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Abstract

RNA-seq studies are growing in size and popularity. We provide evidence that
the most commonly used methods for differential expression analysis (DEA) may
yield too many false positive results in some situations. We present dearseq, a
new method for DEA which controls the FDR without making any assumption
about the true distribution of RNA-seq data. We show that dearseq controls the
FDR while maintaining strong statistical power compared to the most popular
methods. We demonstrate this behavior with mathematical proofs, simulations,
and a real data set from a study of Tuberculosis, where our method produces
fewer apparent false positives.

Keywords : Differential expression, False Discovery Rate, RNA-seq, Score test,
Tuberculosis, Type-I error, Variance component test

Background

With the rise of next generation sequencing technologies that measure gene
expression on the scale of the entire genome, RNA-seq differential expression
analysis (DEA) has become ubiquitous in many research fields. While numerous
approaches have been proposed to perform DEA of RNA-seq data, there is no
clear consensus on which method is the most efficient. Three methods stand out
as the most commonly used in practice: edgeR [1], DESeq2 [2], and limma-voom
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[3] (respectively 5,853, 5,019, and 812 citations in PubMed as of May 15th, 2019).
edgeR and DESeq2 both rely on the assumption that gene counts from RNA-seq
measurements follow a negative binomial distribution, and limma-voom is based
on a weighted linear model and assumes resulting test statistics follow a normal
distribution.

Following long-standing statistical practice, researchers typically attempt to
control the probability of finding a gene to be differentially expressed (DE) when
the opposite is true in reality (i.e. the Type-I error) at a pre-specified level
(conventionally 5%). In a high-dimensional context such as gene expression
data, the false positive rate or False Discovery Rate (FDR) [4] has been largely
adopted as the target probability to be controlled in exploratory studies. The
FDR is the expected proportion of features identified as significant that are
actually false positive: for instance, an FDR of 5% implies that among all the
genes declared DE, 5% are not DE. Controlling this error rate results in many
fewer false positives than controlling the per-gene Type-I error, while not being
as restrictive as controlling the probability of any false positive (the family-wise
error rate) among all of the potentially thousands of genes.

This control is usually taken for granted and often left out from the bench-
marks of DEA methods, while in fact, an excessive FDR can be quite problem-
atic. Not controlling the FDR means getting more false positives than expected,
which limits the reproducibility of study results. Whole genome DEAs are usu-
ally exploratory steps prior to subsequent studies to confirm a gene signature is
associated with a particular biological condition. If a majority of the selected
genes turn out to be false positives, results may fail to replicate and any down-
stream health benefits may remain elusive, not to mention the waste of precious
research resources.

When comparing DEA methods, the evaluation of their empirical FDR with
respect to the targeted (nominal) level is often overlooked[5, 6, 7, 8, 9, 10].
Nonetheless, some issues with inflated FDR in DEA have been previously re-
ported in the literature [11, 12, 13, 14, 15], but those warnings have made little
apparent impact on DEA practices.

Inflation of the empirical FDR in DEA can have numerous causes, from inad-
equate preprocessing of the data to violations of the DEA method’s underlying
assumptions. In particular, edgeR, DESeq2 and limma-voom make potentially
strong distributional assumptions on RNA-seq data. This type of model-based
inference may be required when RNA-seq studies include only a small number
of observations. However, these methods’ parametric assumptions are not typi-
cally verifiable in practice. Any deviation from the hypothesized distribution of
test statistics will translate into ill-behaved p-values and therefore uncontrolled
FDR. FDR control rests upon the entire distribution of p-values being uniform
under the null hypothesis H0 (i.e. for genes that are truly not DE). So even a
slight deviation from strict Type-I error control can have dramatic consequences
on the empirical FDR. In addition, even if Type-I error were controlled at say
5%, non-uniformity in the p-value distribution could lead to failure to control
the Type-I error at lower levels (such as 1% or lower) and/or failure to con-
trol the FDR. When problems with p-values and FDR arise due to violation
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of modeling assumptions, larger sample sizes will only exacerbate the problem.
As sequencing costs keep falling, study sample sizes are increasing, making this
issue more urgent.

