J. Adler, A. Ringh, O. Öktem, and J. Karlsson, Learning to solve inverse problems using Wasserstein loss, 1710.

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM journal on imaging sciences, vol.2, issue.1, pp.183-202, 2009.

M. Borgerding, P. Schniter, and S. Rangan, AMP-inspired deep networks for sparse linear inverse problems, IEEE Transactions on Signal Processing, vol.65, issue.16, pp.4293-4308, 2017.

X. Chen, J. Liu, Z. Wang, and W. Yin, Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds, Advances in Neural Information Processing Systems (NIPS), pp.9061-9071, 2018.

L. Patrick, H. H. Combettes, and . Bauschke, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.

M. Massias, A. Gramfort, and J. Salmon, Celer: a Fast Solver for the Lasso with Dual Extrapolation, International Conference on Machine Learning (ICML), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833398

T. Moreau and J. Bruna, Understanding neural sparse coding with matrix factorization, International Conference on Learning Representation (ICLR, 2017.

E. Ndiaye, O. Fercoq, A. Gramfort, and J. Salmon, Gap safe screening rules for sparsity enforcing penalties, J. Mach. Learn. Res, vol.18, issue.128, pp.1-33, 2017.

Y. Nesterov, A method for solving a convex programming problem with rate of convergence O(1/k 2 ), Soviet Math. Doklady, vol.269, issue.3, pp.543-547, 1983.

A. Bruno, . Olshausen, J. David, and . Field, Sparse coding with an incomplete basis set: a strategy employed by V1, 1997.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang et al., Automatic differentiation in PyTorch, NIPS Autodiff Workshop, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

C. Poon, J. Liang, and C. Schönlieb, Local convergence properties of SAGA and prox-SVRG and acceleration, International Conference on Machine Learning (ICML), 2018.

, Python Software Foundation. Python Language Reference, 2017.

S. Rosset, J. Zhu, and T. Hastie, Boosting as a regularized path to a maximum margin classifier, J. Mach. Learn. Res, vol.5, pp.941-973, 2004.

P. Sprechmann, A. M. Bronstein, and G. Sapiro, Learning efficient structured sparse models, International Conference on Machine Learning (ICML), pp.615-622, 2012.

P. Sprechmann, R. Litman, and T. B. Yakar, Efficient supervised sparse analysis and synthesis operators, Advances in Neural Information Processing Systems (NIPS), pp.908-916, 2013.

Y. Sun, H. Jeong, J. Nutini, and M. Schmidt, Are we there yet? manifold identification of gradient-related proximal methods, Proceedings of Machine Learning Research, vol.89, pp.1110-1119, 2019.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), vol.58, issue.1, pp.267-288, 1996.

R. Tibshirani, The lasso problem and uniqueness, Electron. J. Stat, vol.7, pp.1456-1490, 2013.

P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl, vol.109, issue.3, pp.475-494, 2001.

Z. Wang, Q. Ling, and T. S. Huang, Learning deep 0 encoders, AAAI Conference on Artificial Intelligence, pp.2194-2200, 2015.

B. Xin, Y. Wang, W. Gao, and D. Wipf, Maximal sparsity with deep networks?, Advances in Neural Information Processing Systems (NIPS), pp.4340-4348, 2016.

Y. Yang, J. Sun, H. Li, and Z. Xu, Deep ADMM-Net for compressive censing MRI, Advances in Neural Information Processing Systems (NIPS), pp.10-18, 2017.

. Willard-i-zangwill, Convergence conditions for nonlinear programming algorithms, Management Science, vol.16, issue.1, pp.1-13, 1969.

J. Zhang and B. Ghanem, ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1828-1837, 2018.