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ABSTRACT
Nowadays, NUMA architectures are common in compute-intensive
systems. Achieving high performance for multi-threaded applica-
tion requires both a careful placement of threads on computing
units and a thorough allocation of data in memory. Finding such a
placement is a hard problem to solve, because performance depends
on complex interactions in several layers of the memory hierarchy.
In this paper we propose a black-box approach to decide if an ap-
plication execution time can be impacted by the placement of its
threads and data, and in such a case, to choose the best placement
strategy to adopt. We show that it is possible to reach near-optimal
placement policy selection. Furthermore, solutions work across
several recent processor architectures and decisions can be taken
with a single run of low overhead profiling.

KEYWORDS
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1 INTRODUCTION
With the advent of NUMA (Non Uniform Memory Access) archi-
tectures, optimizing applications execution time is known to be a
extremely difficult endeavor. Not only it requires to carefully write
the application such that the threads efficiently use the available
resources (e.g., cores, caches and memory) but, even if the code
is highly optimized, launch time optimizations and decisions may
have a great impact on performance.

In this paper, we focus on this second aspect of the problem.
We assume that a multi-threaded application is already statically
optimized and we look at the factors impacting its execution time
that can be set at launch-time. The two main factors targeted here
are the thread placement policy (which thread is mapped on which
core) and the memory allocation policy (where memory pages are
allocated). Indeed, data locality and memory contention are affected
by these policies and can have a huge impact in several levels of
the memory hierarchy and thus, on application performance.

The goal of this paper is to provide a methodology and models to
answer two questions: 1) Is an application sensitive to the placement
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of its threads and data on a given NUMA architecture? 2) What
is the best placement and allocation policy for this application on
that architecture?

To achieve this goal, we follow several lines of study. First, to
capture applications characteristics, we use two methods that al-
low capturing different kinds of metrics and have a different cost:
instrumenting the application binary (costly and characterizing
applications regardless of the underlying hardware) or relying on
hardware counters (cheap and embedding hardware specific re-
sponses). Second, we study several meta-models used in machine
learning to model the impact of placement on applications. Third,
we target many different applications and benchmarks that embrace
a large spectrum of use-cases. Fourth, we use testbeds spanning
different Intel processor generations. We study predictions on a
given architecture and predictions across multiple architectures.

The two main results of this article are the following:

• On multiple Intel platforms, it is possible to build a model
that can decide whether a new application is sensitive to
locality and we reach an accuracy close to 80%.

• For applications that are sensitive to locality, it is further
possible to build models taking good placement decisions
(with respect to the studied placement strategies) and to
achieve speedups that are close to the optimal.

Moreover, the following additional results have been obtained
while conducting this study:

• It is possible to build a model on a processor family, and to
obtain good predictions on another processor family.

• Although fast to collect metrics and unable to precisely cap-
ture the algorithmic characteristics of applications, hardware
counters provide sufficient information to take decisions
about placement.

The remainder of the paper is organized as follows. In Section 2,
we describe the context and the state of the art. The methodology
is presented in Section 3. The experimental testbed is described in
Section 4. In Section 5, we present and study the results. Finally,
concluding remarks are given in Section 6.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 CONTEXT
2.1 Objectives and assumptions
This study considers the placement of threads and data of a mul-
tithreaded application running in a modern NUMA platform. As
illustrated in Figure 1, such platforms are composed of several multi-
core processors. Each core has access to some private caches while
a last-level cache (LLC) is shared between all cores on the same pro-
cessor. The processors are connected through a high performance
interconnect (e.g., Intel Quick Path Interconnect). The memory is
shared between all processors and cache coherence is ensured by
the hardware. Part of the memory is associated with each processor.
A processor together with its local part of the memory is called
a NUMA node. Local accesses to data, i.e. inside a node, is fast
whereas accesses to a remote node, whether the data is in a remote
cache or in a remote memory, is slower.

Several phenomena can impact the performance ofmulti-threaded
applications in such platforms. When deciding on the placement
of threads and data, two main points need to be considered: local-
ity and contention. Locality refers to the fact that for a thread to
perform well, the data it accesses should be as close as possible.
The best case is when the data is in some cache that the thread
can directly access. The worst case is usually when the data is in
another NUMA node. Contention refers to the fact that if too many
threads use some shared resources at the same time, performance
degradation is to be expected. The LLC, the interconnect links, and
the memory controllers are examples of resources that can suffer
from contention. Another difficulty comes from the fact that threads
of a multithreaded application collaborate to run a computation,
and so, use shared memory to synchronize and communicate. The
challenge is then to optimize locality by taking into account ac-
cesses of threads to private and shared variables while avoiding
contention on shared hardware resources.

