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Abstract: This work introduces scheduling strategies to maximize the expected number
of independent tasks that can be executed on a cloud platform within a given budget
and under a deadline constraint. The cloud platform is composed of several types of
virtual machines (VMs), where each type has a unit execution cost that depends upon its
characteristics. The amount of budget spent during the execution of a task on a given VM
is the product of its execution length by the unit execution cost of that VM. The execution
lengths of tasks follow a variety of standard probability distributions (exponential, uniform,
half-normal, lognormal, gamma, inverse-gamma and Weibull) whose mean and standard
deviation both depend upon the VM type. Finally, there is a global available budget and
a deadline constraint, and the goal is to successfully execute as many tasks as possible
before the deadline is reached or the budget is exhausted (whichever comes first). On each
VM, the scheduler can decide at any instant to interrupt the execution of a (long) running
task and to launch a new one, but the budget already spent for the interrupted task is
lost. The main questions are which VMs to enroll, and whether and when to interrupt
tasks that have been executing for some time. We assess the complexity of the problem
by showing its NP-completeness and providing a 2-approximation for the asymptotic case
where budget and deadline both tend to infinity. Then we introduce several heuristics and
compare their performance by running an extensive set of simulations.

Key-words: independent tasks, stochastic execution times, cloud platform, heterogene-
ity, budget, deadline.



Ordonnancement de taches stochastiques sur
plateformes hétérogenes

Résumé : Ce travail présente des stratégies d’ordonnancement permet-
tant de maximiser le nombre attendu de taches indépendantes pouvant étre
exécutées sur une plateforme de type cloud avec un budget donné et une date
limite contrainte. La plateforme est composée de plusieurs types de machines
virtuelles (VM), chaque type ayant un cout d’exécution unitaire qui dépend
de ses caractéristiques. Le montant du budget dépensé lors de 'exécution
d’une tache sur une VM donnée est le produit de son temps d’exécution par
le cotit d’exécution unitaire de cette VM. Le temps d’exécution des taches
suit une variété de distributions de probabilités standard (exponentielle,
uniforme, semi-normale, log-normale, gamma, gamma-inverse et Weibull)
dont la moyenne et I’écart type dépendent tous du type de la VM. Enfin,
il existe un budget disponible global et une contrainte de date limite, et
l'objectif est d’exécuter avec succes le plus grand nombre de taches pos-
sible avant la date limite ou I’épuisement du budget (suivant lequel vient
en premier). Sur chaque VM, le planificateur peut décider a tout moment
d’interrompre 1’exécution d’une tache (longue) en cours d’exécution et d’en
lancer une nouvelle, mais le budget déja utilisé pour la tache interrompue
est perdu. Les principales questions sont de choisir les VM a utiliser et le
moment auquel interrompre les taches en cours d’exécution. Nous évaluons
la complexité du probléme en montrant sa NP-complétude et en fournissant
une 2-approximation pour le cas asymptotique ou le budget et la date limite
tendent vers l'infini. Ensuite, nous introduisons plusieurs méthodes heuris-
tiques et comparons leurs performances en exécutant un vaste ensemble de
simulations.

Mots-clés : taches indépendantes, temps d’exécution stochastiques, plate-
forme cloud, hétérogénéité, budget, date limite.
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1 Introduction

This paper deals with the following problem: given a cloud platform and
a bag of stochastic tasks, how to maximize the number of successful task
executions, given a budget and a deadline. The cloud platform is composed
of several Virtual Machine (VM) types, each with a different unit cost and
computing capacity. The execution time of the tasks follows a different prob-
ability distribution on each VM type, in order to account for their different
performance. For instance, the expectation of the distribution of task dura-
tions on a given VM can be inversely proportional to the raw speed of that
VM, while the standard deviation can account for the interplay between
task profiles and VM parameters, such as memory usage, communication
pattern, etc. In the paper, we use an extensive set of widely used dis-
tributions, namely exponential, uniform, half-normal, lognormal, gamma,
inverse-gamma and Weibull distributions.

This task model assumes that some tasks may not be executed in the
end. In fact, there are three cases: (i) some tasks are launched and reach
completion, meaning that they are successfully executed: (ii) some tasks are
launched but they are interrupted before completion, meaning that their
execution has failed; and (iii) some tasks are not launched at all. The objec-
tive is to maximize the number of successful tasks, given the deadline and
budget constraints. This scheduling problem naturally arises with many
applications in the context of information retrieval (see Section 2 for a de-
tailed discussion). Informally, the goal is to extract as much information as
possible, by launching analysis tasks whose execution time strongly depends
upon the nature of the data sample being processed. A typical example is a
set of image files, whose processing times heavily depend upon the elements
that are present (or not) within each image. Not all data samples must be
processed, but the larger the number of data samples successfully processed,
the more accurate the analysis.

Furthermore, this task model is closely related to imprecise computa-
tions [2,14,27], particularly in the context of real-time computations. In
imprecise computations, it is not necessary for all tasks to be completely
processed to obtain a meaningful result. Most often, tasks in imprecise
computations are divided into a mandatory and an optional part: while
the execution of all mandatory parts is necessary, the execution of optional
parts is decided by the user. Often, the user has not the time or the budget
to execute all optional parts, and she must select which ones to execute.
Our work perfectly corresponds to optimizing the processing of the optional
parts. Among domains where tasks may have optional parts (or where some
tasks may be entirely optional), one can cite recognition and mining appli-
cations [32], robotic systems [23], speech processing [17]; and [26] also cites
multimedia processing, planning, artificial intelligence, and database sys-
tems. In these applications, the processing times of the optional parts are

RR n°® 9275
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heavily data-dependent, hence the need to estimate them via a probability
distribution.

With a single VM, the problem is to decide whether, and when, to in-
terrupt a long-lasting task, with the hope to launch a new one that would
execute faster. Of course this is a risky decision, because: (i) the time and
budget already spent to execute the current task will be lost if it gets in-
terrupted; and (ii) there is no guarantee that the new task will complete
faster than the interrupted one. This problem was studied in our previous
work [10], which showed that there exists an optimal threshold at which each
running task should be interrupted. Interrupting each yet unsuccessful task
when it reaches this optimal cutting threshold is shown to maximize the ex-
pected success rate on the VM, i.e., the average number of tasks successfully
executed per time unit. This cutting threshold depends upon the probability
distribution of task execution times and is computed numerically.

