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Power Control in Parallel Symmetric α-Stable
Noise Channels

Mauro de Freitas, Malcolm Egan, Laurent Clavier, Anne Savard and Jean-Marie Gorce

Abstract—Parallel channels form a basic building block for
communication systems, including those based on OFDM and
CDMA. While parallel Gaussian noise channels have been
widely studied, parallel impulsive noise channels have received
significantly less attention despite their importance in a range of
modern communication systems. In this paper, this problem is ad-
dressed and a power allocation strategy is developed for parallel
symmetric α-stable noise channels—a key class of impulsive noise
channels. We show that our strategy can improve achievable rates
by up to a factor of 1.5 over the standard waterfilling algorithm
that assumes the noise is Gaussian.

I. INTRODUCTION

Impulsive noise arises in a range of communication systems
and is often modeled via the α-stable distribution. In partic-
ular, the memoryless additive α-stable noise channel models
interference in wireless communications for the Internet of
Things (IoT) [1]. In other wireless network scenarios, α-stable
noise models have also been developed [2]. Unlike Gaussian
models, the α-stable distribution is characterized by heavy
tails, which accounts for a high probability of large amplitude
noise. However, due to the lack of closed-form expressions
for the noise probability density function, characterizations
of achievable rates in the presence of α-stable noise are
challenging to obtain. A consequence is that the problem of
resource allocation has not been addressed.

Despite these challenges, there have recently been several
new results characterizing the capacity of real additive α-stable
noise channels subject to a range of constraints. In [3], the
capacity of the Cauchy noise channel (α = 1) was derived
subject to a logarithmic constraint. More generally, capacity
bounds for α > 1 subject to absolute moments constraints
were obtained in [4]. The extension to the complex isotropic
α-stable channel was also studied in [5] and vector α-stable
channels in [6]. These capacity bounds now provide a basis to
optimize systems that experience additive symmetric α-stable
noise.

In this paper, we consider the problem of power allocation
in parallel symmetric α-stable noise channels (1 < α < 2)
subject to a power constraint. In the case of a Gaussian input
in the presence of additive Gaussian noise, the rate-optimal
solution is the well-known waterfilling algorithm. However,
the waterfilling algorithm is tailored to the Gaussian noise
channel. As such, it is highly desirable to develop alternative

M. de Freitas, L. Clavier and A. Savard are with Université de Lille 1, IEMN
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power control strategies that do not rely on the Gaussian noise
assumption.

We adopt a two-step approach to the design of power
control for the symmetric α-stable noise channel. The first
step is to select the input distribution. We note that the
optimal input distribution for this channel is discrete and can
only be obtained via numerical optimization. Therefore, we
evaluate achievable rates via Monte Carlo estimates of the
symmetric α-stable noise channel with Gaussian and truncated
symmetric α-stable inputs. We show that Gaussian inputs per-
form comparably or outperform truncated symmetric α-stable
inputs, and also nearly achieve a numerical approximation of
the capacity obtained via the Blahut-Arimoto algorithm [7,
8]. This is despite the fact that the truncated symmetric α-
stable inputs approximately match the input with the noise
distribution, and are known to be a good choice with fractional
moment constraints [4].

The second step is to optimize the power control for the
selected input distribution and develop a new power allocation
scheme for Gaussian inputs. This is a challenging problem due
to the fact that the achievable rate is not known in closed-
form for symmetric α-stable noise channels with Gaussian
inputs. To this end, we introduce an approximation via a
scale parameter matching method (detailed in Section IV-A) by
exploiting the achievable rate with symmetric α-stable inputs
obtained in [4].

The resulting optimization problem is convex and therefore
readily solved numerically, but differs from the waterfilling
solution arising in Gaussian noise models. In particular, the
KKT conditions lead to a system of non-linear equations
unlike the linear equations arising from parallel Gaussian noise
channels.

In summary, we make two key contributions:
1) We show that Gaussian inputs perform well on scalar

additive symmetric α-stable noise channels subject to
a power constraint, which is compatible with existing
coding schemes.