In this study we consider the case where a single multithreaded
application runs on a NUMA platform. The application uses all
available cores. Our study is limited to cases where Simultaneous
Multi-Threading (SMT) is disabled to be able to focus on the locality
and contention issues that occur at the level of the LLC and below
(enabling SMT would raise additional questions, e.g. related to the
contention on the computing resources inside one core).

In this context, deciding on the appropriate threads placement
and data allocation policy is a complicated problem that we aim to
solve. Since placement decision algorithms can be expensive [14],
we are also concerned by applications need for such an optimization.
We seek for solutions to answer these two questions for unseen
applications and/or unseen platforms. Such properties are impor-
tant as they imply that obtained solutions could work for users
with different machines and undisclosed applications and would
be resilient to modifications in applications. Therefore, our overall
goal is to build models that are able to decide, after a single run of
an application for a given set of inputs1 on a single machine (the
minimum effort required to collect metrics), for a target (eventu-
ally different) platform: i) whether the application’s performance
is sensitive to placement and ii) if yes, what is the best placement
policy for this application.

1In the following, the run of an application is always studied for a given set of inputs.
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Figure 1: Abstract representation of an architecture with 2 NUMA
nodes. LLC stands for Last-Level Cache.MC stands forMemoryCon-
troller

Our study focuses on compute-intensive applications [1, 2, 12].
Wemake a few assumptions about the characteristics of applications
to which our proposed technique is applied, but these assumptions
are common to many compute-intensive applications. First, our
study focuses on applications that follow the fork-join execution
model, i.e., threads are not dynamically created as a consequence
of some events. Hence the same number of threads is created in all
the runs of an application. Furthermore we assume that threads can
be uniquely identified using IDs assigned based on their creation
order, as it is for instance the case in OpenMP applications. The
other major assumption is that for a given set of inputs, the thread
with the same ID in two runs of the application execute similar
computations. This implies that our approach cannot work with
e.g. task programming paradigms out of the box.

We only study static policies: the placement of threads and the
policy for memory allocation are decided before launching the
application and remain for the whole application lifespan. To make
our problem tractable, we limit our study to two placement policies
for threads and to two for data. For threads, the choice is between:
i) having the threads with consecutive IDs placed on the same
processor (called Compact hereafter) which favor neighbors sharing,
and ii) having the threads assigned to processors in round-robin
(Scatter) mitigating neighbors contention. These two policies are
for instance supported by most OpenMP runtime libraries. For
data, the choice is between the two standard allocation policies: i)
memory is allocated on the node of the first thread that touches
the corresponding page (First-touch) targeting data locality; (ii)
memory is allocated in round robin on nodes (Interleave), mitigating
contention in memory controllers.

The approach we follow is to collect a set of metrics during the
run of applications. These metrics are collected using transparent
techniques for the applications, either based on hardware counters
or on information obtained through binary code instrumentation.
These metrics, together with the preferred placement strategy in a
given platform, are then used to train classification algorithms to
try to answer the questions raised above.
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2.2 Related work
Placement of threads and data in NUMA platforms has extensively
been studied in the literature. Locality and resource contention
issues are identified as the two main problems to tackle [21, 25, 34].

Our work follows an offline profiling approach to obtain informa-
tion about interactions between threads and aboutmemory accesses.
Some previous works have also used this approach. Diener et al [20]
propose a solution based on binary code instrumentation to obtain
information about the interactions between threads. Other works
try to collect information about memory accesses using the moni-
toring capabilities of modern processors [26, 27]. In this paper, we
consider metrics coming both from information obtained through
binary instrumentation and hardware counters.

Several works also tried to do online profiling, that is, to collect
information during the execution and to adapt thread or memory
page mapping based on this information [9, 13, 15, 18, 23]. To the
best of our knowledge, only few of them also tackle the issue of
characterizing the need for placement optimization [13]. Some rely
on hardware monitoring features of processors to take placement
decisions [9, 15, 23]. Online profiling has the advantage of being
able to adapt to changes in the behavior of the application during
the execution. On the other hand, offline profiling allows collecting
more extensive and precise information about memory accesses
and threads interactions and thus, can lead to better placement
decisions for applications that have a similar behavior during the
whole execution [21].