With several VMs of different types, the problem becomes dramatically
more complicated, because we have to decide how many VMs to enroll, and
of which type. In addition to success rate, the unit cost of the VM plays an
important role. In fact, the key parameter is the yield, defined as the ratio of
the success rate over the unit cost: it gives the expected number of successful
tasks per budget unit. Intuitively, one would like to sort available VMs by
non-decreasing yields, and greedily enroll them in this order. With this
greedy algorithm, there remains to determine how many VMs to enroll. We
show how to determine this number and call GREEDY the resulting greedy
algorithm with the optimal number of VMs. Unfortunately, GREEDY is not
optimal. In fact, we show that the problem to decide which VM to enroll
is NP-complete, but we also show that GREEDY is guaranteed to be a 2-
approximation. These results lay the foundation for the complexity of the
problem with several VMs. On the practical side, we compare GREEDY
with a variety of other heuristics, using an extensive set of simulations, and
observe that it always achieve a close-to-optimal performance, which makes
it the heuristic of choice for the target optimization problem.

The main contributions of this work are the following:

e We provide several theoretical results (NP-completeness, approxima-
tion algorithm GREEDY and performance lower bound) for the problem
instance with large budget and deadline. These results show the diffi-
culty of the optimization problem under study, and lay the foundations
for its analysis;

e We compare the performance of GREEDY to that of several heuristics
for the general problem with arbitrary deadline and budget values,
and for all the probability distributions mentioned above. Not only
GREEDY is superior to the other heuristics, but its performance is
very close to the lower bound on most instances. Altogether, GREEDY
provides a robust approach to the problem.

The rest of the paper is organized as follows. Section 2 surveys re-
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lated work. We detail the framework and objective in Section 3, and recall
prior strategies for interrupting tasks on a given VM in Section 4. We pro-
vide complexity results (NP-completeness and 2-approximation algorithm)
in Section 5. We compare these heuristics in Section 6, assessing their per-
formance for an extensive set of simulation parameters. Finally, we provide
concluding remarks and directions for future work in Section 7.

2 Related work

This work falls under the scope of cloud computing since it targets the
execution of sets of independent tasks on a cloud platform under deadline
and budget constraints. However, because we do not assume to know in
advance the execution time of tasks (we are in a non-clairvoyant setting),
this work is also closely related to the scheduling of bags of tasks. We survey
both topics in Sections 2.1 and 2.2. Finally, in Section 2.3, we survey task
models that are closely related to our model.

2.1 Cloud computing

There exists a huge literature on cloud computing, and several surveys re-
view this collection of work [4,37,38]. Singh and Chana published a recent
survey devoted solely to cloud resource provisioning [37], that is, the de-
cision of which resources should be enrolled to perform the computations.
Resource provisioning is often a separate phase from resource scheduling.
Resource scheduling decides which computations should be processed by
each of the enrolled resources and in which order they should be performed.

Resource provisioning and scheduling are key steps to the efficient ex-
ecution of workflows on cloud platforms. The multi-objective scheduling
problem that consists in meeting deadlines and either respecting a budget
or minimizing the cost (or energy) has been extensively studied for determin-
istic workflows [1,3,6,7,15,20,29,30,41], but has received much less attention
in a stochastic context. Indeed, most of the studies assume a clairvoyant
setting: the resource provisioning and task scheduling mechanisms know
in advance, and accurately, the execution time of all tasks. A handful of
additional studies also consider that tasks may fail [28,36]. Among these
articles, Poola et al. [36] differ as they assume that tasks have uncertain ex-
ecution times. However, they assume they know these execution times with
a rather good accuracy (the standard deviation of the uncertainty is 10%
of the expected execution time). They are thus dealing with uncertainties
rather than a true non-clairvoyant setting. The work in [8] targets stochastic
tasks but is limited to taking static decisions (no task interruption).

Some works are limited to a particular type of application like MapRe-
duce [24,39]. For instance, Tian and Chen [39] consider MapReduce pro-
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grams and can either minimize the financial cost while matching a deadline
or minimize the execution time while enforcing a given budget.

Our task model applies to compute-bound tasks because we do not ac-
count for communication times and instead assume that they are negligible
in front of computation times. However, we refine the classical deterministic
model by adding stochasticity to task execution times.

2.2 Bags of tasks

A bag of tasks is an application comprising a set of independent tasks shar-
ing some common characteristics: either all tasks have the same execution
time or they are instances coming from a same distribution. Several works
devoted to bag-of-tasks processing explicitly target cloud computing [22,35].
Some of them consider the classical clairvoyant model [22] (while [13] tar-
gets a non-clairvoyant setting). A group of authors including Oprescu and
Kielmann have published several studies focusing on budget-constrained
makespan minimization in a non clairvoyant settings [33—-35]. They do not
assume they know the distribution of execution times but try to learn it on
the fly [33,34]. This work differs from ours as these authors do not consider
deadlines. For instance, in [35], the objective is to try to complete all tasks,
possibly using replication on faster VMs, and, in case the proposed solution
fails to achieve this goal, to complete as many tasks as possible. The im-
plied assumption is that all tasks can be completed within the budget. We
implicitly assume the opposite: there are too many tasks to complete all
of them by the deadline, and therefore we attempt to complete as many as
possible; we avoid replication, which would be a waste of resources.

Vecchiola et al. [40] consider a single application comprising independent
tasks with deadlines but without any budget constraints. In their model,
tasks are supposed to have different execution times but they only consider
the average execution time of tasks rather than its probability distribution
(this is left for future work). Moreover, they do not report on the amount
of deadline violations; their contribution is therefore hard to assess. Mao
et al. [31] consider both deadline and budget constrained provisioning and
assume they know the tasks execution times up to some small variation (the
largest standard deviation of a task execution time is at most 20% of its
expected execution time). Hence, this work is more related to scheduling
under uncertainties than to non-clairvoyant scheduling.

2.3 Task model

Our task model assumes that some tasks may not be executed. This model
is very closely related to imprecise computations [2,14,27]. Furthermore,
this task model also corresponds to the overload case of [5] where jobs can
be skipped or aborted. Another, related model, is that of anytime tasks [25]
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where a task can be interrupted at any time, with the assumption that
the longer the running, the higher the quality of its output. Such a model
requires a function relating the time spent to a notion of reward. Finally,
we note that the general problem related to interrupting tasks falls into the
scope of optimal stopping, the theory that consists in selecting a date to
take an action, in order to optimize a reward [18].

Altogether, the present study appears to be unique because it uses a
non-clairvoyant framework and assumes an overall deadline in addition to
a budget constraint. Our previous work [10] had the same setting but was
limited to identical VMs, while the key problem studied in the paper is the
selection of an efficient set of VMs among those available in the target cloud
platform.

