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Sophia Antipolis, France

bUniversity of Manitoba, Department of Mathematics, Winnipeg, Canada
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Abstract

Forecasting whether individuals of an introduced population will succeed to
establish is a challenge in invasion and conservation biology. The present
work aims to decouple the impact of the components of propagule pressure
on the time for population establishment in the presence of Allee effects and
stochasticity in propagule sizes. The mean first passage time (MFPT) for a
population to reach a viable size is used as a measure of the establishment
success for the introduction processes involving periodic introductions. By
fixing the introduction rate (mean number of introduced individuals per unit
time) and varying the period of introduction from small ranges (small and
frequent introductions) to large ones (infrequent and large releases), we study
the influence of introduction distribution over time. These patterns of intro-
duction are compared in a semi-stochastic model by observing which factors
minimize the MFPT from an initially absent population, and hence, ensure
the fastest population establishment. We investigate the influence on these
minima of the introduction rate, variability in the introduction sizes, and oc-
currence of catastrophes that temporarily wipe out the population. Whereas
most investigated cases show that infrequent and large introductions favor
population establishment as expected, small and frequent introductions are
preferred when the introduction rate is large and/or the variability in the
introduction size is strong. Moreover, we observed counterintuitively that
catastrophes strongly increase MFPT at small periods of introduction. In
addition, we showed that stochasticity in introduction tends to increase the
MFPT except when the introduction rate is small and introductions are
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evenly spread out in time.

Keywords: Colonization, Biological Invasion, Impulsive Differential
Equations, Mean First Passage Time

1. Introduction

Most studies on introduced populations aim to understand how and why
propagules succeed or fail to establish in a new habitat. Many studies have
identified major factors that greatly influence the probability that an intro-
duced population is successfully established (Blackburn et al., 2011). Among
those factors, the intensity and deployment of population introductions in
space and time have been identified as key predictors of establishment suc-
cess (Simberloff, 2009). In nature, population introductions do not usually
consist of a single introduction event, but instead, of multiple releases of or-
ganisms. Multiple introductions are indeed prevalent in invasions by alien
species (Dlugosch and Parker, 2008). Multiple introductions are also common
in population management, for instance in augmentative biological control
(van Lenteren, 2000) or in reintroduction biology (Armstrong and Seddon,
2008) programs. Propagule pressure is a composite measure that character-
izes the different facets of the introduction effort (Blackburn and Duncan,
2001); it has been recognized as the best predictor of population establish-
ment Lockwood et al. (2005). Two key components of propagule pressure
have been identified Simberloff (2009): propagule size or introduction size,
which corresponds to the number of individuals introduced per introduction
events, and propagule frequency, which is simply the frequency of introduc-
tion events. An increase in either the propagule size or frequency is generally
positively associated with establishment success because both increase the
overall introduction effort.

The probability of establishment is also greatly impacted by intraspecific
interactions occurring during the establishment of the incipient population.
Allee effects are now considered as important, if not common mechanisms
that influence the dynamics of ecological populations (Dennis et al., 2016).
Since introduction schemes essentially involve small populations (Deredec
and Courchamp, 2007; Drury et al., 2007), Allee effects may play a crucial
role in the dynamics of introduced populations (Taylor and Hastings, 2005;
Tobin et al., 2011). Strong demographic Allee effects refer to the dynamics
of a population that becomes extinct below a certain critical size (Brassil,
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2001; Wang and Kot, 2001; Boukal and Berec, 2002). Building on this thresh-
old behavior in an explicitly spatial context, theoretical investigations have
explored how Allee effects alter biological invasions (Taylor and Hastings,
2005). By studying the persistence of metapopulations, viability thresh-
olds were identified for populations inhabiting variable patchy environments
(Amarasekare, 1998; Bascompte, 2003). A lower speed of spread of invaders
has also been reported in the presence of Allee effects in the invading species
(Lewis and Kareiva, 1993), inducing time lags during which the population
does not increase or spread (Taylor and Hastings, 2005; Drake and Lodge,
2006). Therefore, recent investigations stipulate that the management of
invasive species needs to consider Allee effects (Taylor and Hastings, 2005;
Tobin et al., 2011).

In addition to Allee effects, introduced populations may be subject to
stochastic perturbations. Environmental and demographic stochasticity can
affect population dynamics and may be the cause of population extinction
(Dennis, 2002). For instance, catastrophic events, an extreme form of envi-
ronmental stochasticity that drastically reduces a population (Shaffer, 1987;
Lande, 1993), may play a crucial role in determining the persistence of pop-
ulations (Lande et al., 2003). Moreover, stochasticity can also affect the
introduction process itself, causing variations in the sizes or timing of intro-
ductions (Rajakaruna et al., 2013; Drake et al., 2015). Despite its probable
pervasive influence, the effect of variability in propagule pressure components
on population establishment has not been actively investigated to date, but
see (Rajakaruna et al., 2013; Lewis et al., 2016). Exploring the consequences
of different forms of stochasticity on population establishment is, therefore,
relevant in an introduction biology context (Drake and Lodge, 2006; Drury
et al., 2007; Rajakaruna et al., 2013; Potapov and Rajakaruna, 2013).

Few studies have investigated the influence of propagule size and fre-
quency on establishment success in the presence of demographic Allee effects
and stochastic perturbations during the introduction process. Whereas ex-
perimental studies in absence of Allee effects have shown that small and fre-
quent introductions increase the probability of establishment (Drake et al.,
2005; Hedge et al., 2012), large propagules appear to enhance establishment
success in the presence of Allee effects in both empirical and theoretical stud-
ies. For instance, a recent field mesocosm experiment by Sinclair and Arnott
(2016) demonstrated that for a given introduction rate, larger propagules
lead to higher probabilities of establishment in a sexually reproducing mysid
that is likely affected by Allee effects. Mathematical investigations also in-
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dicate that the probability of establishment increases with propagule size in
populations that are influenced by Allee effects (Dennis, 2002; Drake and
Lodge, 2006). Furthermore, numerical simulations have revealed that in the
presence of strong demographic Allee effects, infrequent and large introduc-
tions lead to faster invasions (Wittmann et al., 2014; Mailleret and Lemesle,
2009) or to a larger probability of establishment (Drolet et al., 2016).

However, the presence of stochasticity complicates the matter. It is gen-
erally acknowledged that larger propagule sizes favor establishment in the
presence of stochasticity and Allee effects (Liebhold and Bascompte, 2003;
Simberloff, 2009; Fauvergue et al., 2012). However, some modeling studies
did not observe a clear link between stochasticity and establishment prob-
ability and concluded that environmental stochasticity had little influence
compared to Allee effects (Drolet et al., 2016). Actually, in the presence of
environmental stochasticity alone, frequent introductions appear to perform
better than rarer and larger ones (Simberloff, 2009; Fauvergue et al., 2012).
Using branching process models Haccou and Iwasa (1996) showed that in the
presence of environmental perturbations, multiple small size introductions in-
crease introduction success compared to a single large one. In a comparable
scenario, Drolet et al. (2016) also evidenced a positive link between propagule
frequency and establishment probability, but it was only observed at small
frequencies.

The impact of intrinsic population dynamics with Allee effects and per-
turbations induced by population introductions and environmental stochas-
ticity on population establishment, therefore, merits further investigations.
In this study, we propose a semi-stochastic model in which intrinsic popula-
tion growth is deterministically described by an ordinary differential equa-
tion, while stochastic perturbations occur as discrete events. Perturbations
correspond to introduction events, which induce population size increases,
and to catastrophic events, which cause a temporary extinction of the pop-
ulation until the next introduction event. We assume that introductions
occur periodically, with continuously distributed introduction sizes, and that
catastrophic events occur randomly during the introduction process. Popu-
lation establishment is considered successful once the population size exceeds
a given target size, at which it is deemed safe from Allee effects and catas-
trophic events. We study the performance of an introduction program via
the mean first passage time (MFPT) required for a population to exceed this
target from a population of size zero (Drury, 2007; Wittmann et al., 2014).
We explore the impact of the propagule pressure pattern (determined by the
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period between two introduction events) on the MFPT to identify whether
frequent and small introductions or rare and large ones are preferable in
terms of optimizing the introduction process (i.e. making the MFPT as low
as possible) for a given global introduction effort. We study how the MFPT
and the optimal introduction patterns are affected by the introduction rate
(mean number of introduced individuals per time unit) and the target pop-
ulation size. Further, we investigate how the variance in introduction sizes
and the rate at which catastrophic events occur influence these quantities.
To perform these analyses, we first demonstrate that in the proposed setting,
the MFPT required to reach the target population size from any non-negative
initial population size can be computed as a function that is a solution of an
integral equation. We then simulate this solution for the different parameter
settings considered via a numerical approach based on a method of successive
approximations.