Here, we propose dearseq, a new method to perform DEA that effectively
controls the FDR, regardless of the distribution of the underlying data. dearseq
is a robust approach that uses a variance component score test and relies on
nonparametric regression to account for the intrinsic heteroscedasticity of RNA-
seq data. In the Results section we compare the performance of dearseq to
the three most popular state-of-the-art methods for DEA: edgeR, DESeq2 and
limma-voom. We demonstrate that dearseq enforces strict control of Type-I er-
ror and FDR while maintaining good statistical power in a realistic and extensive
simulation study where knowing the ground truth facilitates benchmarking the
properties of the different methods. We also present a comparative re-analysis
of a real-world Tuberculosis data set from Singhania et al. [16] studying appar-
ent false positives identified by the leading DEA methods compared to dearseq.
dearseq can efficiently identify the genes whose expression is significantly as-
sociated with one or several factors of interest in complex experimental designs
(including longitudinal observations) from RNA-seq data while providing robust
control of FDR. dearseq is freely available as an R package on the Bioconductor
library.

Results

Synthetic simulation study

As highlighted by both Conesa et al.[17] and Assefa et al. [15], engaging in
realistic yet clear simulations is difficult. One has to find the right balance
between the controlled settings necessary to know the ground truth, and the
realism necessary to be convincing that the results would translate in real-world
analyses. In an attempt to cover as broad a spectrum as possible, we present
a performance evaluation of our methods under three data-generating scenarios
: a) a negative binomial parametric assumption for RNA-seq data, b) a highly
non-linear model designed to violate most modeling assumptions, and c) a re-
sampling from SEQC data [18] with truncated Gaussian noise. Scenario a) may
be favorable to edgeR and DESeq2 as it relies on their parametric assumption of
a negative binomial distribution for RNA-seq count data. Scenario b) may be
unfavorable for all three compared methods (edgeR, DESeq2 and limma-voom)
since it features a high degree of non-linearity, deviating from any assumed
model. Scenario c) is likely the most realistic of the three because it relies only
on resampling real RNA-seq samples from the SEQC study[18], similarly to
what was done in Germain et al. [13]. A multivariate truncated Gaussian noise
(using the estimated covariance stucture across the observed genes) was added
to enable the generation of larger sample sizes while preserving the count nature
of the data.

We simulated 1,000 synthetic data sets at different sample sizes using each
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one of these three scenarios. For scenarios a) and b), 10% of genes were gener-
ated as truly DE while the remaining 90% were not DE . For the scenario c),
since it is based on resampling from homogeneous samples, it was impossible to
induce truly DE genes without making further parametric assumptions (which
would have made the scenario less realistic). For this reason, in scenario c),
FDR corresponded to the probability of finding any genes to be DE. Details of
the data-generating mechanisms are provided in Additional file 1.

We evaluated the four methods (the leading methods and dearseq) in terms
of Type-I error control and statistical power, as well as in terms of FDR and
True Discovery Rate (TDR) after Benjamini-Hochberg [4] correction for mul-
tiple testing. Throughout, we used a targeted control rate for the FDR at a
nominal level of 5%. Fig. 1 presents the Monte-Carlo estimation over the 1,000
simulations in each of the three scenarios for both the Type-I error and the FDR
according to increasing samples sizes (from 4 to 300 samples). Fig. 2 presents
the results of the first two scenarios for both the statistical power and the TDR.

In Fig. 1, dearseq exhibited good control of both Type-I error and FDR
in all three scenarios, as soon as asymptotic convergence was reached (between
16 and 50 samples depending on the scenarios). To accommodate small sample
sizes, we have also developed a permutation-based version of dearseq, which
always controlled Type-I error and FDR, regardless of the sample size. edgeR

appeared to control the Type-I error in both scenarios a) and c), but exhibits
slightly inflated Type-I error for large sample sizes in scenario a) (from 100
samples). This was much more visible for the FDR, which edgeR failed to
control as soon as the sample size rose above 50. Under the non-linear model,
neither the Type-I error nor the FDR are controlled by edgeR. limma-voom

exhibited good control of both the Type-I error and FDR as long as its linear
hypothesis was not violated (i.e., not scenario b)) and the sample size was large
enough (between 8 to 50 samples depending on the scenario). Finally, DESeq2
failed to control either the Type-I error or the FDR in any of the three scenarios,
with its problems growing worse as the sample size increased.