Table 1: Summary of main notations.

Platform
P platform
M number of VMs
VM; | the i-th VM
¢ unit cost of VM;
l; cutting threshold for task interruption on VM;
S; success rate of VM;, computed using ¢;

Vi yield of VM;, where ); = g
ytot | total platform yield

k number of VM categories
m; number of VMs of type j (hence M = Z?zl m;)
Tasks
D; probability distribution of execution times on VM;
Wi, 0; | mean, standard deviation of D;
Constraints
b budget
d deadline

K ratio b/d

3 Problem definition

This section details the framework and the scheduling objective. See Table 1
for a summary of main notations.

RR n°® 9275
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3.1 Platform and tasks

We aim at scheduling a set of independent stochastic tasks on a cloud plat-
form. The cloud platform is composed of a set of different VMs, each with
their own characteristics. In the abstract formulation of the problem, there
is a set P ={VM;,VMay,..., VM } of M VMs. Each VM has a unit cost:
¢; is the amount of budget spent per unit of time for executing a task on
VM;. The execution time of a task on VM; obeys a probability distribution
D; which is chosen as a probability distribution whose mean and standard
deviation both depend on the characteristics of VM;. The rationale for such
a framework is the following. First, we assume that task execution times
are data-dependent, as is the case in many applications (see Section 2),
and therefore exhibit stochastic behaviors which can be nicely modeled by
a probability distribution. Second, task execution times cannot be easily
encapsulated as a mere function of the number of cores of their host VM,
because many parameters such as memory usage and communication pat-
terns must be taken into account. Therefore, it would not make sense to
consider a unique probability distribution and simply scale it by a unique
parameter, say the number of cores of each VM, to induce actual execu-
tion times on that VM. Instead, we use a different probability distribution
for each VM, with values of mean and standard deviation accounting for
heterogeneity sources. It makes sense to assume that the mean p; of D,
which is the expectation of execution times on VM;, is somewhat related
to the number of cores nbcores; of VM;. In the experimental section (Sec-
tion 6), we explore scenarios where mean values p; are inversely proportional
to core counts nbcores;, but we vary standard deviations o; to account for
a wide range of heterogeneity degrees. We report results for a variety of
standard probability distributions (exponential, uniform, half-normal, log-
normal, gamma, inverse-gamma and Weibull).

Finally, in many experimental cloud platforms, there is only a reduced
set of different VM types, with several available identical VMs per type. We
let £ be the number of types and m; be the number of available VMs for
type 7, where Z?:l mj = M.

3.2 Constraints and optimization objective

The user has a limited budget b and an execution deadline d. The opti-
mization problem is to select a subset of VMs and to maximize the expected
number of tasks that can be successfully completed on these VMs before the
deadline is reached or the totality of the budget is spent. More precisely,
the optimization problem OpPT(P,b,d) is the following:

e Decide which VMs to launch: it can be any subset of P;

e Each VM in P executes tasks continuously, as soon as it is started and

until the deadline or the budget is exceeded, whichever comes first;

RR n°® 9275
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e At any time and on each VM, decide whether to interrupt the task
that is currently executing and launch a new one: each task can be
deleted by the scheduler at any time before completion;

e The execution of each task is non-preemptive. In a non-preemptive ex-
ecution, interrupted tasks cannot be relaunched, and the time/budget
spent computing until interruption is completely lost.

4 Cutting threshold

In this section, we discuss scheduling strategies that decide to interrupt a
task when its execution time reaches a given threshold. Consider a given
VM and a continuous distribution D for execution times on that VM, with
expected value p and standard deviation o. We start with some classical
strategies:

e MEANVARIANCE(x) is the family of heuristics that interrupt a task as
soon as its execution time reaches u; + xo;, where x is some constant
(positive or negative).

e QUANTILE(z) is the family of heuristics that interrupt a task when
its execution time reaches the x-quantile of the distribution D; with
0<x<1.

e Finally, NEVERINTERRUPT is the baseline heuristic that never inter-
rupts tasks; more precisely, to avoid outliers, NEVERINTERRUPT in-
terrupts a task when its execution reaches 100 times the mean value
of the distribution.

Our previous work [10] introduced the OPTRATIO heuristic which works
as follows: Let F'(x) be the cumulative distribution function and f(x) its
probability density function of D. OPTRATIO interrupts all (unsuccessful)
tasks at time

Mm% = arg max S(1) where S(l) = F(b)

1 ' (1)
! Jo zf(x)dz +1(1 — F(1))

The idea behind OPTRATIO is that it maximizes (asymptotically) the ra-
tio S(I) of the probability of success (namely F(1)) to the expected execu-
tion time spent for a single task, when each task is interrupted at time [
(i.e., fol xf(z)dz for the cases when the task terminates sooner than [ and
[ Uf (x)dz = 1(1—F (1)) otherwise). OPTRATIO has been shown to perform
very well for a wide range of budget and deadline values [10].

For most distributions, we cannot compute £™%* analytically, but we
provide a program [11] to compute it numerically. For example take a
lognormal(«, 8) distribution: when g = 1 and o = 3 we find ¢™* =~ 0.1.
We prove the following characterization of £ for exponential and uniform
distributions:

RR n°® 9275
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Proposition 1. For the distribution exp(\), S(I) = X = i for all values of
I, and €™ can be chosen arbitrarily (interrupt tasks at any time). For the
distribution uniform(a,b), {™** =b and S({™*) = (%Lb = ﬁ (never interrupt

tasks).

Proof. The distribution exp(\) is memoryless, so it is no surprise that S(I)
is constant. We can check that analytically: we have F(z) = 1 — e~ and
f(z) = Ae™**. Hence:

Joxf(x)de +1(1 - F(1))
1—e M

A fé e~ dy + le=N

Lo L | P
xe dx = x(—e_x] —/(—e_xdx
= [y - [

1—e M
Al=gle N — (e~ M — 1)) + leM
1— e—)\l
e M (1 — e M) + e
=\

S(l) =

For the distribution uniform(a, b), the intuition is that it is never worth
interrupting a task because all completion times are equiprobable, so better
capitalize on prior execution. It is also easy to check that analytically: we
have F(z) = =2 and f(z) = 71-. Hence:

F

—~

S() li

(1—=F(@)

8
+

~ Laf ()

|
S]

T
S

(1-52)

U
8
+

Jarita
l—a
[Ladz +1(b—1)
B 2(l —a)
T2 —a?+2bl — 22
~ 2(l—a)
T 242l —a?
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To find S(¢™*), let us compute the differentiate S’(1):

2(1 — a)' (=12 + 2bl — a?) — 2(I — a)(—1? + 2bl — a?)’
(=12 + 20l — a?)?
B 2(—1? 4+ 2bl — a®) — 2(1 — a)(—21 + 2b)
(=12 + 20l — a?)?
—21% 4 4bl — 2a® + 417 — 4bl — 4la + 4ab
(=12 + 2bl — a?)?