2. Modeling framework

We assume that intrinsic population growth is continuous in time while
events such as introductions or catastrophes occur as discrete events in time.
Such features require a hybrid modeling framework. The different compo-
nents of the resulting impulsive system are first detailed. Then, stochastic
factors are described and finally, the overall introduction process is defined.

2.1. Semi-discrete modeling

The population growth is modelled using an ordinary differential equa-
tion. Let y(t) be the population size at time t, we therefore have:

ẏ(t) = f(y(t)). (1)

We introduce strong demographic Allee effects into the intrinsic population
growth function f(.) by assuming that there exists a so called Allee threshold
Ka > 0. The population goes extinct below this threshold (i.e. f(y) < 0,
for y ∈ (0, Ka) and f(0) = 0) while it grows when the population size is
larger than this threshold, at least for y close to Ka, (i.e. f(Ka) = 0 and
f ′(Ka) > 0).

Such a general function f(.) provides some robustness for mathematical
proofs and developments. For simulations, we will use the strong demo-
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graphic Allee effect model proposed by Gruntfest et al. (1997) and Cour-
champ et al. (1999), which can be expressed as:

ẏ = ry
(

1− y

K

)( y

Ka

− 1

)
, (2)

with r > 0 is the so-called intrinsic population growth rate, K > 0 is the
carrying capacity and 0 < Ka < K is the Allee threshold, under which
extinction of the population occurs when introductions do not take place.
These parameters are summarized in Table 1.

Introduction events are successively made in time, and they instanta-
neously increase the population density to a higher level. A discrete-time
equation represents such events and is generically formalized as follows:

y(t+i ) = y(ti) + hi, i ∈ N∗, (3)

where number i represents the ith introduction event and time ti represents
the instant at which this introduction event occurs. At this point, a quantity
hi of individuals is introduced. The t+i notation depicts the time right after
ti, so that the population is instantaneously increased at the introduction
event (Mailleret and Lemesle, 2009). Note that there is no introduction at
time t = 0.

Such impulsive introductions have been studied in a fully deterministic
framework in Mailleret and Grognard (2006, 2009); Nundloll et al. (2010);
Bajeux et al. (2017). They studied periodic introductions of individuals
based on the following equation:

y(iT+) = y(iT ) + µT, i ∈ N∗, (4)

with µ is the introduction rate, T is the period at which individuals are
introduced so that ti = iT , and µT is the number of introduced individuals
at each introduction event. For a given introduction rate, varying the period
T allows us to investigate a full set of propagule pressure patterns, ranging
from small and frequent introductions to large and rare ones.

In this work, we retain the periodic introduction pattern, but we con-
sider that introductions are not precisely constant in size and are affected
by random perturbations that lead to stochasticity in introduction size. We
also consider that large stochastic changes in the environment may occur,
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that can randomly decimate the population in time. These catastrophes are
modeled through the following discrete equation:

y(t+j ) = 0, j ∈ N∗, (5)

in which the tj times are the instants at which the jth catastrophe event
occurs.

2.2. Stochastic factors

Propagule pressure can be described as a Poisson process of intensity µ
that captures the transport process from source to destination and the in-
dividual probability of survival (Jerde and Lewis, 2007). In this respect,
Potapov and Rajakaruna (2013) proposed a continuous-time stochastic dif-
ferential equation to describe introduction stochasticity in which the intro-
duction rate has a variance equal to its mean. Merging a generalized form
of this approach and the introduction rate format of Mailleret and Grognard
(2006, 2009), we arrive at introduction sizes in a distribution with a mean
µT and a variance proportional to the mean: v = cpµT , where cp is a co-
efficient of proportionality. We incorporated these features in a log-normal
distribution with a mathematical form that is detailed in Appendix A.

We further assume that catastrophes occur following a Poisson process of
intensity λc, so that the time between two consecutive catastrophes follows
an exponential distribution of parameter λc. Therefore, the probability that
at least one catastrophe occurs during a period of time T is pc = 1− e−λcT .
Two or more catastrophes during one period do not impact the population
further since it will be at size 0 until the next introduction event.

2.3. Models

Population dynamics throughout the introduction process are represented
by intrinsic population dynamics that are disrupted by two kinds of pertur-
bations: introduction events and catastrophes that obey discrete equations.
The generic resulting impulsive model is as follows:

ẏ(t) = f(y(t)), t 6= iT, tj

y(iT+) = y(iT ) + hi,

y(t+j ) = 0.

(6)
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Demographic Definition Values

r Intrinsic growth rate 1

Ka Allee threshold 1

K Carrying capacity 10

KT Target size 1, 1.1, 2, 5

Introduction
µ Mean introduction rate 0.2, 0.3, 0.5, 2

T Introduction period [0.1, 10]

µT Mean of introduction size -

cp Coeff. of proportionality for variance [0.001, 1]

cpµT Variance of introduction size -

Catastrophe
λc Poisson parameter 0, 0.1, 0.2
pc probability over one period pc = 1− e−λcT

Table 1: Parameters used for modeling the introduction process, their definition and values
used in the simulations of the Results section.

The latter model is the aggregation of Equations (1), (3) and (5) and it has
been used to perform our mathematical analysis in the most general case. A
more specific impulsive model is used for simulations. It is given by:

ẏ = ry
(

1− y

K

)( y

Ka

− 1

)
, t 6= iT, tj

y(iT+) = y(iT ) + hi, with hi ∼ logN (α, β)

y(t+j ) = 0, with (tj+1 − tj) ∼ Exp(λc).

(7)

Figure 1 illustrates an introduction process using model (7). The process
starts with an initial density of the population y0 = 0.2. Periodic introduc-
tions are performed based on a period T = 0.5 and an introduction rate
µ = 0.3. The population density before the ith release is given by y(iT ),
i > 0 with, for example, y(T ) and y(2T ) on the figure. The post-release
densities are y(iT+) = y(iT ) + hi. Figure 1 illustrates the first passage time,
which is the time at which the target size KT is crossed for the first time. A
catastrophe occurs at the approximate time t = 2.2.
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Figure 1: Population dynamics based on model (7). The dynamics used are given by (2),
with r = 1, Ka = 1 and K = 100. The mean introduction rate is µ = 0.3, the period of
introduction is T = 0.5 and the coefficient of proportionality between the mean and the
variance is given by cp = 0.1. The target size is KT = 3.

3. Measure to quantify success of establishment

Since a stochastic representation for introduction sizes is used, the prob-
ability of a successful introduction is always 1 over a sufficiently long period
of time. It is therefore not an appropriate measure to quantify introduction
success. Thus, we consider the MFPT, which defines an average timescale
for a stochastic event to first occur (Van Kampen, 1992; Polizzi et al., 2016),
as a better measure to quantify the success of an introduction process (Drury
et al., 2007).

3.1. Integral equation of the MFPT without catastrophes

MFPT for continuous processes that are disrupted by shot noises, i.e.
random jumps that instantaneously change the level of the process, have
been formulated in terms of integral equations by Masoliver (1987) without
catastrophe consideration. Using a similar theoretical approach but keeping
a general form concerning the distribution of introduction sizes, we obtain
an integral equation in terms of the MFPT. We define Γ(y0) as the MFPT
required for a population of initial size 0 6 y0 6 KT to cross the target
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size KT . Assuming that population dynamics follow Equations (6) without
catastrophes, we determined by first step analysis (see Appendix B for its
detailed derivation) that the MFPT is a solution of the implicit equation:

Γ(y0) = θ(y0) +

∫ KT−y(θ(y0))

0

χ(h1)Γ

(
y(θ(y0)) + h1

)
dh1, (8)

with θ(y0) = min(T, τ(y0)), where τ(y0) is the time it would take for the
solution to reach the target size KT through population demography only.
Therefore, τ(y0) = +∞ when y0 < Ka ≤ KT since population dynamics drive
the population to extinction in that case. Function χ(h) is the probability
density function that an introduction of size h will occur.