2) We introduce a new power control scheme for parallel α-
stable noise channel with Gaussian inputs based on scale
parameter matching (detailed in Section IV-A). This
leads to a convex optimization problem with numerical
results demonstrating that our power control schemes
can outperform by up to a factor of 1.5 the rate achieved
by waterfilling for Gaussian inputs, where the α-stable
noise is assumed to be Gaussian.

The remainder of this paper is organized as follows. In
Section II, we detail the parallel symmetric α-stable noise



model. In Section III, we study the effect of different input
distributions. In Section IV, we develop our power control
strategy. In Section V, we conclude the paper.

II. SYSTEM DESCRIPTION

Consider the real-valued memoryless additive symmetric α-
stable noise (ASαSN ) channel

Y = hX +N, (1)

where h ∈ R is a constant, X is the channel input, and N is
symmetric α-stable noise with 1 < α < 2. We focus on the
range 1 < α < 2 as in wireless communications this corre-
sponds to a path loss exponent in the range (2, 4) [1], which
captures a range of realistic electromagnetic environments.

The α-stable random variables (α < 2) are an important
class of random variables with heavy-tailed probability density
functions and infinite second moments, which have been
widely used to model impulsive signals [4]. The probability
density function of an α-stable random variable is parameter-
ized by four parameters: the exponent 0 < α ≤ 2; the scale
parameter σ ∈ R+; the skew parameter β ∈ [−1, 1]; and the
shift parameter δ ∈ R. As such, a common notation for an
α-stable distributed random variable is X ∼ Sα(σ, β, δ). In
the case β = δ = 0, the random variable X is said to be
symmetric.

In general, symmetric α-stable random variables do not have
closed-form probability density functions. Instead, they are
usually represented by their characteristic function, given by

E[eiθX ] = e−σ
α|θ|α (2)

As a consequence of the lack of a closed-form probability
density function, there are few closed-form characterizations
of the capacity for symmetric α-stable noise channels.

Nevertheless, it is possible to derive closed-form expres-
sions for achievable rates. In particular, the rate of the ASαSN
channel with a symmetric α-stable input was derived in [4],
given by

R =
1

α
log

(
1 + |h|ασ

α
X

σαN

)
, (3)

where σX is the scale parameter of the symmetric α-stable
input and σN is the scale parameter of the symmetric α-stable
noise.

The main problem we consider in this paper is power control
for K parallel ASαSN channels with a sum power contraint.
In this case, the system consists of K channels defined by

Yi = hiXi +Ni, i = 1, 2, . . . ,K, (4)

where hi ∈ R, Xi is the real-valued input to the i-th channel
and Ni is real symmetric α-stable noise, independent for each
i but not necessarily identically distributed. At present, there
are no known closed-form expressions of achievable rates
for power-constrained inputs in channels with symmetric α-
stable noise. Nevertheless, if the power constraint is relaxed,
it follows from (3) that the sum-rate for parallel channels

achieved using a symmetric α-stable input for each channel is
given by

RS =

K∑
k=1

1

α
log

(
1 + |hk|α

σαX,k
σαN,k

)
. (5)

III. INPUT DISTRIBUTION SELECTION

Although the optimal input distribution for the power con-
strained additive Gaussian noise channel is well-known to be
Gaussian, this is not the case for symmetric α-stable noise
channels. As such, it is challenging to optimize the power
control in the case of parallel channels and it is highly desir-
able to obtain input distributions that yield a high achievable
rate with a simple parametric form.

We note that the optimal input distribution for an ASαSN
channel is discrete [9] and does not have a simple parametric
form. While it is possible to obtain numerical approximations
of this optimal input, even for a single channel it is time
consuming [10]. Since the optimal input distribution depends
on the power constraint, this means that it is also difficult to
implement such an input within the context of a power control
algorithm as both the input and power need to be jointly
optimized. Using existing numerical optimization methods,
this leads to very slow power control, which is not useful
when, for example, fading is time-varying.