212 — 4la — 2a® + 4ab

(=12 + 2bl — a?)?
2(1 — a)? + 4a(b — a)

(=12 + 2bl — a?)?

S'(l) =

We have §’(1) > 0 when a <[ < b. Hence S({"™*) = S(b), where

S(™) = S(b)
2(b—a)

R
2(b—a)
oa

2
a+b

5 Complexity results

In this section, we present complexity results with several VMs, assuming
large budget and deadline values. We start by formulating the asymptotic
optimization problem in Section 5.1. We assess its complexity in Section 5.2.
Then we introduce a greedy polynomial heuristic in Section 5.3, and show
that it is a 2-approximation.

5.1 Problem instance with b = Kd

Consider a given VM VM; € P. Given the distribution D; of task execution
times on VM;, we choose a cutting threshold £¢“/; at which to interrupt tasks,
using any of methods in Section 4 (for instance we take £§“! = (7% the value
computed for OPTRATIO). We then derive the (asymptotic) success rate S;
(average number of successful tasks per time unit) and the yield ); = %
(average number of successful tasks per cost unit), where ¢; is the unit cost
of VM;. The asymptotic behavior of VM, is characterized by these two
parameters. With several VMs, if there is no deadline, the best solution is

to use a single VM, namely the one with highest yield };. Introducing a
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deadline makes parallelism unavoidable, and raises the question of selecting
which VMs to enroll. In the following, we assume that budget and deadline
are proportional: b = Kd for some constant K > 1, and aim at deriving
asymptotic results when b tends to infinity under that constraint. Intuitively,
K represents the total cost per time unit available until deadline d, hence
the potential parallelism that can be achieved.

Now assume that we enroll a subset Q = {VM;,i € @} of VMs from
P. Here, Q simply represents the subset of {1,2,..., M} that records the
indices of enrolled VMs. These VMs will work continuously until the budget
is exhausted or the deadline has been reached, whichever comes first. If the
VMs in Q work for a duration ¢, the total budget spent is ¢ x ZiEQ ¢; hence

; ey b b
= min | d, = :
> icq Ci max (K, > ;o ¢i)
Asymptotically, each VM;, with i € @, is successfully executing S; task per
time unit, hence the total yield of subset Q is
ZiEQ S

tot __ .
Yo = max (K, ZiEQ ¢i) 2)

We are ready to define the asymptotic optimization problem with several
VMs:

Definition 1 (OPTHETERO). Given the set P of available VMs and the
constraint b = Kd, determine the subset Q of P so that the value of Y'°! in
Equation (2) is maximized.

5.2 NP-completeness

In this section, we show that the decision problem associated to OPTHETERO
is NP-complete. For simplicity, we use the same name for the decision and
optimization problems.

Theorem 1. OPTHETERO s NP-complete.

Proof. The decision problem is the following: given the set P of available
VMs and the constraint b = Kd, and given a bound on the total yield Z,
can we find a subset Q of P with total yield Y** > Z? The problem ob-
viously belongs to the class NP, a certificate being the subset of enrolled
VMs, whose yield can be computed in linear time. For the completeness,
we make a reduction from SUBSETSUM, a well-known NP-complete prob-
lem [21]. Consider an instance Z; of SUBSETSUM: given n positive integers
ai, ag, ..., a, and a target T', can we find a subset J of {1,2,...,n} such
that ) .. ;a; = T7 We build the following instance 7y of OPTHETERO: a
platform P with M = n+1 VMs, budget/deadline constraint b = Kd where
K =T+ 1. VM characteristics are the following:

RR n°® 9275
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e VM,;, for 1 <1 < n, has success rate S; = Ka; and unit cost ¢; = a;

e VM, 11 has success rate 5,11 = 2K and unit cost ¢,4+1 = 1.
Finally, the bound on total yield is Z = K + 1. The size of 7y is clearly
polynomial (and even linear) in the size of Z;. We now show that Z; has a
solution if and only if Z5 has a solution. Assume first that Z; has a solution,
i.e., a subset J with ), ;a; = T. If we enroll all VMs whose index is in .J
plus VM,, 11, we obtain the total yield

iy Kai + 2K KT + 2K

tot
Y max(K,) c;a; +1)  max(K,T +1) +

Hence, a solution to Zs.
Assume now that Z, has a solution, i.e., an index subset ) with total
yield Y1 > Z = K +1. If the last VM is not enrolled, i.e., if n+1 ¢ @Q, then

o Ka; _ .
ytot — %X};m < K, a contradiction. Hence, necessarily n + 1 € Q.

Let J = Q \ {n + 1}, we are going to show that J is a solution of Z;. We
know that
2ics Kai+ 2K

max (K, . ;a; + 1)
Let U = Y ,cyai If U > K then Yt = KK — | 4 o0 < K +1,
a contradiction. If U < K — 2 then Y%t = % =U+2< K+1,a
contradiction. Hence, U = K — 1 = T, and J is a solution to Z;. This
concludes the proof. O

ylot = > K+ 1.

5.3 Greedy heuristic

The OPTHETERO problem is similar to a knapsack problem, and a natural
heuristic is to enroll VMs with highest yield first. Table 2 shows a little
example with a platform P consisting of M =5 VMs. We use K = 5 in the
example.

Table 2: Example of platform P (M = 5).

VM | Success rate | Unit cost | Yield
VM; | &1 =10 =1 Y1 =10
VM;y | So =6.2 co =3 Yo = 2.1
VM3 83:8 03:4 y3:2
VM4 84:6 C4:4 y4:1.5
VM5 85:4 0424 y5:1

In Table 2, VMs are ordered by non-decreasing yield, so the greedy
heuristic selects VM, first, then VMsy, etc. The performance achieved is the
following:
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Using only VM;: Yot = mai?&l) =92

Using VM, and VMp: V' = 0d84 = 3.24;

Using VM, VM3 and VMs: V¥ = GRS = 3.025;

Using VM, VMa, VM5 and VMy: Y = BAEHEHE S ~ 2.5167;

Using all five VMs: Y'! = 0GR = 2.1375.