Fig. 2 shows that this robust control of Type-I error and FDR from dearseq

does not come at a price of reduced statistical power (or True Discovery Rate,
its multiple-testing correction equivalent). Interestingly, the permutation ap-
proach also exhibit good statistical power. Regarding competing approaches,
interpreting statistical power when the Type-I error is not controlled would be
a bit dubious.

Real data set

In a recent paper, Singhania et al. identified a 373-genes signature of active
tuberculosis from RNA-seq data [16]. Tuberculosis (TB) is a disease caused
by a bacterium called Mycobacterium tuberculosis. Bacteria typically infect
the lungs, but they can also affect other parts of the body. Tuberculosis can
remain in a quiescent state called latent tuberculosis infection (LTBI), where
the patient is infected but has no clinical, bacteriological or radiological signs
of the disease. Participants to this study were recruited from several medical
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institutes in London, UK (see Berry et al. [19] for a detailed description). All
participants were aged over 18 years old. Active TB patients were confirmed by
laboratory isolation of M. tuberculosis on mycobacterial culture of a respiratory
specimen, while Latent TB patients were characterized by a positive tuberculin-
skin test (TST) together with a positive result using a M. tuberculosis antigen
specific IFN-γ release assay (IGRA). Healthy control participants were recruited
from volunteers at the National Institute for Medical Research (NIMR, Mill
Hill, London, UK) and were negative to both TST and IGRA. In total, 54
participants were included, of whom 21 were active TB patients, 21 were LTBI
patients, and 12 were healthy controls.

The signature was derived by contrasting active tuberculosis (TB) patients
on the one hand against healthy individuals (Control) or those with a latent
infection (LTBI) on the other hand (see Fig. 3). Their original analysis applied
edgeR to their Berry London RNA-seq data, which included 14,150 normalized-
gene counts measured across 54 samples after preprocessing (see Singhania et
al. or supplementary material in additional file 1 for more information on this
preprocessing) available from GEO (GSE107991). In light of our simulation
results regarding false positives, we sought to investigate how many of the 373
genes Singhania et al. found using edgeR might actually be false positives. We
therefore conducted a comparative re-analysis of these data, first comparing
DE genes found by dearseq to the original signature of Singhania et al.. Sec-
ondly, we further compared the results obtained from the other leading methods,
DESeq2 and limma-voom.

Following Singhania et al., to be included in the signature a DE gene g must
have had both: i) an absolute log2(fold change) > 1, and ii) an FDR adjusted p-
value < 0.05 (after correction for multiple testing with the Benjamini-Hochberg
procedure). To ensure reproducibility of the numerical values from Singhania et
al., the log2 fold changes were calculated using edgeR. The signature was then
evaluated by its capacity to distinguish between active TB versus all others. In
order to quantify the relevance of each selected gene for distinguishing active TB
from control and LTBI, we computed two measures of association, the leave-one-
out cross-validated Brier score [20] and the marginal p-value for the association
between the gene and TB status. The Brier score was computed as BSg =
1
n

∑n
i=1(π̂TB

gi − 1i∈TB)2. It compares each patient’s TB status to π̂TB
gi , their

predicted probability of TB based on the selected gene g estimated using leave-
one-out cross validation. A gene with Brier score BSg close to 0 is a good
predictor of TB, while a gene with Brier score far away from 0 is a poor predictor
and potential false positive. Similarly, we compute the marginal p-value for each
gene from a logistic regression predicting TB status from the gene expression.
We estimate the Brier score and p-value for each gene separately. We do this
rather than a multivariate model including all genes because the presence of a
single predictive gene in the multivariate signature would be enough to yield
accurate predictions, thus masking the potential false positive genes included in
the model.