To overcome this difficulty, we investigate the choice of the
input distribution for the ASαSN channel in (1) subject to
a power constraint. We search for the distribution that allows
an achievable rate close to the capacity obtained through the
mutual information optimization problem:

maximize
µ∈P

I(X;Y )

subject to Eµ[X2] ≤ P,
(6)

where P is the set of probability measures on (R,B(R)).
In order to investigate the choice of the input distribution,

we consider the following four choices:
(i) Zero-mean Gaussian input XG with probability density

function

pXG(x) =
1√

2πσ2
exp

(
−x

2

σ2

)
. (7)

(ii) Truncated symmetric α-stable inputs: let XS be a sym-
metric α-stable random variable, then the truncated
symmetric α-stable input XT with truncation level T
is constructed via

XT =

{
XS , |XS | ≤ T
sign(XS)T |XS | > T.

(8)

The power of the truncated symmetric α-stable input is
given by

E[X2
T ] =

∫ T

−T
x2pXS (x)dx+ 2

∫ ∞
T

T 2pXS (x)dx,

(9)

where pXS is the probability density function of the
symmetric α-stable random variable XS .



(iii) Truncated Gaussian inputs: let XG be a Gaussian ran-
dom variable. The truncated Gaussian input XG,T can be
constructed as the truncated α-stable input based on (8),
replacing XS by XG. The power of this input is given by
(9), replacing pXS (x) by pG(x), the probability density
function of the Gaussian random variable XG.

(iv) Numerical approximation of the capacity via the Blahut-
Arimoto algorithm [7, 8].

We selected the Gaussian input due to the fact that exist-
ing codes are typically constructed to approximate Gaussian
inputs. The truncated symmetric α-stable input is chosen
because it approximately matches the noise distribution (nearly
optimal for fractional moment constraints [4]) and also sat-
isfies the finite power constraint. It is also an appropriate
choice of input for the case where the channel is both power
and amplitude constrained. The truncated Gaussian input is
selected as it forms a natural choice in the case of both power
and amplitude constraints. The numerical approximation of the
capacity forms a baseline to assess the optimality of the other
three schemes.

To understand how the choice of input distribution affects
the achievable rate, Fig. 1 plots the achievable rates using
a Gaussian input, a truncated symmetric α-stable input, and
also a truncated Gaussian input. In each case, the power is
constrained to be P = 3 and the figure shows the impact on
the truncation level for each input distribution. As achievable
rates of additive symmetric α-stable noise channels are not
known, in the experiments they are estimated via Monte
Carlo simulation. In particular, we use 5 · 106 input samples,
the entropy of the output and the noise are obtained by
estimating the corresponding probability density functions via
the kernel method [11], which was performed by using a grid
of 106 points and support [−200, 200].
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Fig. 1. Comparison of achievable rates using a truncated symmetric α-stable
input (α = 1.4, E[X2

T ] = 3), a Gaussian input and a truncated Gaussian
Input (E[X2

G] = E[X2
G,T ] = 3) in the presence of symmetric α-stable noise

(α = 1.4, σN = 0.1).

We observe in Fig. 1 that the Gaussian input outperforms
both the truncated Gaussian and truncated symmetric α-stable

inputs. Similarly, for most choices of the truncation level, the
truncated Gaussian input also outperforms the truncated sym-
metric α-stable input. Moreover, the truncation level rapidly
has no effect on the achievable rate for the truncated Gaussian
input. Importantly, the Gaussian input also yields a rate that
is very close to a numerical approximation of the capacity
obtained via the Blahut-Arimoto algorithm [7, 8].

We remark that based on extensive numerical experiments,
we have observed that these trends hold for a wide range
of channel parameters. This suggests that as in the Gaussian
noise channel, a Gaussian input is a reasonable choice for the
symmetric α-stable noise channel.