There are two distinct terms on the right-hand size of (8). The first one
is the timing of the next event. If τ(y0) ≤ T , the target is reached through
population dynamics before any introduction is performed. This occurs at
time θ(y0) = τ(y0) and the integral term is null since KT − y(θ(y0)) = 0,
so that Γ(y0) = τ(y0). If τ(y0) > T , θ(y0) = T and a discrete introduction
event takes place at time T , so that the MFPT from y0 is equal to the time T
plus the average time it would take to reach the target size from y(T ). This
average lies in the integral term which sums the MFPT values Γ(y(T )+h1) =
Γ (y(T+)) multiplied by the probability density of an introduction of size h1,
χ(h1); note that this integral is truncated at h1 = KT −y(T ) since, for larger
values of h1, y(T ) + h1 > KT and the target is exceeded at time T+.

3.2. Including catastrophes

Catastrophic events are not considered in Equation (8). To include them,
we propose that catastrophic events occur randomly during the process such
that they wipe out the population present in the habitat of interest. The pre-
viously obtained MFPT changes since the population density randomly re-
turns to zero when a catastrophe occurs before an introduction event. Hence,
the integral equation of the MFPT becomes:

Γ(y0) = e−λcθ(y0)

(
θ(y0) +

∫ KT−y(θ(y0))

0

χ(h1)Γ

(
y(θ(y0)) + h1

)
dh1

)

+
(
1− e−λcθ(y0)

)(
T +

∫ KT

0

χ(h1)Γ(h1)dh1

)
.

(9)

The MFPT given in (9) is split into two terms. The first one represents
the scenario where no catastrophe occurs before θ(y0) and the second one
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a scenario where it does occur. The first term is the probability that no
catastrophe occurs before θ(y0), e−λcθ(y0), which simply multiplies a MFPT
factor built just as in Equation (8).The second term depicts the situation
where a catastrophe happens before θ(y0); the next event is therefore an
introduction since the population is null after the catastrophe and f(0) =
0. Hence, the second term is the probability that at least one catastrophe
occurs before T , 1 − e−λcθ(y0), which simply multiplies a MFPT factor built
with θ(y0) = T and y(T ) = 0; in the end, this second term is equal to
Γ(0) multiplied by the probability that a catastrophe occurs before θ(y0):(
1− e−λcθ(y0)

)
Γ(0).

3.3. Successive approximations

Equations (8) and (9) are similar to the Volterra integral equations,
so that we use similar methods to compute solutions of these equations.
The method of successive approximations (Polyanin and Manzhirov, 2008;
Shestopalov and Smirnov, 2002) is a recursive method for solving integral
equations using (8) or (9) as recurrence equations to obtain the next itera-
tion. We simply have to fix a first approximative function denoted Γ0 and
compute the next ones until they converge to a fixed point. Basically, using
Equation (8), the initial approximation Γ0(y0) and the following approxima-
tions are given by:

Γ0(y0) = θ(y0)

Γi+1(y0) = θ(y0) +

∫ KT−y(θ(y0))

0

χ(h1)Γi

(
y(θ(y0)) + h1

)
dh1,

(10)

for all y0 ∈ [0, KT ]. We show convergence of these successive approximations
to the MFPT Γ(y0) in Appendix C.

For a given introduction period T , the MFPT values for all initial densities
of the population from y0 = 0 up to y0 = KT with a step of 0.02 are computed.
Indeed, since the y(θ(y0)) +h1 term in the integral of the MFPT can assume
a value from 0 to KT , it is mandatory to have access to such values at each
step of the recursive approximation. A trapezoidal rule is used to compute
the numerical integration and a linear interpolation is performed to obtain
the term Γi+1(y(θ(y0)) + h1) from the previous approximation Γi(.).
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4. Results

The method of successive approximations given by equation (10) allows
for the numerical computation of the MFPT given by Equations (8) and
(9). Introduction rates, target levels, and stochastic parameter values have
been explored to elucidate how they impact the MFPT as a function of the
introduction period.

4.1. Outputs

By numerically computing successive approximations of the MFPT for a
range of values of T , we compute contour plots as shown in Figure 2. This
figure gives the MFPT on a 2-dimensional space in which the horizontal axis
is the initial population size y0 and the vertical axis is the period of each
introduction. Figure 2 is obtained line by line: for each value of the period
T from 0.1 to 3.5, we compute the algorithm as described by equation (10)
until convergence occurs. The bottom lines of both sub-figures are precisely
computed. Indeed, as T → 0, System (7) without catastrophic event has the
same dynamical behavior as the following equation:

ẏ = ry
(

1− y

K

)( y

Ka

− 1

)
+ µ, (11)

which represents deterministic population growth with a continuous intro-
duction process at a rate of µ. Using Equation (11), the First Passage Time
for the population to cross KT for all the range of initial density y0 is then
computed and included in the contour plot as the MFPT to crosses KT for
T = 0.

One way to read and extract information from Figure 2 is to fix a period
of introduction (i.e. consider the horizontal lines). This observation of the
MFPT is intuitive and straightforward since the MFPT is decreasing with
the initial density, for all parameter sets, as expected.

The plots can also be read by considering a vertical line (i.e. for a fixed
initial density y0), which shows how the MFPT changes with respect to the
period of introduction T . This is directly related to the pattern of intro-
ductions. Since the introduction rate is fixed, a small T represents a high
frequency of small size introductions, while large T describe low-frequency
introductions of large sizes.

In Figure 2a, the consideration of the vertical line for y0 = 0, shows that
the population is likely to establish fastest if the period of introduction is
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Figure 2: Contour plots representing the mean first passage time (MFPT) for the pop-
ulation to cross KT = Ka = 1 for different values of y0 and T . The initial density y0
varies from 0 to KT while period T varies from 0 to 3.5. The introduction rate is fixed at
µ = 0.5 in both sub-figures, the coefficient of proportionality between µT and the variance
is cp = 0.1 for (a) and cp = 1 for (b). No catastrophe occurs during the introduction
process. The global minimum of the MFPT as a function of T , for a given y0, is described
by the black circles, while the white circles represent a local minimum.

approximately 2.7 units of time. However, Figure 2b, which is computed for
a larger coefficient cp, shows that small and frequent introductions lead to
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the fastest establishment of the population. Such differences in results are
discussed later by comparing and analyzing different sets of parameters.

By fixing the initial population y0, it is thus possible to obtain the min-
ima of the MFPT as a function of the period of introduction T , i.e. identify
the optimal introduction pattern. The circle curves in Figure 2 describe how
these minima evolve, with the black circles referring to the global minimum
while the white circles represent a local minimum. In Figure 2a, the global
minimum is obtained for large periods, i.e., infrequent and large introduc-
tions, when the initial density is low (y0 ≤ 0.06). In the same range of initial
densities, a local minimum is also present at T = 0. The global minimum
becomes a local one for intermediate initial densities (0.06 < y0 ≤ 0.4) and
the global minimum lies at T = 0. This induces a change of the optimal
pattern from large periods, i.e. infrequent and large introductions, to very
small periods, i.e. small and frequent introductions. Once the initial den-
sity becomes large (y0 > 0.4), the local minimum disappears. In Figure 2b,
for any initial population, the optimal strategy is to frequently introduce
individuals, since the circle line is at T = 0.

A common feature of all the contour plots we obtained is that there always
exists a critical initial density above which the positive global or local minima
disappears, as in Figure 2a, and the only global minimum is then for T = 0.
Whereas such a feature is interesting for the introduction schemes starting at
different initial densities, the present study focuses on the MFPT for y0 = 0,
i.e. the worst initial density for the population.