Most works on thread and/or data placement focus solely on op-
timizing locality [21]. However both locality and contention should
be taken into account to obtain a solution that can select a good
placement for a large variety of applications [15, 17]. A few solu-
tions try to deal with locality and contention only through thread
placement. However they mostly focus on cases where the number
of threads is less than the number of cores [23] or where multiple
applications are executed simultaneously on the platform [5, 30]. Re-
cent studies show that best results are achieved when both data and
thread placement are considered [9, 15, 19, 20]. This is confirmed
in our study (see Figure 2). We observe that all the combinations of
thread placement (Compact or Scatter) and data placement (First
Touch or Interleave) policies are at least once the best strategy for
an application.

In existing works, different metrics have been used to take place-
ment decisions. There is no general agreement on the best metrics to
use. Among the metrics that can be collected using hardware coun-
ters, cache miss rate, mostly at the LLC level, is often considered as a
good indicator of contention [5, 9, 33]. However other studies show
that using this metric can lead to wrong placement decisions [16].
Simple performance metrics such as MIPS (Millions Instructions
per Second) have also been considered [23]. At the level of memory
accesses and NUMA nodes, metrics such as memory read ratio,
local access ratio or memory controllers load imbalance have also
been studied [15]. More advanced metrics can be obtained with
a high accuracy using binary instrumentation. Such approaches
allow, among other things, collecting information about memory
access patterns [33] and about interactions between threads [13, 20].
Metrics of interests regarding interactions between threads include
the volume of data exchanged between threads, the frequency of

the exchanges or the locality of the exchanges. As highlighted in
previous studies, such interactions should be tracked at the level of
cache lines [13, 20]. Our study considers a representative set of all
these metrics (see Section 3) both derived from hardware counters
and binary instrumentation. When tracing interactions between
threads based on memory accesses, we implemented mechanisms
at the granularity of cache lines.

Some works have studied the use of statistical models to predict
the performance of multi-threaded applications. Castro et al. [10]
proposed a machine learning approach to take thread placement
decisions in the context of software transactional memory. The
work that is the closest to ours is the one by Wang et al. [32]. They
have proposed solutions based on Artificial Neural Networks and
SVMs, using a few simple metrics as inputs such as the number of
L1 misses, to predict the optimal number of threads and the best
scheduling policy for these threads for a new application on a given
platform. Their results are encouraging as they are able to make
good predictions on average and their solution works on multiple
platforms. In this study, we adopt a similar approach but we tackle
a different problem: we do not consider the scalability issue, and
we rather emphasize on decisions regarding both threads and data
placement. Furthermore, we also try to characterize the need for
applying placement policies that may be expensive to compute
and apply online. Finally, our study considers a much larger set
of metrics and compares the interest of binary instrumentation
against hardware counters.

3 METHODOLOGY
Our approach to predict the sensitivity of applications to placement
and to identify the best placement policies for threads and data can
be summarized as follows. We collect a large set of data to capture
the main characteristics of applications through a single run with
a default placement policy. This data is obtained via transparent
methods, either based on binary instrumentation or hardware coun-
ters. It is further preprocessed to build non linear models out of
several supervised classifiers. Finally a model selection is performed
and validated on different applications and machines.

This section starts with a few definitions. Then, the collected
metrics about the execution of applications are detailed. Finally,
the classification algorithms, the pre-processing transformations,
and the method for training, evaluating, and validating models are
presented.

3.1 Definitions
As described previously, this study focuses on two placement poli-
cies for threads (compact and scatter) and for memory pages (first-
touch and interleave). We name placement policy or placement strat-
egy, the combination of a thread placement policy and a data allo-
cation policy. Hence, there are four possible placement strategies.
We define compact-firsttouch as the default strategy.

We define as speedup, the ratio of the application execution
time when run with a specific policy over its execution time with
the default policy. If the speedup or slowdown of an application
with one placement policy exceeds 10% then we tag it as sensitive
to placement. After running each application with all policies, we
were able to tag them as sensitive to placement or not and to tag
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LD_INSTANT Load instructions per cycle.
SR_INSTANT Store instructions per cycle.

L1_MISS_REL
Data cache misses in the first level
cache per memory (load or store) instruction.

L2_MISS_REL Same as L1_MISS_REL for level 2 cache.
L3_MISS_REL Same as L1_MISS_REL for level 3 cache.

NODE_MISS_REL
Remote memory accesses per memory
(load or store) instruction.

Table 1: Metrics derived from hardware counters.

them according to their preferred policy. These tags are further
used as output targets for models.