IV. POWER CONTROL STRATEGY

In this section, we develop a power control strategy for
Gaussian inputs in parallel ASαSN channels. The lack of
analytical expression for capacity or even achievable rates
in the case of power constrained input makes the problem
complex. Motivated by the results obtained in Section III,
we propose to view the Gaussian inputs as approximations
of symmetric α-stable inputs. This is possible since both of
these inputs lie in the α-stable family and a scale parameter
matching is used to approximate the Gaussian distribution
via an α-stable distributions. This justifies the use of (5) to
approximate the sum-rate with Gaussian inputs and a simple
analytical form for the power optimisation problem. We verify
the performance of our strategy via numerical simulation.

A. Scale Parameter Matching

Due to the fact that the input is Gaussian, no tractable
closed-form expressions are known for the rate over α-stable
noise channels. As a consequence it is highly desirable to ap-
proximate the Gaussian statistics by another α-stable random
variable so that the sum-rate in (5) can be exploited. In order
to do this, we propose a scale parameter matching method
which selects the power of the Gaussian input by optimizing
the scale parameter of another α-stable input.

Any zero-mean Gaussian random variable
X ∼ N (0,Var(X)) is also a stable random variable
Sα(σX , 0, 0), where the link between the scale parameter of
the stable distribution σX and the variance of the Gaussian
notation is given via

σ2
X =

1

2
Var(X). (10)

The idea of scale parameter matching is to approximate the
Gaussian input distribution (X ∼ N (0, 2σ2

Z)) by a symmetric
α-stable random variable (Z ∼ Sα(σZ , 0, 0)).

For our power control problem, this scale parameter match-
ing method allows for the approximation of the sum-rate
with Gaussian inputs by the sum-rate with symmetric α-
stable inputs. As the rate of symmetric α-stable inputs for
the additive symmetric α-stable noise channel is known, a
tractable power control problem can be formulated as detailed
in Section IV-B.

To justify the scale parameter matching approximation, it is
necessary to establish how close the rate with Gaussian inputs



is to the rate with symmetric α-stable inputs. To this end, we
have the following bound.

Theorem 1. Let XG ∼ N (0, 2σ2
X), XS ∼ Sα(σX , 0, 0),

YG = XG +N and YS = XS +N . Then,

|I(XG;YG)− I(XS ;YS)|

≤ max

{∣∣∣∣∣hmin −
1

α
log

(
1 +

( √
P√

2σN

)α)∣∣∣∣∣ ,∣∣∣∣∣ log(2eb)

log 2
− h(N)− 1

α
log

(
1 +

( √
P√

2σN

)α)∣∣∣∣∣
}

=: EB(P ), (11)

where b =
√

2P
π + 2

πΓ
(
1− 1

α

)
σN , hmin = max{h(XG) −

h(N), 0} and h(XG) = 1
2 log(2πeP ).

Proof. Omitted due to space constraints.

An observation from (11) is that as P →∞, EB(P ) tends
to a constant. This provides evidence that the scale matching
approach gives consistent results.

In order to gain further insights into the behavior of the
approximation, Fig. 2 plots both the actual relative error and
the relative errors using the bound in (11) for varying power
levels P . A key observation is that the relative error in both
cases is approximately constant. This implies that the bound
and actual relative error have the same qualitative behavior.
Moreover, despite the fact that the relative error is greater
than 10%, we note that for a wide range of values of P

|I(XG;YG)− I(XS ;YS)|
1
α log

(
1 +

( √
P√

2σN

)α) ≈ κ, (12)

where κ is a non-negative constant. It then follows that

I(XG;YG) ≈ (κ+ 1)
1

α
log

(
1 +

( √
P√

2σN

)α)
. (13)

For the purpose of optimizing P , the factor of (1 + κ) does
not affect the solution. This provides a justification of the
scale parameter matching method, which is further validated
by numerical results in Section IV.