Applying the dearseq permutation test (see Methods) to the three compar-
isons originally performed in Singhania et al. (TB vs Control, LTBI vs Control,
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and TB vs LTBI) yields a global signature of 274 DE genes (see Fig. 3) of
which 234 are in common with those found by the original edgeR analysis (see
Fig. 5). We isolated the genes only identified by dearseq from the genes only
identified by edgeR and from the genes in common between the two signatures
to further assess the differences between the two results. Comparing the gene
specific Brier scores BSg between the two signatures clearly shows that the over-
whelming majority of the highest scores (i.e. the lowest predictive abilities) is
due to edgeR-private genes (see Fig. 4 b)). Indeed, the univariate Brier scores
of the dearseq-private genes have significatively smaller values on average than
the edgeR-private genes (according to a t-test – see Fig. 4). This is further
confirmed by the marginal association p-values, for which all of the highest
values are again from edgeR private, notably all the values above 0.05. Thus,
edgeR-private genes are likely false positives whereas the dearseq-private sound
more relevant. In a biological point of view, the main pathways concerned by
the 139 edgeR-private genes, that are ”Inhibition of matrix metalloproteinases”,
”Granulocyte Adhesion and Diapedesis”, ”Inhibition of Angiogenesis by TSP1”
using Ingenuity Pathways Analysis (IPA) were not directly related to the main
pathways observed in the retained 373-gene signature (IFN-inducible genes, B-
and T-cell genes). Those results emphasize the better predictive ability of the
genes identified by dearseq, and highlights the potential false positives arising
from edgeR.

In addition, we also performed the same analysis using limma-voom and
DESeq2 to further benchmark the performance of dearseq. Fig. 5 displays the
Venn diagram of significantly DE genes across these four analyses. There are 231
genes common across all these tools. Interestingly, all of the 274 genes identified
by dearseq are also identified by at least one of the three competing methods
(and only 2 genes are idendified by less than two other methods – namely only
by DESeq2), illustrating that dearseq is less prone to generate false positives.
DESeq2 identifies the largest signature comprising of 457 genes, including all of
the 274 genes identified by dearseq and 359 out of the 373 originally identified
by edgeR, while limma-voom identify 402 genes, among which 269 are in common
with dearseq and 314 are in common with edgeR. As can be seen on Fig. 6 the
dearseq signature has the lowest average Brier score, meaning that most of the
additional genes identified by the three competing methods are less predictive of
active TB status. Fig. 7 strengthens this conclusion by showing again that the
limma-voom-private are largely over-represented among the highest Brier scores
and the highest marginal p-values. The same conclusion can be drawn for the
DESeq2-private genes.

Discussion

The proposed method dearseq represents an innovative and flexible approach
for performing gene-wise analysis of RNA-seq gene expression measurements
with complex design. As demonstrated in our simulation study, edgeR, DESeq2
or limma-voom can all fail to control the Type-I error and the FDR when the
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sample size increases, while our method behaves correctly. Moreover, the re-
analysis of the London Berry Tuberculosis data set revealed that the differ-
entially expressed genes identified by dearseq are highly predictive of active
Tuberculosis status, while results from the three state-of-the-art methods (in-
cluding the original edgeR analysis) likely include numerous false positives.

It is important to note that edgeR, DESeq2 or limma-voom will not system-
atically have inflated FDR. As illustrated by our simulation studies, there are
some scenarios in which, for some given sample sizes, they control the FDR ade-
quately. However, we have shown here that this is no guarantee, and in practice
it is very difficult to know under which circumstances a data analysis is taking
place.

Because dearseq solely relies on the Central Limit Theorem convergence for
its asymptotic test to work, it guarantees a control of the FDR without needing
any model to hold as long as the sample size is large enough. For lower sample
sizes, where convergence is not reached, a robust permutation test can be used
instead. Using Phipson & Smyth’s [21] correction, it adequatly controls the
FDR regardless of the sample size and exhibits good statistical power in our
simulation study (the only trade-off is its increased computation time).

Among the three state-of-art methods compared here, DESeq2 seems to fail to
control the FDR most often. In particular, even under its model assumption of
a Negative Binomial distribution for the data, it can suffer from inflated FDR.
This seems counter-intuitive as our synthetic data were generated under the
Negative Binomial distribution, and this should advantage DESeq2 and edgeR

– since both methods assume this model. As has been noted previously, this
behavior can be caused by non-uniformity in the distribution of the p-values
arising from DESeq2 or edgeR (especially when combined with a multiple testing
correction such as Benjamini-Hochberg procedure) [22, 12, 23, 24].