3.2 Applications Characterization Metrics
A total of 29 metrics are computed per application, based on data
collected while running each application with the default placement
policy. This set of metrics, described below, is used as input to the
models built in our study. For each application a call to a custom
library is wrapped around a region of interest2 to collect hardware
counters value using the PAPI library [29] or to start instrumenting
applications binary with the Pin tool [24].

Hardware counters and approaches based on binary instrumen-
tation offer different trade-offs. Collecting hardware counters is a
cheap operation compared to binary instrumentation as the former
induces negligible side effects on execution compared to a 100X
slowdown and heavy memory overhead for the latter. However,
these two techniques enable to get different information about ap-
plications. With hardware counters, obtained information is less
about the application algorithm than about the hardware response
to the application execution. Through binary instrumentation, one
can extract more precise information about the application algo-
rithm (interactions between threads, memory access patterns) but
the collected data are mostly agnostic to the platform on which the
application executes.

3.2.1 Hardware counters. For each application, we collect the value
of several hardware counters at the end of the execution using PAPI.
We select abstract counters defined by PAPI, which are supposed
to be equivalent across tested architectures. They capture infor-
mation about the total number of cycles used by the application,
about executed instructions, about cache misses at all levels of the
cache hierarchy and about accesses to the NUMA nodes. To have
a meaningful comparison of these numbers between applications
that may have a very different execution duration, metrics derived
from these counters are expressed relatively to the total number of
cycles or of data accesses. The metrics are summarized in Table 1.

3.2.2 Binary Instrumentation. Runtime instrumentation of appli-
cations memory accesses is performed with the Pin framework.
Accessed memory addresses are recorded at cache line granularity
to maintain a representation of the memory state (e.g., ID of the
threads that have accessed the cache line, last thread that mod-
ified the cache line, etc. ). Such mechanisms enable to compute
several statistics on applications execution, including per-thread

2The region of interest of applications corresponds to the outer most computational
part, called once during application lifespan, and positioned in between data initializa-
tion and cleanup.

memory footprint, inter-thread communications, etc. Metrics de-
rived from these statistics are listed in Table 2. For those which are
not straightforward, we provide a detailed explanation below.

A communication between threads i and j is defined as the first
read from j after i writes to a common cache line. The sum over all
cache lines of such an event is called the communication amount
between these threads. In a similar way, the amount of sharing
between each pair of threads is defined as the sum over cache lines
of individual cache line sharing, where sharing amount is defined as
the intersection of the number of accesses for each thread of the pair
to a common cache line. Inter-thread communications and sharing
matrices have been used in prior works [20] to derive metrics of
interest toward a solution to threads and data mapping problems.

For such matrices, their heterogeneity, the mean of their normal-
ized values and their balance aim at characterizing the impact of
threads mapping. Heterogeneity represents the proportion of inter-
threads exchanges over accesses to private data. Balance is defined
as the average matrix value over the maximum matrix value and
is high if all the matrix values are close to each other, and small if
one thread is communicating/sharing more than the others.

Neighbors sharing/communication fraction is defined as the sum
of adjacent thread pairs communications over the sum of matrix
values, and quantifies whether communications are mainly focused
on direct neighbors.

The need for balance at the scale of NUMA nodes is measured
withmatrices cluster deviation. It is defined as the standard deviation
across NUMA domains (i.e. groups of consecutive thread IDs inside
the same NUMA node) of the sum of values inside the correspond-
ing domain. It is small when memory accesses are well balanced
across thread groups whereas high values may be an insight that
an interleave allocation policy would be a good choice.

When moving data from one thread to another in an occurring
communication event, we count the number of hops in the machine
topology (cores + caches + memories) as provided by hwloc [8],
to walk from source core to destination core. The average number
of hops per communication/sharing can then characterize locality
among threads with default thread placement.

3.3 Modeling Methodology
Models built in this paper3 follow a classic pipeline of sampling,
transformations, learning and models selection. Obtained models
are evaluated based on their ability to generalize their predictions
to new applications, new platforms, or even both at the same time.

Generalization to new applications employs a one-versus-all
training scheme to train models. It consists in removing two ap-
plications from the applications set, then training the model on all
applications but the two removed (i.e. the training set), and finally
performing a prediction on the first removed application (i.e. the
test set) and the second removed application (i.e. the validation set).
This training process is repeated for all applications pairs and the
models average performance on predictions for all applications is
reported.