In the example, the best choice is to use only VM; and VMo, for a total
yield Y%t = 3.24. In the following, we characterize how many VMs should
be chosen. Finally, note that in the example, the optimal solution is to use

only VM; and VM3, for a total yield V! = % = 3.6.

Proposition 2. Consider a platform P with M VMs ordered by non-increasing
yields and with the constraint b = Kd. The total yield Y achieved by the
greedy heuristic is maximum when enrolling either the first i*—1 VMs or the
first i* VMs, whichever has the higher total yield, where i* is the smallest
index such that Z;;l ¢ > K.

In other words, the greedy heuristic should enroll VMs until their cumu-
lated cost exceeds K, and then the best solution is either using all theses
VMs or using all of them except the last one. In the example of Table 2, we
have i* = 3 and the best solution is with the first two VMs. We let GREEDY
denote the greedy heuristic which enrolls the optimal number of VMs. Note
that when two different VMs have the same yield, we rank them and use
the one with lowest unit cost first, which is better for scenarios where the
budget is limited.

Proof. For 1 <1 < M, we consider the first ¢ VMs and define
e the cumulated success rate S/ = > =155

o the cumulated cost C{*" = >7'_; ¢;
tot

e the cumulated success/cost ratio R; = ot
¢ tot
Now the total yield achieved with the first ¢« VMs is Y/°* = min (Ri, %) :

Note that ¢* is the smallest index ¢ such that Cf"t > K. First we observe
that the R; are non-increasing. This is because VMs are ordered by ratio
% We easily check that

> e

S1 S N é281+822§
cl co c1 c1+ca C2

and the result follows by induction.

For 7 > ¢*, we have y;ot =R, < Rjx = J/fft. For ¢« < i* — 1, we have
tot _ St _ SEL, tot :
V% =~ < = = Vi’ |. This concludes the proof. O

In order to show that the performance of GREEDY is within a factor
two of the optimal, we define the FRACOPTHETERO fractional version of
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the OPTHETERO problem. The only difference between FRACOPTHETERO
and OPTHETERO is that each VM enrolled at the beginning can now be
stopped at any time before the deadline or the exhaustion of the budget.
For FRACOPTHETERO, the total yield is

St
ytot,fmc _ 2267; 717 (3)

where ¢; is the running time of VM;. Formally:

Definition 2 (FRACOPTHETERO). Given the set P of available VMs and
the constraint b = Kd, determine tj, which is the running time of the j-th
VM in P, so that the value of Y'°4"¢ in Equation (3) is mazimized (t; is
null if we do not use the j-th VM). Each VM; in P obeys the OPTRATIO
strategy and interrupts all tasks at time €%, with expected success rate S;.

For this problem, the following variant of the greedy algorithm is optimal:

Proposition 3. Consider a platform P with M VMs ordered by non-increasing
yields and with the constraint b = Kd. An optimal solution for FRACOPT-
HETERO is obtained by enrolling the first i* —1 VMs until the deadline and
enrolling the i*-th VM to exhaust the rest of the budget, where i* is the
smallest index such that ZZ; ¢ > K.

Proof. For the proof, we assume that ¢* does exist, otherwise all VMs are
enrolled until the deadline, which is optimal. Let ¢;” " denote the running
time of VM, in the optimal solution, and ¢; be its running time in the
greedy algorithm. If an optimal solution is not making the greedy choice,
there exists an index ¢ such that ¢;” " > t;. Because the greedy algorithm
uses the first i* — 1 VMs until the deadline, we have i > i*. Also, because
the budget is exhausted by the greedy algorithm (from the existence of i*),
there must exist an index j such that ¢7” " < t;. Since the greedy algorithm
does not use VMs of index k& > i* + 1, we have j < * hence j < 1.
With the ordering method in the greedy algorithm, we can conclude that
Vi < Y;. Then in the optimal solution, we re-distribute the amount of
budget 8 = min {(¢; — t7")c;, (¢/"*" — t;)c;} from VM; to VM. The first
term of 3 guarantees that, after the re-distribution, VM; spends not more
budget than its does in the greedy algorithm. After the re-distribution, the
yield of the optimal solution is increased by a nonnegative value w
If V; < ), this contradicts the optimality. Otherwise, each VM, where
j < k < i has same yield (because of the ordering method of the greedy
algorithm); then the optimal solution and the greedy algorithm have same
global yield. This concludes the proof. O

Let Y™ bhe the highest yield for OPTHETERO, and yortfrac he the
highest yield for FRACOPTHETERO problem. From Proposition 3, we know
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that Y°Pt/m¢ is achieved by the greedy algorithm, which is given by

Stot C.tOt S
opt-frac — ’L* 1 1— 1*—1 v 4
y K + < K ) Ci* ( )

Proposition 4. GREEDY is a 2-approxzimation algorithm for OPTHETERO.

Proof. We need to prove that: ;?é edy = yopt We have
Stot Stot
tot tot tot 1
= max (Y22 1, Vi¥') = max (
greedy -1 ot
K ’Ck

Similarly to the proof of Proposition 2, we can easily prove by induction

N f:f Sti’t Ci:f .
that ctﬂt > = St As 0 <1- "= L <1, we have oot = (1 - 1K1> f’* -. We
derive: S.tft ctot N s

fot 4y > Max -2 =
g v = K Ci*
tot S
i*
— yopt -frac 2 lyopt
2
L]

6 Experiments

This section assesses the performance of several strategies to interrupt ex-
ecuting tasks and to choose the number and types of VMs to enroll for a
given budget and deadline. The algorithms are implemented in R and the
related code, data and analysis are publicly available in [19].

6.1 VMs selection heuristics

As we have different types and numbers of VMs, we aim at finding the
optimal subset to be enrolled. This is especially true when we do not have
enough budget to let the VM with highest yield run until the deadline. In
order to achieve this goal, we compare several methods for choosing VMs.
They differ in their criteria to order the VMs and then greedily select the
VMs in that order. Each method comes in two versions: the limited (Itd)
versmn enrolls the first i* — 1 VMs, where ¢* is the smallest index such that
ZZ 1 ¢ > K; the refined version selects the best total yield when either
using ¢* — 1 VMs, as in the limited version, or using ¢* VMs. This choice
has objective to show the improvement of the last step on results. Here are
the three orderings:
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e ExprcT'™ and EXPECT (computation-speed based methods): VMs

are sorted by increasing expected value of computation time.

e CosT" and COST (cost-per-time-unit based methods): VMs are sorted

by increasing unit cost.

e GrREEDY'"! and GREEDY (yield methods): VMs are sorted by decreas-

ing yield. GREEDY is indeed the greedy algorithm of Section 5.3.