4.2. Influence of target size and introduction rate

In Figure 3, we explore the response of the MFPT from y0 = 0 as a
function of the introduction period T for different values of the target size KT

from KT = Ka = 1 to KT = 5, three values for the introduction rate µ = 0.3,
µ = 0.5 and µ = 2, and little variability in the introduction size, i.e. for
cp = 0.01. Each curve is obtained by taking the values along the vertical axis
of a corresponding contour plot defined as in Figure 2. The MFPT cannot
be smaller than the period T since the target cannot be reached before one
introduction happens. This defines an inaccessibility zone in Figure 3, which
is illustrated by the gray area; when the MFPT is at the upper boundary of
this zone, establishment succeeds through a single introduction. For T → 0,
the value of the MFPT is computed via the continuous dynamics given by
equation (11) and plotted with dots near the vertical axis. To assess the
performance of the successive approximation algorithm, we also computed
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the curves obtained in Figure 4 using the Monte method Carlo (see Appendix
E). These simulations confirm the validity of the successive approximation
method, based on a much heavier computational load.

We observe that the MFPT is increasing with the target size KT for all
T , which is natural since the population size has to reach a higher level to
be successful. The same is true for the main impact of the introduction rate
µ, which decreases the MFPT when it increases. Less trivial is the impact
of µ on the optimal introduction pattern. When a small introduction rate
is considered (µ = 0.3 in Figure 3a), the population establishes faster when
the period of introduction is at a relatively large value, corresponding to a
crossing of KT based on precisely one introduction. For small values of T ,
a local minimum is observed at T = 0, which is identical to the situation
that is shown on the vertical axis of Figure 2a. This pattern becomes more
apparent when the introduction rate is larger, (Figure 3b) and finally, the
MFPT may increase globally for large introduction rates (Figure 3c). Thus,
the global minima observed for large periods of introduction disappear as
the introduction rate becomes larger, giving rise to the situation illustrated
along the vertical axis of Figure 2b.

MFPT curves as a function of T oscillate as the introduction rate is in-
creased. This results from the whole number of introductions needed to cross
KT . Indeed, when there is no variability in introduction sizes, we observe a
sawtooth-shape of the MFPT curves: a sharp decrease in the MFPT appears
when a whole number of introductions is required to exactly reach KT . This
phenomenon is illustrated in Figure D.7 in Appendix D, which represents
the same MFPT curves as in Figure 3 without stochasticity (cp = 0). In
Figure 3, a relatively small variance in the introduction size has been used
for simulations, but the pattern is only present when the introduction rate
is large enough (Figures 3b and 3c). In Figure 3a, the target size is crossed
after many introductions, which leads to a smoothing of the MFPT curves.
Since µ is larger in figures 3b and 3c, less introduction events are needed to
cross KT and the pattern observed when no variability occurs becomes more
apparent.

Since the population is initially extinct, it is not possible for the popu-
lation to reach the target size before the first introduction event. This time
range is described by the shaded areas in Figure 3. It is the region under the
curve Γ(0) = T that represents the mean time for the population to cross
the target size at the first introduction event.

15



0 1 2 3 4 5 6

4
6

8
10

●

●

●

0 1 2 3 4

3
4

5
6

7

●

●

●

Kt=1
Kt=1.1
Kt=2
Kt=5

0.0 0.4 0.8 1.2

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

●

●

●

Figure 3: Influence of µ and KT : Mean first passage time (MFPT) for population size to
cross KT from y0 = 0 as a function of the introduction period T . (a) Describes the MFPT
for µ = 0.3, (b) is obtained using µ = 0.5 and (c) for µ = 2. Results for four values of KT

are shown: KT = 1 (dashed), KT = 1.1 (solid black), KT = 2 (dark gray) and KT = 5
(light gray). Dots denote the continuous introduction T → 0 obtained from Model (11).
The variability in the introduction size is cp = 0.01. The period T varies from 0 to 7 in
(a), to 5 in (b), and to 1.2 in (c). MFPT is unachievable in the shaded areas.
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4.3. Variability in introduction sizes
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Figure 4: Influence of µ and cp : Mean first passage time (MFPT) using the method of
successive approximation for different values of the coefficient of proportionality between
the variance and the mean introduction size. The MFPT is given with respect to the
period of the introduction for a fixed value of y0 = 0. Period T varies from 0 to 10 in
sub-figure (a) and from 0 to 6 in both sub-figures b and c. The introduction rate µ is 0.2
in (a), 0.3 in (b) and 0.5 in (c). The target size KT is equal to 1.1 in all sub-figures. Solid
and dashed curves describe the MFPT for different variability in the introduction sizes
for all sub-figures. Solid black, dark and light gray give the MFPT for small variances
with cp = 0.001, cp = 0.01 and cp = 0.1, respectively, while the dashed black and dark
gray give the MFPT for larger variances using cp = 0.5, cp = 1. The point described the
MFPT computed with Model (11). MFPT is not reachable in shaded areas (mean time
faster than MFPT in one introduction).

As shown in Figure 4 we investigate the response of the MFPT as a
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function of the introduction period T to different amounts of variability in
introduction sizes (cp = 0.001 up to cp = 1) for three different introduction
rates µ = 0.2, µ = 0.3 and µ = 0.5.

The main result is that, for sufficiently large introduction rates (Figure
4b and c), the MFPT mostly increases with cp. At very small ranges of
the introduction rate (Figure 4a), stochasticity in introduction size favors
small and frequent introductions while, for larger values of µ (Figure 4b and
4c), stochasticity promotes large and infrequent introductions. When the
variance is very small (i.e. cp = 0.001 and cp = 0.01), the oscillating pattern
observed in Figure 3 is apparent but disappears as cp increases.

When µ is small (Figure 4a and b), a global minimum is observed for large
periods of introduction. This global minimum is such that the population
size crosses KT with approximately one introduction event on average. The
optimal period increases with variability, which is quite natural since small
introduction sizes induced by the stochasticity have to be overcome. How-
ever, when µ is large (Figure 4c), the global minima occur for large periods
only when there is little variability in the introduction size (black and dark
gray solid curves). When cp increases (dashed curves), the global minima
are shifted towards T = 0 and the MFPT increases in T . This means that
when introduction size is random, introducing individuals more frequently
promotes population establishment. This pattern is attributable to overdis-
persion and the positive skewness of the distribution of introduction sizes
when cp is large and the expected introduction size is small (Appendix A).
Indeed, positive skewness implies that the determined introduction sizes are
often very small but occasionally much larger. Such large introductions al-
low then to overshoot the Allee threshold in one step and subsequently, the
target population size.

The presence of stochasticity affects the MFPT differently when µ is very
small (Figure 4a). When introductions are rare and large, high levels of
stochasticity in introduction sizes are detrimental to population establish-
ment, as previously indicated. However, when periods of introduction are
small, higher stochasticity in the introduction sizes reduces the time for es-
tablishment. Bajeux et al. (2014) pointed out that there exists a critical
value of µ depending on T below which population establishment is not pos-
sible in an entirely deterministic introduction process, and µ = 0.2 is below
that level since it cannot compensate for the fastest population decay rate.
For cp ≤ 0.01, the introduction process is very similar to such a deterministic
introduction process, leading the MFPT to become very large. For larger cp
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values, there is a more frequent occurrence of larger than expected introduc-
tions that can compensate for the fastest decay rate, which leads to a faster
population establishment.

Though it is not clear in Figure 4, because of the heavy numerical burden
associated with computing the MFPT for small values of T using our algo-
rithm, the MFPT converges to a single value when T → 0 for any cp (black
dot on the left of Figures 4b and 4c). The gap between the dot (i.e. T → 0)
and the first MFPT computed using the algorithm (i.e. T = 0.1) becomes
larger as variance in the introduction sizes increases. There is no such dot
in Figure 4a since, in a deterministic framework (equation (11)), population
cannot be established, so that all curves go to +∞ as T → 0.

4.4. Catastrophes

Finally, based on Figure 5, we investigate the influence of catastrophe
occurrences on the relation between the MFPT and the introduction period
T , by considering three values of λc (λc = 0, λc = 0.1 and λc = 0.2) for two
different variabilities in introduction sizes (cp = 0.001 and cp = 1).