Splitting the dataset in this way is necessary to perform vali-
dation after the model selection stage. Indeed, chances are that

3The complete implementation of the modeling methodology with the dataset de-
scribed in Section 4 has been published on CodeOcean platform [28] for reproducibility.
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sharing/communications_CC Average normalized amount of sharing/communications per thread
sharing/communications_CB Sharing/communication matrix balance
sharing/communications_CH Sharing/communication matrix heterogeneity
sharing/communications_NB Neighbors sharing/communication fraction
sharing/communications_clusterSD Inter NUMA cluster sharing/communications deviation
sharing/communications_hop_element Average number of topology hops per sharing/communication
avg_sharing_degree Average number of threads sharing a cache line
sd_sharing_degree Deviation of number of threads sharing a cacheline
avg_write_ratio Average writes over memory access per cache line
sd_write_ratio Deviation of writes over memory access per cache line
avg_shared_write_ratio same as avg_write_ratio per shared cache line
sd_shared_write_ratio same as sd_write_ratio per shared cache line
avg_write_degree Average number of threads writing a cache line
sd_write_degree Deviation of number of threads writing a cache line
footprint Number of cache lines accessed
sd_thread_footprint Deviation of number of cache lines accessed per thread

Table 2: Metrics obtained through binary instrumentation.

choosing a model among thousands based on a few tenths of predic-
tions may draw a lucky one or an overfitting one. Using a validation
set aims at reducing this risk. More precisely the model selection
methodology is the following: The 1% top performers on the test set
are selected, then the best performer on the validation set among
remaining models is elected as the final model. This selection de-
creases the risk of presenting overfitting models.

When modeling for generalization to new machines, models are
trained with all applications on a single platform. Each model is
then used for predictions on another platform (the test set), and
again on another one (the validation set). In the third scenario (a
new application on a new machine), we combine both training
schemes, i.e. we remove two applications from the training set, use
the training set on a single machine then predict the two unused
applications each on a different unseen machine.

The modeling process includes several preprocessing stages on
collected data. These steps are designed to fit more complicated
models and perhaps obtain a better quality on the predictions.When
needed, they are calibrated on the training set, then applied with
the same settings on the test and validation sets. For instance, when
normalizing data, the center and amplitude of the dataset is com-
puted on the test set, then normalization of other sets utilizes the
same center and amplitude. These steps are: the normalization of
inputs, (optional) singular value decomposition [22], and (optional)
polynomial transformation [3] of inputs, up to degree two.

Pre-processed applications metrics are given as input to learning
classifiers to match applications label, i.e. sensitivity to placement or
preferred placement policy. We use the classifiers as black boxes: we
use the default classification functions without tuning their hyper-
parameters. Classification building blocks used are the following:
Random-Forest [6] from R package randomForest, logistic regres-
sion [4] from native R glm function, Support Vector Machines [11]
from R package kernlab and Artificial Neural Network with one
hidden layer of four neurons from R package nnet. We chose to use
classifiers as black boxes because our main goal is to demonstrate
the feasibility of the approach and not to find the most optimal
classification algorithm for our problem. Furthermore, using default
classification functions shows that one can apply our methodology
without having a high degree of expertise in machine learning.

Training all models requires several tens of hours on a quad-
core desktop computer. Training time is linked to the number of

parameters. For the Random Forest algorithm, it grows exponen-
tially relatively to this number. In order to explore all parameters
despite this limitation, the number of parameters fed to the models
is capped. Thus, the exploration of the parameters space is achieved
by randomly sampling parameters, and training models with many
different parameters sets. The input sampling, pre-processing step,
and type of learning kernel are the models "hyper-parameters"
which are explored. We train a model for each possible combina-
tion of pre-processing and learning kernel and for many input
parameters sets.

4 EXPERIMENTAL TESTBED
Our evaluation includes a set of 27 proxy-applications from the
Coral [12], Parsec [2] and NAS [1] benchmarks suites (see Table 3).
Most applications are HPC applications except for the Parsec suite
which embeds other types of applications. Three computing sys-
tems are used to run applications. Some of their features are detailed
in Table 4. Machines of this testbed originate from the same vendor
and have consecutively been released for similar server comput-
ing systems. The three machines have hyper-threading disabled
and are configured to virtually split processors into two NUMA
nodes4. It is worth mentioning that the micro-architecture differ-
ences are greater between Broadwell and Skylake [31] than between
Haswell and Broadwell [7]. In particular, Skylake has larger private
L2 caches but smaller LLCs, and it replaces the ring interconnec-
tion between cores inside a chip with a mesh network, both with
potential implications on locality and contention.

