B. Alvarez-samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana University Mathematics Journal, vol.57, issue.1, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00126256

T. B. Benjamin and M. J. Lighthill, On cnoidal waves and bores, Proc. R. Soc. Lond. A, vol.224, pp.448-460, 1159.

N. Bonneton, P. Bonneton, J. Parisot, G. Sottolichio, and . Detandt, Tidal bore and Mascaret -example of Garonne and Seine Rivers, Comptes Rendus Geosciences, vol.344, pp.508-515, 2012.

P. Bonneton, Modelling of periodic wave transformation in the inner surf zone, Ocean Engineering, vol.34, issue.10, pp.1459-1471, 2007.

P. Bonneton, N. Bonneton, J. Parisot, and B. Castelle, Tidal bore dynamics in funnel-shaped estuaries, Journal of Geophysical Research: Oceans, vol.120, issue.2, pp.923-941, 2015.

P. Bonneton, J. Van-de-loock, J. Parisot, N. Bonneton, A. Sottolichio et al., On the occurrence of tidal bores -The Garonne River case, Journal of Coastal Research, issue.64, p.6, 2011.

P. Bonneton, J. Parisot, N. Bonneton, A. Sottolichio, B. Castelle et al., Large Amplitude Undular Tidal Bore Propagation in the Garonne River, Proc. of the 21st ISOPE Conf, pp.870-874, 2011.

H. Chanson, Hydraulics of Open Channel Flow -2nd Edition, 2004.

H. Chanson, Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results, European Journal of Mechanics -B/Fluids, vol.28, issue.2, pp.191-210, 2009.

F. Chazel, D. Lannes, and F. Marche, Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J.Sci.Comput, vol.48, issue.3, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00482561

M. W. Dingemans, Water Wave Propagation Over Uneven Bottoms: Linear wave propagation, 1997.

G. A. El, R. H. Grimshaw, and N. F. Smyth, Unsteady undular bores in fully nonlinear shallow-water theory, Physics of Fluids, vol.18, issue.2, p.27104, 2006.

H. Favre, Etude théorique et expérimentale des ondes de translation dans les canaux découverts. Dunod, 1935.

A. G. Filippini, M. Kazolea, and M. Ricchiuto, A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up, Journal of Computational Physics, pp.381-417, 2016.

A. G. Filippini, M. Kazolea, and M. Ricchiuto, A Flexible 2D Nonlinear Approach for Nonlinear Wave Propagation, Breaking and Run up, Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference (ISOPE), pp.1323-1331, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01612064

A. G. Filippini, M. Kazolea, and M. Ricchiuto, Hybrid finite-volume/finiteelement simulations of fully-nonlinear/weakly dispersive wave propagation, breaking, and runup on unstructured grids, SIAM Conference on Mathematical and Computational Issues in the Geosciences, 2017.

T. P. Gourlay, The supercritical bore produced by a high-speed ship in a channel, Journal of Fluid Mechanics, vol.434, pp.399-409, 2001.

R. S. Johnson, Shallow Water Waves on a Viscous Fluid-The Undular Bore. The Physics of Fluids, vol.15, pp.1693-1699, 1972.

R. S. Johnson, Edge waves: theories past and present, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.365, pp.2359-2376, 1858.

M. Kazolea, A. I. Delis, and C. E. Synolakis, Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations, Journal of Computational Physics, vol.271, pp.281-305, 2014.

M. Kazolea and M. Ricchiuto, On wave breaking for Boussinesq-type models, vol.123, pp.16-39, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01698300

D. Ketcheson, M. Quezada-de, and L. , Diffractons : Solitary Waves Created by Diffraction in Periodic Media, Multiscale Modeling & Simulation, vol.13, issue.1, pp.440-458, 2015.

D. Lannes, Mathematical analysis and asymptotics. Mathematical Surveys and Monographs, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101991

D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2d simulations, Journal of Computational Physics, pp.238-268, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932858

R. Lemoine, Notules hydrauliques. La Houille Blanche, pp.183-186, 1948.

J. Miles, Edge waves on a gently sloping beach, Journal of Fluid Mechanics, vol.199, pp.125-131, 1989.

D. H. Peregrine, Calculations of the development of an undular bore, Journal of Fluid Mechanics, vol.25, issue.02, p.321, 1966.

Y. Satria-putra, A. Beaudoin, G. Rousseaux, L. Thomas, and S. Huberson, 2d numerical contributions for the study of non-cohesive sediment transport beneath tidal bores, Comptes Rendus Mécanique, vol.347, issue.2, pp.166-180, 2019.

M. Quezada-de-luna and D. Ketcheson, Two-dimensional wave propagation in layered periodic media, 2013.

F. Shi, J. T. Kirby, J. C. Harris, J. D. Geiman, and S. T. Grilli, A highorder adaptive time-stepping tvd solver for boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, pp.36-51, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01744788

F. Shi, M. Malej, J. M. Smith, and J. T. Kirby, Breaking of ship bores in a boussinesq-type ship-wake model, Coastal Engineering, vol.132, pp.1-12, 2018.

S. Soares-frazao and Y. Zech, Undular bores and secondary wavesExperiments and hybrid finite-volume modelling, Journal of Hydraulic Research, vol.40, issue.1, pp.33-43, 2002.

M. Tissier, Etude numérique de la transformation des vagues en zone littorale, de la zone de levée aux zones de surf et de jet de rive, vol.1, 2011.

M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes, A new approach to handle wave breaking in fully non-linear Boussinesq models, Coastal Engineering, vol.67, pp.54-66, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00798996

M. Tonelli and M. Petti, Hybrid finite-volume finite-difference scheme for 2DH improved Boussinesq equations, Coast. Eng, vol.56, pp.609-620, 2009.

A. Treske, Undular bores (favre-waves) in open channels -Experimental studies, Journal of Hydraulic Research, vol.32, issue.3, pp.355-370, 1994.

F. , Edge waves on a sloping beach, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol.214, pp.79-97, 1952.

G. Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya, A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, Journal of Fluid Mechanics, vol.294, pp.71-92, 1995.