As expected, increasing the rate at which catastrophes occur increases the
MFPT (Figures 5a and 5b). When the variance of the introduction size is
very small (Figure 5a), optimal introduction patterns correspond to a large
period (approximately T = 3). This optimum value is reinforced as the
environmental stochasticity increases.

For a large variance of introduction size (cp = 1, Figure 5b) and without
catastrophes, small and frequent introductions are optimal (dashed curve).
However, the occurrence of catastrophes increases the MFPT, especially for
small introduction periods. Consequently, the optimal introduction pattern
switches back to large T values as λc increases. This result stems from
the fact that when the introduction size is sufficiently large, catastrophes
do not influence the MFPT, since a single introduction will often achieve
population establishment. Further, because the MFPT is computed from
an initial condition y0 = 0, the occurrence of a catastrophe before the first
introduction event has no impact because the population size is already null.

5. Discussion

The present work aims to decouple the impact of the components of
propagule pressure on the time for population establishment in the pres-
ence of Allee effects and stochasticity. As suggested in empirical (Sinclair
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Figure 5: Influence of cp and λc : Mean first passage time (MFPT) for the population
to cross KT starting from an initial density y0 = 0. The introduction rate µ is 0.5, the
period varies from 0 to 6 and the target size KT = 5 is in both sub-figures. In (a), a small
variance is taken cp = 0.001 while a large one is represented in (b), cp = 1. Three values
for the Poisson parameter λc are chosen: λc = 0 in dashed black, λc = 0.1 in black and
λc = 0.2 in dark gray. Points represent the MFPT for T → 0. MFPT is not reachable in
shaded areas (mean time faster than MFPT in one introduction).

and Arnott, 2016), mathematical (Dennis, 2002; Drake and Lodge, 2006;
Mailleret and Lemesle, 2009) and computational studies (Wittmann et al.,
2014; Drolet et al., 2016), it has generally been determined that infrequent
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Parameter values Best Local best

µ
Small Size Frequency

Medium Size × Frequency

Large Frequency × Size

cp µ
Small Any Size × Frequency

Large Small Size Frequency

Large Frequency None

λc cp
Small Small Size Frequency

Large Frequency Size

Large Any Size Frequency

Table 2: Main results obtained from previous figures. Best and local best strategies as
a function of the parameter values are given for all studied cases. ”Frequency” indicates
that the best (resp. local best) strategy is to introduce individuals frequently using small
introduction sizes. ”Size” indicates that the best (resp. local best) strategy is to introduce
individuals rarely with large introduction sizes. ”× Frequency” indicates that there are
multiple local minima with period of introduction that are smaller than the optimal value.
”× Size” indicates that there are multiple local minima with a period of introduction that
is greater than the optimal value.

and large introductions decrease the mean time for establishment in the pres-
ence of the Allee effects. However, we interestingly discovered some situations
for which the optimal strategy, on the contrary, is based on small and fre-
quent introductions (summary Table 2). This situation arises mainly when
the introduction rate is large and/or when introduction sizes are very ran-
dom. Furthermore, we counterintuitively observed that when environmental
catastrophes resulting in extinction occurs too often, small and frequent in-
troductions are particularly negatively impacted. These main findings are
summarized in Table 2.

5.1. Introduction rate

In our simulations, the introduction rate µ describes the effort during the
overall process. Since it is the mean number of introduced individuals per
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time unit, an increase of the introduction rate leads to an increase of the
introduction size, for the same period. It is therefore very natural that larger
introduction rates lead to smaller values of the MFPT. Furthermore, when
µ is large, even frequent introductions are sufficiently large to overcome the
negative impact of the Allee effects and/or variability in the introduction
sizes. These frequent introductions are therefore more efficient in terms of
the time to establishment compared to rarer patterns of introduction (Fig-
ure 3c). When µ is more limiting (Figure 3a,b), only infrequent, and thus
large introductions can swiftly outweigh the effects of Allee and stochasticity,
which leads to the classical result concerning the superiority of such intro-
duction patterns in presence of Allee effects. These results highlight and
confirm the primary importance of the introduction rate in driving popula-
tions to establishment (Blackburn and Duncan, 2001; Lockwood et al., 2005;
Simberloff, 2009).

5.2. Variability in introduction sizes

The introduction rate also plays an important role when introduction
sizes are variable. Indeed, when the introduction rate is large enough, small
and frequent introductions outperform other patterns of introduction when
strong stochasticity arises (Figure 4c). Hence, large fluctuations in introduc-
tion sizes tend to disadvantage intermediate and large periods of introduc-
tions more than smaller ones. This result holds because if a given, supposedly
large introduction fails and is in fact small because of the stochasticity, there
is a long time delay before the next large introduction. When introductions
are small and frequent, failing one of them has little impact because the next
release arises soon, and the missed quantity of the introduced individuals is
small. Furthermore, the distribution of introduction sizes is increasingly pos-
itively skewed since the expected introduction size is small (A.6 in Appendix
A). Therefore, when small and frequent introductions are performed, many
very small introductions are realized, but rarely, a large one occurs and drives
the population over the Allee threshold. The population can then cross the
target population size through intrinsic population growth. This advantage
of the small and frequent introduction pattern becomes more sensible as the
variability in introduction sizes increases since the skewness of the distribu-
tion of introduction sizes increases as well.

Two recent studies investigated the effects of stochasticity in immigration
based on stochastic differential equation models (Rajakaruna et al., 2013;
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Potapov and Rajakaruna, 2013). Rajakaruna et al. (2013) considered favor-
able environments (positive intrinsic growth of the population) or situations
in which Allee effects occur but the introduction rate was larger than the
maximum population decay due to the Allee effects. In both cases, the au-
thors showed that stochasticity in the introduction process tends to decrease
the probability of establishment of the population. Potapov and Rajakaruna
(2013) explored the influence of stochasticity in unfavorable environments
when the introduction rate was smaller than the maximum population decay
due to Allee effects on average. In such situations, they evidenced a positive
stochasticity effect on the probability of population establishment. In the
present study, we mainly considered the first situation, when µ is larger than
the maximum of the population decay. Similar to Rajakaruna et al. (2013),
we determine that stochasticity in the introduction sizes tends to hamper
population establishment, for all types of introduction patterns (Figure 4).
Simulation studies were performed to investigate the case when the introduc-
tion rate is smaller than the maximum population decay (Figure 4a). Just
as Potapov and Rajakaruna (2013), we determine that when introductions
are, on average, small and frequent, stochasticity in introduction sizes tends
to favor population establishment. However, when the introduction pattern
moves towards larger and infrequent ones, the association is reversed and
higher stochasticity in the introduction size becomes detrimental to popu-
lation establishment, as is the case for larger introduction rates. This is
because since we have determined that stochasticity is not required for large
introductions to transition across the region of fastest decay. Therefore, there
appears to be a general negative association between population establish-
ment and immigration stochasticity, except in the special cases where the
immigration rate is rather small, and the introductions are evenly spread out
over time.

5.3. Environmental catastrophes

The occurrence of environmental catastrophes that wipe out populations
during the introduction process appear to slow down population establish-
ment for all types of introduction patterns but has more impact on small
and frequent ones (Figure 5). This is quite an unexpected result since it
is often asserted that in the presence of environmental stochasticity, pop-
ulations may face difficulties in recovering from negative conditions when
individuals are introduced too rarely (Simberloff, 2009). However, it seems
to be in line with the results of recent modeling studies by Cassey et al.
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(2014) and Drolet et al. (2016), which show that performing many intro-
ductions in the presence of high environmental stochasticity actually hinders
population establishment. Here, catastrophes do not affect population es-
tablishment before the first introduction event since the population is empty
at that moment. Thus, the strategy which entails waiting before introduc-
ing large numbers of individuals is not hindered by catastrophes during this
time period. On the contrary, strategies based on the gradual build-up of
the population through more frequent and smaller introductions may rapidly
face catastrophes, which completely resets the overall introduction process.
Therefore, the occurrence of catastrophes is more influential over smaller and
more frequent introduction patterns.