Applications run parameters
bodytrack, canneal, freqmine, swaptions input native
fir, del_dot_vec_2d, energy_calc_alt,
vol3d, couple, pressure_calc_alt, pic_2d NA

lulesh2.0 -b 4 -s 100 -i 40 -r 100
MILCmk nmax = 256*1024*16
HACCmk count=200
lu, cg, ep, mg, sp, bt, ft, sp class A, B

Table 3: The set of applications and their parameters.

4Cluster-on-Die for Haswell and Broadwell, Sub-NUMA-Cluster for Skylake.



ICPP ’19, August 5-8, 2019, Kyoto Research Park (KRP), Japan Denoyelle, Goglin, Jeannot, Ropars

Microarchitecture Model Sockets × Cores NUMA Nodes Shared L3 Private L2
Haswell Xeon E5-2680 v3 2 × 12 (2.5GHz) 4 × 32GB 4 × 15MB 24 × 256kB
Broadwell Xeon E5-2650L v4 2 × 14 (1.7GHz) 4 × 16GB 4 × 18MB 28 × 256kB
Skylake Xeon Gold 6140 2 × 18 (2.3GHz) 4 × 24GB 2 × 25MB 36 × 1024kB

Table 4: Experimentation platforms.

Figure 2 represents speedups5 for the best and worst execution
time of each application on the Skylake machine when trying the
four placement strategies. A 100% speedup corresponds to the per-
formance with the default placement policy. If the best or worst
performance exceed the 10% threshold materialized with a dashed
line, the application is tagged as placement-sensitive. On this ma-
chine, a majority of applications prefers the default policy. However,
placement sensitive applications can perform significantly better
or worse with alternative placement policies.

After running all applications with all placement policies, we are
able to tag them as sensitive or not according to our definition (see
Section 3.1). Table 5 presents statistics about applications sensi-
tivity to placement with respect to the platform. On the diagonal,
the percentage of applications that are placement sensitive on a
given platform is reported. Out of the diagonal, the percentage
of applications that remain in the same class when changing the
platform is provided. From this table, it is clear that there is no
easy assumption, neither for predicting the sensitivity of new ap-
plications nor for predicting the sensitivity of known applications
on new machines. On average, there is a good balance between
sensitive and insensitive applications. This observation motivates
the need to identify placement-sensitive applications, in order to
avoid useless placement computation. Also, up to 33% of them may
change their status from one machine to another, which shows that
predictions from one machine to another is not straightforward.

Haswell Broadwell Skylake
Haswell 0.59 0.74 0.67
Broadwell - 0.41 0.85
Skylake - - 0.48

Table 5: Prediction accuracy of a basic prediction mechanism for
sensitivity to placement. On the diagonal, maximum achievable ac-
curacy ratio when predicting a constant output on a given machine.
Out of the diagonal, accuracy ratio when assuming that all applica-
tions remain in the same class when changing the machine.

Considering the subset of placement-sensitive applications, Ta-
ble 6 presents the average achieved speedup when using one ma-
chine preferred policies to run on another machine. The diagonal
shows the average of top achievable speedup, on each specific ma-
chines as a comparison point. Using conservative choices across
machines is usually a good choice compared to using the default
policy (i.e. speedup > 1). Nevertheless, our results (see Section 5)
show that it is possible to improve from this strategy.

5Speedup as well as hardware counters values are median values over 6 identical runs.

Haswell Broadwell Skylake
Haswell 1.16 1.03 1.06
Broadwell 1.06 1.06 1.08
Skylake 1.10 1.04 1.12

Table 6: Average speedup for placement-sensitive applications
when applying the per-application best policy of machine A (rows)
on machine B (columns).

5 MODELS PERFORMANCE AND REAL
WORLD PRACTICABILITY

This section is devoted to observemodels performance and conclude
on practicability of placement-sensitivity detection and placement
policy selection. For each of these two objectives, we describe the
performance of models along all the proposed dimensions: general-
ization abilities to new applications and machines, with hardware
counter versus instrumentation metrics.