DEA can have numerous preprocessing steps, and the various possibilities
can complicate the fair comparison of different methods. Since here our pri-
mary goal was to compare to the original edgeR analysis, we used the edgeR-
preprocessed data as input to dearseq. For DESeq2 and limma-voom we used the
raw counts. Indeed both edgeR and DESeq2 assume the input data to be strictly
counts (i.e. integers), due to their Negative Binomial distribution assumption,
though edgeR also has some support for so-called ”non-integer counts”. While
this seems sensible given the nature of RNA-seq data, recent innovations in
RNA-seq alignment methods such as salmon[25] or kallisto[26] return pseu-
docounts that are not integers. If the loss of precision is likely not severe when
rounding up pseudo-counts, this same limitation prevents the use of already
pre-processed (i.e. normalized or transformed data) and forces the DEA practi-
tioner to stick to the specific processing of the methods. In that regard, dearseq
is extremely flexible and offer to use either raw or transformed data (the default
applies a log-cpm transformation similarly to limma-voom).

In addition, these methods have been designed to compare two (or multiple)
conditions (several treatment regimen), and are not specifically oriented towards
grouped or longitudinal data. Therefore there is a need in the broader DEA
community for a more flexible method. dearseq relies on a general methodology
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that can easily accommodate more complex designs including gene set analysis
while correctly controlling the false discovery rate [27].

Conclusions

We have demonstrated that the three most popular RNA-seq DEA methods
may not guarantee control of the number of false positive in their results, espe-
cially when the sample size increases. To exemplify this problematic behavior,
we present extensive simulation studies ranging from realistic resampling of real
data to synthetic data generation under the models’ assumptions, as well as a
re-analysis of a real world data-set. To offer an alternative solution to DEA
practitioners, we have developed dearseq, a new DEA method that uses a vari-
ance component score test to provide a robust, powerful and versatile approach
to DEA while avoiding the pitfall of FDR inflation exhibited by the current
state-of-the-art methods in certain situations. We also benchmarked this new
method alongside the three established methods on both the simulations and
the real data analysis to illustrate its excellent performance, both in terms of
FDR control and of statistical power.

These results have important implications for the field, as DEA of RNA-seq
data has become widespread. The distributional assumptions and model-based
inference inherent to DESeq2, edgeR and limma-voom can underestimate the
number of false positives in realistic settings. Users should be aware of the
possibility of inflated FDR when using these procedures and should consider the
use of dearseq which gives theoretical and empirical control of the FDR without
sacrificing its statistical power. Given the results of both our simulations and our
real-world data re-analysis, we thus formulate the following recommendations:
i) do not rely on a single DEA method and compare the results across several
tools, as this strategy may likely eliminate the majority of false positives ; ii) for
your main analysis, we recommend using dearseq or limma-voom over DESeq2

or edgeR. Indeed, limma-voom appears to control the FDR adequately as long
as your sample size is large enough and the model assumptions (in particular
the linearity) are reasonable. On the other hand, dearseq ensures an effective
control of the FDR regardless of the sample-size (thanks to its permutation test
for small sample sizes) and demonstrates good statistical power.

Methods

The general objective of DEA is to identify genes whose expression is signif-
icantly associated with a set of clinically relevant characteristics. dearseq is
a new DEA framework based on a variance component score test [28, 29, 30],
a flexible and powerful test that requires few assumptions to guarantee rig-
orous control of Type-I and false discovery error rates. The method can be
adapted to various experimental designs (comparisons of multiple biological
conditions, repeated or longitudinal measurements, integrated supervision by
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several biomarkers at once). It builds upon recent methodological develop-
ments for the analysis of genomic data [31, 32, 30]. Variance component tests
offer the speed and simplicity of classical score tests, but potentially gain sta-
tistical power by using many fewer degrees of freedom and have been shown to
have locally optimal power in some situations [33].