In this paper, we approach environmental stochasticity based on the
rather extreme case of catastrophes that destroy the entire population at
random moments in time. Yet, environmental stochasticity can also assume
softer forms as temporal perturbations that affect the probability of mortality
and natality in a population (Lande et al., 2003). Figure 2 (iii) from Cassey
et al. (2014) shows that extreme forms of environmental perturbations im-
pact the probability of establishment more than moderated perturbations.
Also, they emphasize that, in the absence of spatial structure, the effect of
this type of perturbations cannot be alleviated by spreading many small in-
troductions over space, as in (Grevstad, 1999). Hence, in Cassey et al. (2014)
and the present work that only considers localized populations, large pertur-
bations directly impact the entire population which cannot escape, so that
accounting for such perturbations is crucial in the evaluation of the success
or failure of the introduction process.

Nevertheless, a deeper investigation of how temporal fluctuations in growth
rate induced by milder environmental stochasticity affects the MFPT could
be explored. At this point, our mathematical tools are not sufficiently devel-
oped to understand how such environmental perturbations could affect the
MFPT. For instance, the consideration of minor catastrophes that do not
wipe out the entire population but only a portion of it renders the problem
of deriving the implicit integral equation defining the MFPT (Section 3.2
and Appendix B) difficult and it remains an important challenge for future
work in this regard.

5.4. Comparison with the study by Wittmann et al. (2014)

Wittmann et al. (2014) proposed a fully stochastic approach to compare
MFPT to reach a target size under different temporal patterns of introduc-
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tion. Their study is very akin to the present one, with the major exception
that the modeling frameworks are completely different. It is therefore rele-
vant to point out the similarities and differences of the outputs between the
two studies. Wittmann et al. (2014) considered different ecological scenarios
in the function of the sign of the per capita growth rate of the population
during the overall introduction process: Easy, Mixed, and Difficult ecological
scenarios describe the per capita growth rates that on average are positive,
negative, then positive, or entirely negative, as the population size grows.
For easy scenarios, they determined that frequent introductions are likely
to establish the population faster. We ran additional simulations using a
logistic growth, i.e. with a positive growth rate during the overall introduc-
tion process, that confirm this point (not shown here). Mixed and difficult
scenarios correspond in our study to target population sizes larger or equal
to the Allee threshold, respectively. Wittmann et al. (2014) found that, in
such scenarios, it is always better to rarely introduce individuals in large
quantities. They argued that the variance in the introduction process is the
key factor, in their model, that affects and tends to favor large introduction
sizes. This is mostly in line with our findings, but not when the introduction
rate and/or the variability in introduction sizes are large, for which small
and frequent introductions are the most efficient (Figure 3c and 4b). Demo-
graphic stochasticity is not accounted for in our study and it may or may
not be responsible for this apparent discrepancy between the two approaches.
Therefore, we have determined that further research should be performed to
investigate the performance of small and frequent introduction patterns in
the presence of demographic stochasticity when the introduction rate and/or
variability in introduction sizes are large.

5.5. A note on the modeling framework

Different choices were made to conceptualize the introduction process and
to numerically simulate it. Measuring the success of population introduction
poses the question of what is the best metric to quantify the success or failure
of an introduced population. Four metrics have been identified: in empirical
studies, both the abundance, i.e., the population size at the end of the ex-
periment, and the probability of extinction are frequently used (Drake et al.,
2005; Hedge et al., 2012; Sinclair and Arnott, 2016). In theoretical studies,
both the first passage probability for the population to reach a target size
before going extinct (Dennis, 2002; Drake and Lodge, 2006) and the MFPT
for the population to reach a target size (Drury et al., 2007; Wittmann et al.,
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2014) are regularly used. Here, abundance has been discarded since it can
be strongly impacted by the intrinsic dynamics once the population is estab-
lished. The second and third ones were not considered because we had the a
priori that a population could become temporarily extinct, notably through
environmental perturbations, without stopping the entire introduction pro-
cess. This is because introductions occur repeatedly. Hence, we concentrated
on the MFPT which provides quantitative information on the time to achieve
success for an introduction process.

The choice of a log-normal distribution for model variability in introduc-
tion sizes was influenced by its positive support characteristic and versatility.
The bell shape of the distribution was also considered to be representative of
real-life variability in introduction size. An example of this is the fluctuations
in propagule sizes or individual survival that can occur during actual intro-
ductions (see e.g. distributions of propagule sizes in Drake et al. (2015)).
We also tested another form with a gamma distribution which essentially
yielded similar qualitative results (not shown here). Nevertheless, it would
be interesting to examine the influence of a distribution with a compact posi-
tive support, i.e. a distribution that would render introduction sizes between
0 and an absolute maximum size that could not be exceeded. Although
such distributions would be substantially less flexible than the log-normal
or gamma distribution, they may mitigate the effects of large variabilities in
the introduction sizes on optimal introduction patterns. This is left as future
works.

Finally, it could be possible to explore the influence of fluctuations in
the timing of introductions, which were here considered to be periodic, since
our theoretical framework includes stochasticity in the time interval between
introductions (see Appendix B and Appendix C). Stochasticity in intro-
duction timing, even without variability in the introduction size, may have
different repercussions on the MFPT for population establishment. In par-
ticular, when catastrophes occur, the impact could become important if an
introduction event becomes very rare because it allows the population to be
sensitive to an environmental fluctuation for a longer period. These features
combined with variation in the introduction sizes would certainly deserve
further study to observe their relative influence on different introduction
strategies.
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Appendix A. Probability Density Functions

As indicated in Section 2, the variance of the introduction sizes is linear
with the mean introduction size. We choose location and scale parameters α
and β of the log-normal distribution such that the variance of the introduction
sizes is proportional to the mean introduction size :

α = log

(
µT√

1 + cp/(µT )

)
,

β =
√

log (1 + cp/(µT )).

Figure A.6 represents several probability density functions for different
coefficients of proportionality, using a log-normal distribution. This is the
distribution that has been selected for simulations in this investigation. The
choice of the log-normal distribution was driven by its positive support and
its similarity to the Gaussian distribution, at least for large means of intro-
duction sizes (light gray in the figure). However, the log-normal distribution
is skewed for small means and large variances. This difference appears in
Figure A.6 in dark gray, black and dotted black, with an increasing magni-
tude. For the same mean of introduction size but for a larger variance, the
mode of the density probability function is significantly different from the
mean compared to the case with a small variance cp = 0.001 in light gray.

This skew changes the way introduction processes succeed. Indeed, a
large skew implies that most of the introductions are small. However, a very
large introduction sometimes has a big impact.

Appendix B. Integral equation of the MFPT

This section describes how to obtain the integral equation of the MFPT
given by Equations (8) and (9). This is accomplished through the proof
of the following theorem in a more general manner than that presented in
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Figure A.6: Probability density functions for different values of the variance. The period
of introduction is T = 0.1, the introduction rate is µ = 0.5 and the coefficient cp varies
between four values: cp = 0.001 (light gray), cp = 0.01 (dark gray), cp = 0.1 (black) and
cp = 1 (dotted black).

the article, since introductions are made randomly in time and not just pe-
riodically. Thus, considering that the probability density function of time
intervals is given by the function ψ(t) and that time τ̄i denotes the time to
cross KT using the intrinsic population growth, we established the following
theorem, which is the main mathematical result of this work.

Theorem 1. Suppose that function f satisfies the assumptions given in Sec-
tion 2.1, the MFPT for the population to cross KT > Ka starting from an
initial density y0 6 KT is given as:

Γ(y0) = θ(y0) +

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)Γ(y(θ(y0) + h1)dh1dτ1 (B.1)

where

θ(y0) = min

(
τ̄1

∫ ∞
τ̄1

ψ(τ1)dτ1,

∫ τ̄1

0

τ1ψ(τ1)dτ1

)
.

Proof 1. To obtain (B.1), we first need to compute the probability to cross
the target size KT . To do so, we first obtain the probability P̄ (i) to not
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cross KT during the ith interval, based on the knowledge that no crossing has
occurred before:

P̄ (i) = P (yi + hi < KT and τi < τ̄i | (yl + hl < KT and τl < τ̄l) ,∀l < i).