In addition, we assess the absolute performance of each method by com-
paring with FRACTIONAL, which is the yield achieved by the solution to
the fractional problem FRACOPTHETERO (see Proposition 3). Indeed, the
value of Fractional is an upper bound to the performance, which is not
always tight; we use it as a reference.

6.2 Parameters

In the following experiments, all platforms are composed of 10 VMs from
each of six VM types, for a total of M = 60 VMs. In other words, £k = 6
and m; = 10 for 1 < 5 < 10.

Each VM type is characterized by a unit cost and a distribution that
determines the execution time of each task. Type j VMs have average
speed s; = 2771 (ie., s; € {1,2,4,8,16,32}). These values correspond to
normalized speeds in realistic platforms such as Amazon EC2! or Google
Cloud? and are correlated to the number of cores in the VMs. The unit cost
of a VM is proportional to its average speed: c; = s;.

Other scenarios, with different values of m;, and with unit costs increas-
ing faster than average speeds, are available in the Appendix.

The second VM characteristic is the distribution of the execution times,
which follow standard probability distributions. The heterogeneity of a
scheduling problem instance has several meanings (for instance, both tasks
and machines heterogeneity are studied in [12]). In our case, we consider
the heterogeneity of the expectation and the heterogeneity of the variability.
For all tested distributions, the expectation of execution times is fixed as the
inverse of the VM speed, which determines the first type of heterogeneity.
For the second type, we control the variation of the Coefficient of Variation
(CV), which is defined as the ratio of standard deviation over expectation.
Similar CVs for all VMs lead to a low variability heterogeneity: execution
times varies similarly on all VMs. On the contrary, different CVs mean that
execution times are closer to their expectations on some VMs than on some
others. For instance, two distributions with expectations 1 and 2 and the
same CV 1 have expectation heterogeneity but no variability heterogeneity.
This is the opposite with distributions both with expectation 1 and with
CVs 1 and 2. This second type of heterogeneity is controlled by parameter
zcy. Of course for exponential and half-normal distributions, which have a

"https://aws.amazon.com/ec2/pricing/on-demand/?nci=h_ls
*https://cloud.google.com/compute/pricing
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single parameter, the standard deviation is given when choosing the mean, so
this discussion only applies to the two-parameter distributions (lognormal,
uniform, gamma, inverse-gamma and Weibull). Altogether, the expected
value p; and standard deviation o; on VM; are set as follows: p; = %,
oj = pu;U where the parameter U is drawn randomly and uniformly in the
interval [3 — zcv,3 + xcy]. We use 0 < zcy < 3 in the experiments.

Finally, we fix the budget at b = 52?:1 mjc; = B X 6303, where 3 €
{0.01,0.05,0.1,1,2,5,8,10}. For each budget value, we vary the deadline as
d = 5630§ (hence K = 6301_%) for 0 < ¢ < 5. This leads to 6 deadline
values following a geometric progression between two extreme cases d = b
and d = 3. The first case is when the deadline is sufficiently large to exhaust
the entire budget by selecting any single VM. The second case is when
the deadline is so tight that all VMs must be used to exhaust the budget.
Altogether, we have 8 budget and 6 deadline values, hence 48 configurations.
For each configuration, each strategy is run 10 times on 100 randomly drawn
platform instances (the mean of the distribution is fixed, and we draw the
value of the standard deviation as discussed above, except for exponential
and half-normal distributions).

The numbers of successes are reported in boxplots, each of which consists
of a bold line for the median, a box for the quartiles, whiskers that extend
at most to 1.5 times the interquartile range from the box and additional
points for outliers.

The complete set of results is available in the Appendix. Here, we start
with a summary table covering all distributions, and then focus on lognormal
distributions.

Table 3: Performance ratio of all orderings over FRACTIONAL.

Ordering | Mean | Median | Q10% | Q90%
GREEDY | 0.9977 | 0.9994 | 0.9668 | 1.0272
GREEDY" | 0.6047 | 0.8385 0 0.9998
CosT 0.6943 | 0.9507 | 0.0522 | 1.0208
CosT* | 0.5587 | 0.7634 0 1.0016
EXPECT 0.7766 | 0.9717 | 0.1556 | 1.0124
Expect™ | 0.3642 0 0 0.9973

6.3 Result synthesis for all distributions

In Table 3, OPTRATIO is chosen as cutting threshold heuristic on each VM.
We use b = 630 (hence 8 = 1) and zcy = 3. For each distribution, we have 6

3630 represents the budget required to enroll all 60 VMs for one time unit.
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values of d. For exponential and half-normal, the standard deviation is given
when we select the mean, so we run only one platform configuration. For
the other five probability distributions (lognomal, uniform, gamma, inverse-
gamma and Weibull), we draw 100 platform configurations, as mentioned
above. Each configuration is run 10 times, which leads to a total of 30,120
experiments. Now, for each heuristic, we proceed as follows: for each ex-
periment, we record the ratio of the number of successful tasks achieved by
the VMs selection heuristic over the number of successful tasks achieved by
FRACTIONAL; this leads to the statistical values reported in Table 3: mean,
median, 10% Quantile and 90% Quantile. Table 3 is fairly representative of
the many more experiments available in the Appendix.

Table 3 shows that GREEDY performs very well overall. Its ratio is close
to 1, not only for the mean value, but even for the 10% quantile. In other
words, GREEDY has a performance close to that of FRACTIONAL; it also
consistently outperforms all the other VMs selection heuristics.

For each heuristic, the non-limited version is always much better than
the limited one. Because limited versions readily discard each VM for which
there is not enough budget to run until the deadline, they are at risk of
wasting a big fraction of the budget and then produce a bad, even null
result. Indeed, there is a large difference between the mean and median
values for the limited versions, showing that there are many results close to
0. Results for the 90% quantile are good for all heuristics, and even larger
than 1, while FRACTIONAL represents an asymptotic upper bound. Here
is the explanation: a sixth of experiments are for d = 1. In this case, all
the heuristics enroll all the 60 VMs to execute tasks. As the execution time
of a task is randomly drawn, some heuristics can have a better result than
FRACTIONAL.

6.4 Lognormal distribution

In this section, we focus on lognormal distributions and further study the im-
pact of several parameters. A lognormal distribution is a natural candidate
to model task execution times, because it has been advocated to model file
sizes [16], and task costs could naturally obey this distribution too. More-
over, the lognormal distribution is positive, it has a tail that extends to
infinity and the logarithm of the data values are normally distributed.