The dearseq method comprises 3 steps (with an optional initial normaliza-
tion):

0. (optional) normalize gene expression across samples

1. Estimate the mean-variance relationship through a local linear re-
gression borrowing information across all genes

2. Test each gene

3. Apply a multiple-testing correction controlling the FDR, such as the
Benjamini-Hochberg procedure

Model specification

Let G be the total number of observed genes. Let rgi be the raw count of the
gth gene for the ith sample (i = 1, . . . , n). Consider now ygi the normalized
gene expression (such as log-counts per million, see supplementary materials in
additional file 1 for more details). To build a variance component score test
statistic, we rely on the following working linear model for each gene g:

ygi = αg
0 +Xiα

g + Φiβ
g + εgi (1)

where εgi ∼ N(0, σg
i ), αg

0 is the intercept, Xi is a vector of covariates to adjust
for, and Φi contains the variables for DEA, such as disease status, treatment
arm, or other clinical characteristics which are to be associated with gene ex-
pression. The parameter of interest is βg: if βg 6= 0, then the gene is differ-
entially expressed. The variance of the residuals εgi depends on i to model the
heteroscedasticity inherent to RNA-seq data.

Note that the model presented above is very flexible, and can be easily
extended to grouped (e.g. repeated or longitudinal) data to take into account
heterogeneity between individuals by adding random effects (see supplementary
materials in additional file 1 for more details).

Estimation of the mean-variance relationship

Because of their count nature, RNA-seq data are intrinsically heteroscedastic.
We model this mean-variance relationship through σg

i . But obviously, this in-
dividual variance cannot be estimated from a single observation. Instead, we
adopt a strategy similar to voom and we gather information across all G genes
through a local linear regression [34] to estimate σ̂i

g in a rigorous and principled
manner (see supplementary materials in additional file 1 for more details).
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Variance component score test statistic estimation

According to the working model (1), a gene is differentially expressed and has
its expression associated with the variable(s) of interest in Φ if βg 6= 0. dearseq
thus tests the following null hypothesis for each gene g:

Hg
0 : βg = 0 (2)

The associated variance component score test statistic can be written as Qg =
qgTqg with

qgT = n−1/2
n∑

i=1

(ygi − µ
g
i )σg

i
−1

Φi

where µi is the conditional mean expression given the covariates Xi (see sup-
plementary materials in additional file 1 for more details). Again, this formula
can easily generalize to more complex experimental designs such as grouped
measurements by incorporating a random-effects covariance matrix (see supple-
mentary materials in additional file 1 for more details).

Because this is a score test, we only need to estimate Q̂g under the null
hypothesis of no differential expression. We estimate µ̂i through Ordinary Least
Squares. Finally, since a total of G tests (with G often greater than 10,000) it
is absolutely necessary to correct for multiple testing correction, for instance by
using the Benjamini-Hochberg procedure.

Asymptotic and permutation tests

The asymptotic distribution of the test statistic Q can be shown to be a mixture
of χ2

1 random variables

Q→
ni∑
l=1

alχ
2
1

where the mixing coefficients al depend on the covariance of q (see supplemen-
tary materials in additional file 1 for details). This asymptotic result rests solely
upon the Central Limit Theorem, and this is why dearseq is particularly ro-
bust to misspecification: the distribution of Q is the same whether the model
(1) holds or not. Therefore, the Type-I error and the FDR are controlled as
long as the Central Limit Theorem is in action (meaning n is large enough).

One advantage of using a variance component score test over a regular score
test is the gain in statistical power, that comes from exploiting the correlation
among βg coefficients to potentially reduce the degrees of freedom of the test.
Another advantage is its flexibility that can accomodate random effects in the
model to test mixed hypotheses (see supplementary materials in additional file
1 for details).

To overcome the shortcomings of this asymptotic test in small samples, we
propose to use a permutation test using the same statistic Q. Since we are
in multiple testing setting it is of the utmost importance to carefully compute
the associated p-values [21] before applying the Benjamini-Hochberg correction.
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Finally, in order to preserve statistical power, we use Phipson & Smyth’s cor-
rection to account for random permutations (see supplementary materials in
additional file 1).

Availability of data and materials

dearseq is freely available at the GitHub repository (https://github.com/boris
hejblum/dearseq) and in the process of being made available on Bioconductor.
The sequence data set from the Singhania et al. Tuberculosis study analyzed
in this article is accessible from the NCBI GEO database with the primary
accession code GSE107991. The code used to analyze the data set and the results
are available from the GitHub repository (https://github.com/Mgauth/dearseq
paper).

