The tracking is robust to occlusion

Table I: Summary of RMSE values

Marmalade Container Coffee Machine Simulated Car
Translation Rotation Translation Rotation Translation Rotation

No KF 0.045 0.139 0.284 0.032 0.265 0.072
ViSP 0.053 0.004 0.118 0.008 0.183 0.027
PA 0.043 0.003 0.048 0.006 0.179 0.036

The RMSE values for translation and rotation for the three synthetic
sequences, obtained by comparison with the groundtruth

and partial specularity of the scene. We provide validation
on both simulated and real data. The proposed approach
outperforms one of the best among the open-sourced, model-
based, 6DoF object tracking methods. It also outperforms
a partial re-implementation of a state-of-the-art tracking
method from recent advances in the field of tracking and
reconstruction. The proposed approach is an efficient method
to track complex objects that a) does not require detailed ob-
ject model (reducing the setup time in practical applications),
b) tracks objects with better accuracy than comparable state-
of-the-art approaches.
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