_ (og(z)—a

For alognormal(c, 3) distribution, the density function is f(z) = ¢ 27

2

oa—i—%

for x € [O 00), the mean is p = e and the standard deviation is

o = 5 \/eF —1. To ensure a given expected value p and standard

deviation o, we set a = log (i) —log(c?/p?+1)/2 and 8 = \/log(c?/p? + 1).
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6.4.1 Cutting threshold heuristics

First, we compare the performance of the different cutting threshold heuris-
tics in Figure 1. We report results for b = 630 and the 6 corresponding
deadline values. We can find that, for lognormal distribution, OPTRATIO,
QUANTILE (0.1) and QUANTILE (0.2) have usually better results than others.
This is because the threshold calculated by OPTRATIO is usually between
10~! and 1073 in our case and the threshold provided by QUANTILE (0.1)
and QUANTILE (0.2) is closer to this value than other heuristics. The results
confirm the observations made with homogeneous machines [10]: OPTRATIO
achieves the best success rate, and is significantly better than the baseline
NEVERINTERRUPT. This leads to choose OPTRATIO as the cutting thresh-
old heuristic in all the following experiments.

6.4.2 Varying budget and deadline values

Figure 2 reports results for the 48 (b, d) pairs. We make several observations.

First, when K is fixed, multiplying b and d by a value 8 > 1 only changes
the absolute value of the result (there is a proportional relationship between
B and the number of successful tasks), but the global outcome remains the
same: the same machines are chosen, and the ratio of the results of each
heuristic over FRACTIONAL is not modified. This shows that, for a lognormal
distribution with ¢ and o chosen as in our experiment, 8 = 1 is enough to
simulate a problem instance with large b and d values. In the following
experiment, we keep b = 630 and vary zcv?.

Second, in Figure 2, we see the impact of the deadline constraint by
varying both d and K with a constant b (in each column of the figure). With
the extreme case when K is large (i.e., K = ), ¢;), all methods select all
VMs, which exhausts the budget when reaching the deadline. The alignment
of all boxplot values in the figure for d = 3 confirms this effect. Moreover,
all methods choose VMs in a predefined order until the sum of ¢; of selected
VMs reaches K, which means we must choose more VMs with large values
of K. As VMs are ordered by their yield in the FRACTIONAL method,
the larger the K, the smaller the average yield of chosen VMs. However,
with larger deadlines, the VM choice becomes critical and only GREEDY
has a gain similar to FRACTIONAL. In other words, the difference between
these two latter methods and the other ones increases as the parallelism K
decreases. As the deadline is less constrained, GREEDY can select only the
VMs with best yield. With K < 13.2, the gain is less remarkable because the
best VMs are all already enrolled. Only small deadlines impose the selection
of inefficient VMs to exhaust the budget before the deadline. Thus, having
larger deadlines provides little benefit.

4We need larger values of b to reach steady-state for exponential and half-normal dis-
tributions, see the Appendix.
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Third, in all instances, GREEDY, COST and EXPECT are respectively
better than or similar to GREEDY*, CosT"* and ExpecT*d. These last
three methods even have some zero values. As explained in Section 6.3, this
is because these methods enroll VMs (in different orders) until the last VM
that does not exceed the budget when executed up to the deadline d. Thus,
the first VM is abandoned if the budget to execute this VM exceeds b. In
this scenario, no VM is chosen by the method, and the number of successful
tasks is zero.

Fourth, we observe that GREEDY remains the most efficient resource
selection heuristic even for small values of the budget (when g < 1). This
is good news, because we had proven the asymptotic efficiency of GREEDY
but needed to check that it maintained its superiority for the whole range
of budget and deadline values (even though the number of successes is no
longer proportional to the budget for smaller values).

6.4.3 Impact of variability heterogeneity

Figure 3 demonstrates the dependence between the level of variability het-
erogeneity controlled by xcy and the performance disparity between the
resource selection heuristics. When xzcy = 0, all VMs have the same yield
as they have the same ratio CV, thus all heuristics are similar. As zgy in-
creases, the difference between FRACTIONAL and all other methods except
GREEDY expands up to a factor three for the median performance. Note
that the maximum number of successful tasks increases with xcvy, especially
for FRACTIONAL and GREEDY heuristics, because the methods manage to
select VMs with the best yield. In particular, it is possible to perform twice
as much tasks with zcy = 2.5 than with xcy = 0 because some VMs in a
platform configuration can have a higher yield.

6.4.4 Summary

All the above results confirm that GREEDY reaches better performance than
the other resource selection heuristics, up to a factor three on average. As
previously mentioned, many additional results are available in the Appendix.

7 Conclusion

In this paper, we have dealt with the problem of scheduling stochastic tasks
on a cloud platform under both deadline and budget constraints. On each
enrolled VM, we use several cutting threshold heuristics to decide when to
interrupt tasks. The main difficulty is to select the best subset of VMs so as
to maximize the expected number of tasks that are successfully executed. We
have assessed the complexity of this resource selection optimization problem,
showing that it is NP-hard, and also designing GREEDY, a greedy algorithm
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whose performance is proved to be a 2-approximation. GREEDY sorts the
VMs by non-decreasing yield and then determines the optimal number of
VMs to enroll when considering them in this order. On the practical side,
we have conducted an extensive set of experiments, with several standard
probability distributions for task execution times. These experiments show
that GREEDY significantly outperforms other approaches based on simple
heuristics, and reaches an absolute performance close to the upper bound
established in the paper.

This work can be continued along three directions: extending the pricing
model to take more complex scenarios into account, and focusing on the
modeling of execution times. The first direction consists in considering start-
up costs (which would limit the number of enrolled VMs), or non-constant
costs that depend on the time and day, or on the load of the cloud platform.
For the second direction, multimodal distributions have been advocated to
model job, file and object sizes [16]. Similarly to the lognormal distribution,
such distributions represent ideal candidates to study the corresponding
yield. Finally, for the third direction, the experimental section could be
extended to consider instances in which expected execution times can be
correlated to the CVs on the VMs, as it has been done for cost matrices [9].
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Figure 1: Number of successfully executed tasks for different resource se-

lection and cutting threshold heuristics, with m; = 10, M = 60, ¢;

Sj,

b = 630. Execution times follow a lognormal distribution with zcv = 3.
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Figure 2: Number of successfully executed tasks for resource selection heuris-

tics with OPTRATIO, m; = 10, M = 60, ¢; = sj. Execution times follow a
lognormal distribution with zcy = 3.
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Table 4: Probability distributions with their Probability Distribution Func-
tion (PDF) and density graph. Supports are [0,00) for all distributions
except for Uniform, where it is [a, b].