B. Optimization Problem Formulation

The scale parameter matching method provides a means of
approximating the rate of a symmetric α-stable noise channel
with a Gaussian input by a symmetric α-stable noise channel
with an α-stable input. This method yields a power control
optimization problem given by

maximize
σX,k, k=1,2,...,n

n∑
k=1

1

α
log

(
1 + |hk|α

σαX,k
σαN,k

)
(14)

subject to
n∑
k=1

2σ2
X,k ≤ Pmax

σX,k ≥ 0, k = 1, 2, . . . , n.
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Fig. 2. Relative error of bound for α = 1.5 and σN = 0.1.

In particular, the parameter σX,k is the parameter for a
symmetric α-stable input. Using the scale parameter matching
method, the Gaussian inputs are assumed to have the same
parameters σX,k and as such, the power levels of the inputs
are obtained via (10). Note that this relationship is consistent
with the fact that the constraint in (14) is in fact a sum power
constraint for Gaussian inputs.

To solve (14), we apply the transformation ρk = σ2
X,k,

which yields the problem

maximize
ρk, k=1,2,...,n

n∑
k=1

1

α
log

(
1 + |hk|α

ρ
α/2
k

σαN,k

)
(15)

subject to
n∑
k=1

2ρk ≤ Pmax

ρk ≥ 0, k = 1, 2, . . . , n.

We observe that the problem in (15) is convex, which
follows from the fact that the function ρ

α/2
k is concave for

0 < α < 2 and the linearity of the constraints or from the
computation of the Hessian for the objective in (14).

Observe that unlike the Gaussian noise model, the system of
equations arising from the KKT conditions cannot be reduced
to simple function parameterized by λ, able to be found using
the bisection method. That is, either the non-linear system of
equations must be solved numerically or a general purpose
convex optimization solver must be applied to (14).

C. Numerical Results

We compare the proposed approach with the waterfilling
algorithm designed for Gaussian noise in the case of two
parallel channels. In applying the waterfilling algorithm, we
assume that the system does not know the noise is non-
Gaussian. As such, the variance of the noise is estimated by
observing NS = 5 · 106 samples and applying the estimator

σ̂2
G,k =

1

NS − 1

NS∑
i=1

n2i,k, k = 1, 2, (16)



where ni,k is the i-th noise sample on the k-th channel.
Note that since the variance of α-stable noise is infinite, it
follows that the variance estimate in (16) does not converge.
Nevertheless, (16) provides a means of systematically choos-
ing the noise variance parameter required for the waterfilling
algorithm, corresponding to the behavior of a system that does
not know the noise is non-Gaussian.

In order to provide a fair comparison with power allocation
based on our proposed method, the exponent α and the disper-
sion are also estimated based on NS = 5 · 106 samples, using
the characteristic function method [12]. This is to ensure that
noise parameters are estimated rather than assumed known.
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In the experiments, the scale parameter of the symmetric α-
stable noise is σN,k = 0.1, k = 1, 2 and 5·106 Gaussian input
samples are generated. Fig. 3 shows the estimated achievable
rate for each choice of α, channel h and power allocation
method. The rates are estimated for several choices of the
channel vector h using the same procedure as for Fig. 1 with
50 Monte Carlo iterations. Observe that our proposed strategy
implemented in CVX [13] outperforms the waterfilling algo-
rithm for each choice of parameters. In particular, for α = 1.4

and h1 ∈ {0.1, 0.5} and h2 varying between 0.1 and 0.9 an
increase by up to a factor of 1.5 is achieved.

Fig. 4 plots the achievable rates for varying α and a fixed
channel h = [0.9 0.7]. Observe that the proposed strategy
outperforms waterfilling in all cases. However for α ≈ 2, there
is negligible difference between the two approaches and our
proposal closely matches the optimal waterfilling.

V. CONCLUSION

We have considered the problem of power control for
parallel symmetric α-stable noise channels. We have shown
that Gaussian inputs are a good choice, consistent with the
Gaussian noise case. We then developed a new power control
strategy for Gaussian inputs tailored to symmetric α-stable
noise. This strategy significantly outperforms the rate achieved
when the impulsive nature of the noise is ignored. A natural
extension of our model is to MIMO systems, which is a target
for future work.
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