Value of P̄ (i) is

P̄ (i) =

τ̄i∫
0

ψ(τi)

 KT−yi(τi)∫
0

χ(hi)dhi

 dτi. (B.2)

The probability that no crossing occurs with the growth of the population
is
∫ τ̄i

0
ψ(τi)dτi and the probability to not cross KT from yi with a jump is∫ KT−yi

0
χ(hi)dhi. Since the population density yi = y(ti) depends on the time

at which the ith introduction occurs, the latter probability is inside the first
integral representing the timing of the jump.

Then, the probability to cross KT during the nth interval by the growth of
the population or by an introduction event is

P (n) = P (yn + hn > KT or tn > tn−1 + τ̄n)

whose value is

P (n) =

∫ ∞
τ̄n

ψ(τn)dτn +

∫ τ̄n

0

ψ(τn)

∫ ∞
KT−yn

χ(hn)dhndτn. (B.3)

The first integral is the probability that the nth introduction occurs after the
crossing of KT because of the continuous growth of the population, while the
second is the probability to cross the target size with an introduction event,
which is only possible if no continuous crossing previously occurred. This is
why there are two integrals to represent this probability. Additionally, note
that when yn−1 +hn−1 6 Ka, τ̄n = +∞, so that the first term disappears and
the second simplifies to

∫∞
KT−yn

χ(hn)dhn.
The probability density of the first passage time at time t starting from

an initial population density y0 is defined as p(t, y0) such that

p(t, y0) =
∞∑
n=1

pn(t, y0) (B.4)
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where pn(t, y0)dt is the probability that the population crosses the target size
during the time interval (t, t + dt), after n − 1 introductions, and before or
at the nth introduction. Thus, the MFPT is given by the integral notation

Γ(y0) =

∫ ∞
0

tp(t, y0)dt. (B.5)

Considering that the crossing of the population threshold occurs through
population growth, thus, at time t = τ̄n +

∑n−1
i=1 τi, the probability density of

an such event is given as:

T̄n(t) = δ(t− (τ̄n +
n−1∑
i=1

τi)), (B.6)

while the probability density of this event is 0 when τ̄n = +∞. So that, we
define

T̄n(t) =

 = δ(t− (τ̄n +
n−1∑
i=1

τi)), if τ̄n is finite,

= 0, otherwise.

(B.7)

If the crossing of the population threshold occurs because of an introduction
at time t =

∑n
i=1 τi, the probability density of such an event is given as:

Tn(t) = δ(t−
n∑
i=1

τi). (B.8)

Then, using Equations (B.2), (B.3), (B.6) and (B.8), we obtain the proba-
bility density as:

pn(t, y0) =

τ̄1∫
0

ψ(t1)

KT−y1∫
0

χ(h1)

...
 τ̄n−1∫

0

ψ(τn−1)

KT−yn−1∫
0

χ(hn−1)

(

∞∫
τ̄n

ψ(τn)T̄n(t)dτn +

τ̄n∫
0

ψ(τn)

∞∫
KT−yn

χ(hn)Tn(t)dhndτn

 dhn−1dτn−1

 ...

 dh1dτ1

(B.9)

In the previous equation, the probability to not cross KT during the n − 1
first introduction events is given by the n − 1 first double integral of type
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∫ τ̄k
0
ψ(τk)

∫ KT−yk
0

χ(hk) as defined in (B.2). Then, the crossing of KT occurs
at the nth introduction event at time tn =

∑n
i=1 τi or during the nth period

with the growth of the population at time τ̄n +
∑∞

i=1 τi. Note that if τ̄n is
infinite, a cross never occurs via population growth and T̄n = 0, ∀t, and the
integral

∫∞
τ̄n
ψ(τn)T̄n(t)dτn is equal to zero.

As in Masoliver (1987), we define the Laplace transform of pn(t, y0) as:

p̂n(s, y0) =

∫ ∞
0

e−stpn(t, y0)dt (B.10)

and

p̂(s, y0) =
∞∑
n=1

p̂n(s, y0). (B.11)

Thus, using the last two equations and (B.5), we can show that:

Γ(y0) = −∂p̂(s, y0)

∂s

∣∣∣∣∣
s=0

, (B.12)

and we also need to compute p̂(s, y0) to obtain an expression for the MFPT.
From (B.9),it is possible to write pn+1(t, y0) as a function of pn(t, y0).

Indeed,

pn+1(t, y0) =

τ̄1∫
0

ψ(t1)

KT−y1∫
0

χ(h1)

...
 τ̄n∫

0

ψ(τn)

KT−yn∫
0

χ(hn)

( ∞∫
τ̄n+1

ψ(τn+1)T̄n+1(t)dτn+1

+

τ̄n+1∫
0

ψ(τn+1)

∞∫
KT−yn+1

χ(hn+1)Tn+1(t)dhn+1dτn+1

 dhndτn

 ...

 dh1dτ1

and we note in the latter equation that the terms from the first large paren-
thesis until the last one actually represent pn(y1 + h1), we then obtain the
following recurrence equation,

pn+1(t, y0) =

∫ τ̄1

0

ψ(τ1)

∫ KT−y1

0

χ(h1)pn(t, y1 + h1)dh1dτ1. (B.13)

Thus, it is possible to obtain the probability density to cross KT at time t,
starting from y0, at the (n+ 1)th introduction or during the (n+ 1)th period
based on the growth of the population as a function of the probability density
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to cross KT at time t, starting from y1 +h1, at the nth introduction or during
the nth period by the growth of the population. Then, we use this recurrence
relation for the Laplace transform,

p̂n+1(s, y0) =

∫ τ̄1

0

e−sτ1ψ(τ1)

∫ KT−y1

0

χ(h1)p̂n(s, y1 + h1)dh1dτ1, (B.14)

and apply it to obtain p̂(s, y0):

p̂(s, y0) = p̂1(s, y0) +

∫ τ̄1

0

e−sτ1ψ(τ1)

∫ KT−y1

0

χ(h1)p̂(s, y1 + h1)dh1dτ1,

(B.15)
We obtain p̂1(s, y0) from the integration of (B.9) in (B.10) for n = 1.

We now have,

p1(t, y0) =

∫ ∞
τ̄1

T̄1(t)dτ1 +

∫ τ1

0

ψ(τ1)

∫ ∞
KT−y1

χ(h1)T1(t)dh1dτ1,

so that,

p̂1(s, y0) =

∫ ∞
0

e−st
(∫ ∞

τ̄1

T̄1(t)dτ1 +

∫ τ1

0

ψ(τ1)

∫ ∞
KT−y1

χ(h1)T1(t)dh1dτ1

)
dt.

Rearranging the terms and inverting the integrals, we obtain:

p̂1(s, y0) =

∫ ∞
τ1

ψ(τ1)

∫ ∞
0

e−stT̄1(t)dtdτ1+∫ τ̄1

0

ψ(τ1)

∫ ∞
KT−y1

χ(h1)

∫ ∞
0

e−stT1(t)dtdh1dτ1.

(B.16)

We now have two cases, either τ̄1 is finite or infinite. When τ̄1 is finite, that
is when y0 > Ka, Equation (B.16) gives,

p̂1(s, y0) =

∫ ∞
τ̄1

ψ(τ1)e−sτ̄1dτ +

∫ τ̄1

0

ψ(τ1)

∫ ∞
KT−y1

χ(h1)e−sτ1dh1dτ1,

because the integrals that depend on the Delta Dirac functions disappear.

∂p̂1(s, y0)

∂s
= −τ̄1

∫ ∞
τ̄1

ψ(τ1)dτ1 −
∫ τ̄1

0

τ1ψ(τ1)e−sτ1
∫ ∞
KT−y1

χ(h1)dh1dτ1,

32



and the partial derivative of the function with respect to s of the second term
of (B.15) is:

−
∫ τ̄1

0

τ1e
−sτ1ψ(τ1)

∫ KT−y1

0

χ(h1)p̂(s, y1 + h1)dh1dτ1

+

∫ τ̄1

0

e−sτ1ψ(τ1)

∫ KT−y1

0

χ(h1)
∂p̂

∂s
(s, y1 + h1)dh1dτ1.