5.1 Sensitivity to Data and Threads Placement
Following the proposed methodology, a set of models is trained to
detect if an application is placement sensitive. For this objective,
the metric of importance is accuracy, i.e. the average number of
good predictions among all applications. In Figure 3 is represented
an evaluation of models accuracy on the validation set when pre-
dicting applications sensitivity to data and threads placement. On
the diagonal, models have been trained with applications running
on a single machine and prediction are made on unseen applica-
tions on the same machine. The performance baseline represented
by a horizontal dashed line is the accuracy obtained when always
predicting that applications are sensitive. Outside of the diagonal,
presented results are about models trained with all applications on
a system (rows) to predict the same applications on another one
(columns). In these cases, the baseline, represented by a horizontal
dashed line, is the accuracy obtained when predicting the same
output as on the original machine.

The analysis of Figure 3 delivers several conclusions about model-
ing sensitivity to placement for new applications or new platforms.
First, in every scenario, sensitivity to placement can be predicted
with around 80% accuracy. Models always improve compared to
the baseline even in the case of cross-platform predictions. We also
note that using hardware counters provides similar results as using
binary instrumentation metrics. It implies that with a very low
overhead application profiling, our models can fulfill the goal of
predicting placement sensitivity with a good accuracy both for new
applications and for new architectures.

We investigate the wrong predictions of new applications made
by the best models per machine in Table 7. Considering the mis-
classified applications, the table presents the average maximum
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Figure 2: Applications speedups with best and worst placement policies and placement sensitivity on the Skylake platform. Policies are noted
[thread policy, data policy], with C for compact, S for scatter, F for firsttouch, and I for interleave.
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Figure 3: Accuracy on validation set, when predicting applications
sensitivity to data and threads placement. On the diagonal, models
predict new applications on a givenmachine (baseline: “always sen-
sitive” predictions). Out of the diagonal, models predicts for already
seen applications but on a new machine (baseline: same answer on
training platform and on prediction platform).

distance between the speedup achievable with an application and
the boundaries set by our definition of placement sensitivity. The

results show our wrong predictions would have only little impact
in practice as the misclassified applications are not very sensitive
to placement.

machine counters instrumentation all
Haswell 0.04 0.06 0.04
Broadwell 0.05 0.07 0.04
Skylake 0.05 0.07 0.02

Table 7: Average distance to the classification boundary of misclas-
sified applications when predicting new applications only. Average
distance to the classification boundary is reported permachine and
type of model inputs (counters, instrumentation, all).

In Figure 4, is presented the performance of models on the test
and validation sets, when predicting a new application on a new
platform. Each column describes a result with training from a source
machine and predicting for a different one. Violin plots in the first
line exhibit models performance distribution on test set. Models of
individual violins vary in the preprocessing performed, the learning
algorithm used and the set of input parameters. A violin plot is
drawn per set of input parameters: hardware counters, instrumenta-
tion metrics or both. In the second line, outcome of model selection
is presented with the best models performance on the validation
set (i.e. different machines and applications than for training and
testing).

Additional conclusions come with Figure 4. Models performance
on the validation set consistently reaches more than 75% accuracy,
this time with both a new application and a new machine. Once
again, the accuracy difference between using hardware counters
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or others is not significant. The accuracy distribution on the test
set (first row) shows that only few models reach the highest perfor-
mance. Model validation (second row) reaches similar accuracy as
the results obtained with the test set, which suggests that models
are not overfitting.

Overall, detecting sensitivity to thread and data placement with
the set of proposed parameters is not trivial. However, we man-
aged to achieve it with at least 75% accuracy which significantly
improves from basic strategies, and with errors on least sensitive
applications. We also found that using hardware counters can pro-
vide similar performance as specific binary instrumentation. Thus,
the most practical models, i.e. with low overhead application profil-
ing are satisfying enough compared to more complex application
characteristics. Moreover, these models are robust to new users
out of the training context, i.e. with different applications and/or
different processors with a close architecture.

5.2 Preferred Policy Classification
Similarly to placement sensitivity detection, models are trained
toward the objective of choosing the preferred placement policy for
sensitive applications. For this objective, we do not look at models
accuracy but rather at predictions impact on applications execution
time. We consider that mistakes may be acceptable when they have
little impact. The performance of models is therefore presented
as the geometric mean of applications speedup using predicted
policies, i.e. it embeds a lower penalty if wrong choices have small
impact on the execution time.