Software versions

All computations were run under R v3.5.1 using DESeq2 package v1.22.1, edgeR
package v3.24.0, limma package v3.38.2, and dearseq package v1.0.0.
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Additional Files

Additional file 1 — Supplementary materials

Supplementary materials as a .PDF describing in details the statistics of dearseq,
the processing of the data from the London Berry cohort, as well as the simu-
lation settings.
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Figure 1: Type-I error and FDR curves for each DEA method with
increasing sample sizes In each setting (Negative Binomial, Non-linear, and
SEQC data resampling), the Type-I error is computed as the number significant
genes among the true negative, and the FDR as the average number of false
positives among the genes declared DE.
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Figure 2: Power and True Discovery Rate curves for each DEA method
with increasing sample size Because SEQC data resampling only generates
non-significant genes, this setting does not allow to estimate statistical power
or TDR.
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Figure 3: Venn diagram showing overlap of DE genes using dearseq and
the original edgeR signature among the three comparisons performed
a) Venn diagram showing the results of the three DEA using dearseq. Note
that no gene differentially expressed was found with our method comparing the
LTBI group and the control group, unlike edgeR which found two such genes to
be DE. b) Venn diagram showing the results of the DEA using edgeR (Singhania
et al.).
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Figure 4: Comparing edgeR-based signature to the signature derived
by dearseq a) Boxplots of the Brier scores of the 40 genes private to dearseq

(i.e., not also declared DE by edger) and the 139 genes private to the original
edgeR analysis. b) Univariate Brier scores. The blue points correspond to genes
found only in the original edgeR signature, the yellow points found only in the
dearseq signature, and the grey points found in both signatures. c) Marginal p-
values from a univariate logistic regression combined with a leave-one-out cross
validation for the 40 dearseq-private and the 139 edgeR-private genes. The red
line indicates the common 5% p-value threshold.

18

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/635714doi: bioRxiv preprint first posted online May. 20, 2019; 

http://dx.doi.org/10.1101/635714
http://creativecommons.org/licenses/by/4.0/


Figure 5: Venn diagram summarizing the different signatures from the
four methods. Venn diagram of the genes declared DE by dearseq, DESeq2,
limma-voom and edgeR (Singhania et al.) under an FDR-adjusted p-value of
0.05. None of the genes is found with dearseq only.
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Figure 6: Boxplots of the Brier scores of all the genes declared DE by
the four methods. Boxplots of the Brier scores of all the DE genes called by
dearseq, DESeq2, limma-voom and edgeR (Singhania et al.). The predictions are
derived from a logistic regression combined with a leave-one-out cross validation.
Smaller Brier scores are better.

20

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/635714doi: bioRxiv preprint first posted online May. 20, 2019; 

http://dx.doi.org/10.1101/635714
http://creativecommons.org/licenses/by/4.0/


< 2.2e−16

0.10

0.15

0.20

0.25

common limma−voom
method

B
rie

r 
sc

or
e

A < 2.2e−16

0.10

0.15

0.20

0.25

common DESeq2
method

B
rie

r 
sc

or
e

D

0.10

0.15

0.20

0.25

0 100 200 300 400
rank

B
rie

r 
S

co
re Method

common
limma−voom
dearseq

B

0.10

0.15

0.20

0.25

0 100 200 300 400
rank

B
rie

r 
S

co
re

Method
common
DESeq2

E

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400
rank

p−
va

lu
es Method

common
limma−voom
dearseq

C

0.0

0.2

0.4

0.6

0 100 200 300 400
rank

p−
va

lu
es Method

common
DESeq2

F

Figure 7: Comparison of the dearseq derived signature to both the
DESeq2 and limma-voom derived signatures a) Boxplots of the Brier scores of
the DE genes private to limma-voom and the DE genes common to both dearseq

and limma-voom. Note that only 5 genes are identified only by dearseq and not
limma-voom. Therefore we exclude the associated boxplot. b) Univariate Brier
scores. The purple points correspond to the DE genes called by limma-voom

and the grey points to the genes common with dearseq. c) Marginal p-values.
d) Boxplots of the Brier scores of the DE genes private to dearseq and the DE
genes common to both dearseq and DESeq2. All genes declared DE by dearseq

were also declared DE by DESeq2. e) Univariate Brier scores. The green points
correspond to the DE genes called by DESeq2 and the grey points to the genes
common with dearseq. All genes declared DE by dearseq were also declared
DE by DESeq2. f) Marginal p-values.
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