Thus, by using p̂(0, y1 + h1) = 1 and (B.12), we obtain

Γ(y0) = τ̄1

∫ ∞
τ̄1

ψ(τ1)dτ1 +

∫ τ̄1

0

τ1ψ(τ1)dτ1

+

∫ τ̄1

0

ψ(τ1)

∫ KT−y1

0

χ(h1)Γ(y1 + h1)dh1dτ1

(B.17)

When τ̄1 =∞, that is when y0 6 Ka, T̄1(t) = 0, ∀t, so that

p̂1(s, y0) =

∫ ∞
0

ψ(τ1)

∫ ∞
KT−y1

χ(h1)e−sτ1dh1dτ1. (B.18)

Using the same token as before, we obtain:

Γ(y0) =

∫ ∞
0

τ1ψ(τ1)dτ1

+

∫ ∞
0

ψ(τ1)

∫ KT−y1

0

χ(h1)Γ(y1 + h1)dh1dτ1.

(B.19)

Both (B.17) and (B.19) can be summarized into (B.1). �

Considering that catastrophes may occur during the introduction process
leads to the following integral equation of the MFPT:

Γ(y0) = e−λcθ(y0)

(
θ(y0) +

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)Γ(y(θ(y0)) + h1)dh1dτ1

)

+
(
1− e−λcθ(y0)

)(∫ ∞
0

τ1ψ(τ1)dτ1 +

∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)Γ(h1)dh1dτ1

)
.

(B.20)
Differences compared with Equation (9) appear in the double integrals that
describe the random timing of introduction events. Further, the mean time
to wait for the next event after a catastrophe is now the mean time before
an introduction event occurs.
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Appendix C. Successive approximations

In this part, we prove that the method of successive approximations con-
verges to the integral equation of the MFPT defined by (B.1). Consider
that introductions are randomly made and that catastrophes occur, then
algorithm equation (10) is written as follows:

Γ0(y0) = θ(y0)

Γi+1(y0) = e−λcθ(y0)

(
θ(y0) +

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)Γi(y(θ(y0)) + h1)dh1dτ1

)

+
(
1− e−λcθ(y0)

)(∫ ∞
0

τ1ψ(τ1)dτ1 +

∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)Γi(h1)dh1dτ1

)
.

(C.1)
Furthermore, we assume that the introduction sizes are defined on R+ such
that:

sup{h such that χ(h) > 0} > KT . (C.2)

This hypothesis supposes that one introduction event may bring the popu-
lation above the target size KT , for all initial density 0 6 y0 6 KT . This
hypothesis is satisfied using the log-normal distribution.

Theorem 2. Under Hypothesis (C.2), the integral equation (9) has a unique
solution Γ(.) on A = C0([0, KT ],R∗) and successive approximations defined
by (C.1) converge to Γ(.) for any initialization on A.

Proof 2. Using ‖f‖∞ as sup
x
f(x), the space (A, ‖.‖∞) is a Banach space.

Hence, if η is a contraction mapping from A to A, using Banach’s fixed
point theorem, the sequence

Γi+1 = η(Γi), (C.3)

with i ∈ N and η the iteration defined by (C.1), converges to a unique fixed
point E∗ such that E∗ = η(E∗). This fixed point would then be the unique
solution of (C.1), which can easily be seen to be the solution of (9).

To prove that (C.3) is a contraction mapping, we compute two sequences,
solutions of (C.1) initialized differently. We denote these sequences (Γi)i∈N
and (Υi)i∈N. We will then follow the evolution of

‖η(Γi)− η(Υi)‖∞ = ‖Γi+1 −Υi+1‖∞ (C.4)
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We compute this difference between Γi+1(y0) and Υi+1(y0) based on (C.1):

Γi+1(y0)−Υi+1(y0) =

e−λcθ(y0)

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)[Γi(y(θ(y0)) + h1)−Υi(y(θ(y0)) + h1)]dh1dτ1

+
(
1− e−λcθ(y0)

) ∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)[Γi(h1)−Υi(h1)]dh1dτ1.

(C.5)
The norm of the latter equation is:

‖η(Γi)− η(Υi)‖∞ =∥∥∥∥e−λcθ(y0)

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)[Γi(y(θ(y0)) + h1)−Υi(y(θ(y0)) + h1)]dh1dτ1

+
(
1− e−λcθ(y0)

) ∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)[Γi(h1)−Υi(h1)]dh1dτ1

∥∥∥∥
∞
.

(C.6)
Considering that all terms in the integrals are positive, except for Γi(.)−

Υi(.), we can upper-bound this norm by its value with ‖Γi −Υi‖∞, so that

‖η(Γi)− η(Υi)‖∞ ≤
∥∥∥∥e−λcθ(y0)

τ̄1∫
0

ψ(τ1)

KT−y(θ(y0))∫
0

χ(h1)‖Γi −Υi‖∞dh1dτ1

+
(
1− e−λcθ(y0)

) τ̄1∫
0

ψ(τ1)

KT∫
0

χ(h1)‖Γi −Υi‖∞dh1dτ1

∥∥∥∥
∞
.

Then, the terms ‖Γi −Υi‖∞ can be taken out of the integral.

‖η(Γi)− η(Υi)‖∞ ≤ ‖Γi −Υi‖∞.
∥∥∥∥e−λcθ(y0)

∫ τ̄1

0

ψ(τ1)

∫ KT−y(θ(y0))

0

χ(h1)dh1dτ1

+
(
1− e−λcθ(y0)

) ∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)dh1dτ1

∥∥∥∥
∞
.

It is clear that, ∫ KT−y(θ(y0))

0

χ(h1)dh1 ≤
∫ KT

0

χ(h1)dh1,
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it follows that a simple upper-bound is obtained:

‖η(Γi)− η(Υi)‖∞ ≤ ‖Γi −Υi‖∞.
∥∥∥∥∫ τ̄1

0

ψ(τ1)

∫ KT

0

χ(h1)dh1dτ1

∥∥∥∥
∞
.

By hypothesis (C.2),
∫ KT

0
χ(h1)dh1 < 1. Further, since

∫∞
0
ψ(τ1)dτ1 = 1, it

follows that the second factor in the right-hand side is strictly smaller than
one. Thus, η is a contraction mapping. The proof is concluded by using
Banach’s fixed point theorem. �
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Appendix D. Deterministic simulations
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Figure D.7: Influence of µ and KT : Mean first passage time (MFPT) for population size
to cross KT from y0 = 0 as a function of introduction periods. (a) Describes the MFPT
for µ = 0.3, (b) is obtained using µ = 0.5, and (c) for µ = 2. Three values of KT are
shown: KT = 1.1 (solid black), KT = 2 (dark gray) and KT = 5 (light gray). Points on
the left of all sub-figures denote the limit case with the continuous introduction (Model
(11)). There is no variability in the introduction sizes, i.e. cp = 0. Period T varies from
0 to 7 in (a), to 5 in (b), and to 1.2 in (c). MFPT is not reachable in the shaded areas
(mean time faster than MFPT in one introduction).
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Appendix E. Monte Carlo simulations
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Figure E.8: Influence of µ and cp: Mean first passage time (MFPT) using the Monte Carlo
method for different values of the coefficient of proportionality between the variance and
the mean introduction size. (a) The MFPT for an introduction rate µ = 0.3, (b) is for
µ = 0.5. The MFPT is given with respect to the period of introduction for a fixed value
of y0 = 0. The solid and dashed curves describe the MFPT for different variability in
introduction sizes for all sub-figures. Solid black, dark, and light gray show the MFPT for
small variances with cp = 0.001, cp = 0.01 and cp = 0.1, respectively. Dashed black and
dark gray show the MFPT for larger variances using cp = 0.5, cp = 1, respectively.

Figure E.8 represents the MFPT curves with the same parameters used

38



in Figure 4, but using Monte Carlo simulations: we computed 10 000 simu-
lations with an initial population at y0 = 0 and computed the mean time to
cross the target size. This figure shows that all patterns observed in Figure 4
are the same compared to this alternative approach to computing the MFPT,
which takes much longer time to obtain (roughly from 5 to 100 times longer).
Further, with Monte Carlo simulations, only one MFPT is computed from
y0 = 0, while it was computed from y0 = 0 to y0 = KT using the successive
approximation method.
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