The performance of models when generalizing to new appli-
cations or to new platforms is explored in Figure 5. Similarly to
Figure 3, results are organized in rows expressing the platform on
which models were trained and columns on which the validation
was done. On the diagonal, models were trained to predict new ap-
plications on a single platform, whereas out of the diagonal, models
were trained to predict same applications on a different platform.
In the first scenario, the application set is restricted to applications
sensitive to threads and data placement on a single machine. The
upper bound represented as a top dashed line correspond to av-
erage achieved speedup when always predicting best placement
policies, and the baseline represented as the bottom dashed line
correspond to always picking the default placement policy. In the
latter scenario, out of the diagonal, the application set is restricted
to applications which are sensitive to placement on at least one
machine. In that case, the baseline is the achieved speedup when
adopting a conservative policy selection.

Figure 5 exhibits very good models performance. Whether it
is on a new application or a new platform, models predictions
always outperform the baseline and consistently reach near-optimal
placement policy choice. And this is true for all categories of input
parameters. The only exception is when using hardware counters
to predict for new application on the Haswell machine. In this
case, the performance is only slightly improved compared to the
baseline, which means that the 1% top models on the test set are all
overfitting for this particular case.

The overall efficiency remains valid in Figure 6. In this figure, the
case of generalization to both new applications and newmachines at
the same time is explored. The distributions of models performance

on test sets is presented in the first row. In the second row, the best
model performance on the validation set after the model selection
stage is exhibited. These performances are to be compared with the
upper and lower-bound of achievable performance represented as
top and bottom horizontal dashed lines, when always predicting
respectively the best and worst placement policies for each appli-
cation. The performance is also to be compared with the baseline
where applications are run with the default placement policy. In
columns, models are organized by training-to-prediction machine
pairs. Models performances are presented considering three set of
metrics for training: metrics based on hardware counters, metrics
based on binary instrumentation, both.

In Figure 6 again, predictions on the validation set reach near-
optimal speedup for every machine. The results highlight the gen-
erality and practicability of the models. Indeed, we were able to
get very good speedups, even when both the application and the
machine are unknown, and with a low overhead profiling (i.e. hard-
ware counters). There is a little discrepancy with hardware counters
models in the couple (Haswell, Skylake) which might be attributed
to the greater difference between these two systems compared to
other couples. The validation set performance is consistent with the
performance achieved on test set and shows that selected models
are not likely to be overfitting.

6 CONCLUSION
At the scale of multi-socket shared memory NUMA platforms,
thread and data placement matters for performance. However, find-
ing an optimal strategy, even with post-mortem analysis is far from
trivial. This difficulty arises from the numerous interactions and
trade-offs in the whole memory hierarchy. Although some of them
have been tackled in previous studies, improving placement deci-
sions while considering several architectures and several sources
of applications characterization had yet to be done.

In this paper we implemented a thoroughmodeling methodology
toward two main goals: i) assessing the ability for meta-models to
predict if an application will at all be impacted by the placement of
its threads and data, and in such a case, ii) finding the best placement
policy. We successfully answered these two questions. We were
able to train models that can predict the sensitivity of applications
with an accuracy of more than 80%, wrong prediction being mostly
done on applications that are barely sensitive to placement. In all
cases, we were also able to select a good placement policy so as to
achieve almost optimal performance among the studied policies.

Our results show that the obtained models can be easily used
in practice and are general enough to be used in many use-cases.
First, models comparisons show that good results are achieved by
solely using hardware counters to collect metrics. It implies that
models can be trained and make predictions based on a single run of
applications and with a low overhead profiling technique. Second,
our evaluation show that we are not only able to make accurate
predictions for unseen applications on a given machine. We are
also able to make prediction on an unknown machine, and even in
this case, for new applications.

The results presented in this paper open new research direc-
tions. The proposed methodology was applied in the context of
applications using fork-join parallelism and with simple placement
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Figure 4: Models accuracy for placement-sensitivity predictions when generalizing both to new applications and newmachines. The first row,
show the models accuracy distribution on test set. The second row show the best models accuracy on validation set. Each column show-cases
models trained on a particular platform with predictions on another platform.
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Figure 5: Speedup obtained with predicted placement policies on
validation set. On the diagonal, models predict new applications
(baseline: using the default placement policy). Out of the diagonal,
models predict same applications on a new machine (baseline: con-
servative placement strategy, same choice on prediction platform
as on training platform).

policies. In the future, we would like to extend the applicability of
the approach by adding more policies or by building models for
different parallelism paradigms, e.g. task-based programming. Our
results also show that although hardware counters and binary in-
strumentation capture very different metrics, models based on each
these sources of data achieve similar performance. Furthermore, in
many cases only a small number of parameter sets allow making
good predictions. The question of understanding what are the best
metrics to use to take placement decision should be investigated.
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