Name PDF Density
Uniform ﬁ J_L
Exponential e J\
Half-normal %ef % J\
Lognormal xﬁxl/ﬂ o % _/\
Gamma  phgtei L\
Weibull a%xk_le*(%)k L /\
Inverse-gamma %x—k—le—g L _k

Additional results

This section provides additional experimental results. We deal with ex-
ponential, uniform, half-normal, lognormal, gamma, inverse-gamma and
Weibull distributions. Table 4 provides the PDF for all these distributions.
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Figure 4: Number of successfully executed tasks for different methods to

Each of the 100

choose VMs and different cutting threshold heuristics.
platforms is generated with m; = 10, M = 60, ¢; = s; and is used 10

times with b = 630. The values for d and K follows a geometric progression

and b = 630. Execution times follow an uniform distribution,

by

we
¢ 'standard deviation is calculated by 0; = pu;U where the parameter U is

drawn randomly and uniformly in the interval [0, \/ig]
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Figure 8: Number of successfully executed tasks for different methods to

Each of the 100

choose VMs and different cutting threshold heuristics.
platforms is generated with m; = 10, M = 60, ¢; = s; and is used 10

times with b = 630. The values for d and K follows a geometric progression

Rﬁcvrs{oeg%g and b = 630. Execution times follow a half-normal distribution.
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Figure 9: Number of successfully executed tasks for different methods to
choose VMs and different cutting threshold heuristics. Each of the 100 plat-
forms is generated with m; = 10, M = 60, ¢; = s; and is used 10 times with
b = 63000. The values for d and K follows a geometric progression between
ﬁ(ﬁon@ré(él?g = 63000. Execution times follow a half-normal distribution.
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Figure 10: Number of successfully executed tasks for different methods to

Each of the 100

choose VMs and different cutting threshold heuristics.
platforms is generated with m; = 10, M = 60, ¢; = s; and is used 10

times with b = 630. The values for d and K follows a geometric progression

R?{EVIY"GSE?% and b = 630. Execution times follow an exponential distribution.
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Figure 11: Number of successfully executed tasks for different methods to
choose VMs and different cutting threshold heuristics. Each of the 100 plat-
forms is generated with m; = 10, M = 60, ¢; = s; and is used 10 times with
b = 63000. The values for d and K follows a geometric progression between
ﬁ(ﬁon@ry}?g = 63000. Execution times follow an exponential distribution.
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Figure 13: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
Hﬁl%s g%]sow a lognormal distribution.



Scheduling independent stochastic tasks 42

8

Q

<
Il
—

xzoy =0

Fractional -
GREEDY -
GREEDY!"d -
CosT -
COSTltd A
EXpPECT -
ExprcT!td -

=M

1 =P 'S¥6

Fractional -
GREEDY -
GREEDY! -
CosT -
Cost!td -
EXPECT -
ExprcTitd -

L

Fractional -
GREEDY -
GREEDY! -
CosT -
Cost!td -
EXPECT -
ExpecT!td -

1CS

.l
L, omal,, tamey; Beegl sonpens

i T o P By e

Fractional -
GREEDY -

s selection heurist
3
b
4= -
enall s #ons

=

%

e

o3

Q

’ﬂ—‘
o+
o
1

Fractional -
(GGREEDY -
GREEDY! -
Cost -
Cost!td- ¢
ExXpPECT -
ExprcT!d -|

l-!--L

54 L 8%

E

Fractional -
GREEDY -
GREEDY! -|

+
1
CosT - +
4

Cost!td -]

ExXpPECT -
Exprctitd -]
1

SF6=PT=3M 0FC~PF6EC~M T9~PGGI~R Y GCGI~RP'I9= ¥6EC~P OV~ M

Successful tasks

Figure 14: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
Hﬁl%s 58_}]50W a lognormal distribution.



Scheduling independent stochastic tasks 43

xzoy =0 zoy = 1 Toy =2

Fractional -
(GREEDY -
GREEDY! -

t
t
t
Cost- ¢
t
t
t

=M

CosT!td -
EXPECT -
ExpecT!td -

——————————————

Fractional- ¢
GREEDY - ¢

GREEDY - }
t

t

EXPECT- ¢
ExpecT!td - §

Fractional- ¢
GREEDY - ¢
GREEDY!™ - ¢
Cost- ¢
Costitd -}
EXPECT- }
ExpecT!d -|

e T e e e e e

I

Fractional -
(GREEDY -
@ GREEDY!M -
CosT -
CosT!td -
EXPECT- ¢
ExpecT!d -|

lection heuristics

VMs s
Tebes
_—***++ —**+++ kP bbb L

Fractional -
(GREEDY -
GREEDY® - ¢
Cost - {
Cost!td-
EXPECT- ¢
ExpecT!d -|

eybas
Tty
F_ " -_m " iy e e

Fractional - $
GREEDY - ]
GREEDY! -|
Cost - t
CosT!td |
EXPECT- ¢ t I
ExprcT!td -]

1 1 1 1
SOOI
SOED

8 o

1L

GELC =P T=3 CTLS~PGIV~ M LIL=RPGEC~R M 6CC~PLITR M 68F~PTLG~ M T=DG6LC

O ©
D
AN
R
tasks

[ [

1 1 1 1 1 1 1

METETRORMRNEN
E N, QQ@Q%QQQ AN

Successful

000_
%, -
52 T

7
%, -

%, .
20
%

Q
\)
N\
\9/\,(‘3

Figure 15: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = sjl-'5 and b = 2795. The values for
d and K follows a geometric progression between 1 and b ~ 2795. Execution
Eﬂl%s g%]sow a lognormal distribution.
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Figure 16: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
times follow an uniform distribution.
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Figure 17: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
times follow an uniform distribution.
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Figure 18: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 3]1-'5 and b =~ 2795. The values for
d and K follows a geometric progression between 1 and b =~ 2795. Execution
times follow an uniform distribution.
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Figure 19: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
Hﬁl%s 58_}]50W a Weibull distribution.
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Figure 20: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
Hﬁl%s 58_}]50W a Weibull distribution.
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Figure 21: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = sjl-'5 and b = 2795. The values for
d and K follows a geometric progression between 1 and b ~ 2795. Execution
E'El%s 58-}]50‘” a Weibull distribution.
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Figure 22: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
EH]%S Sgg)]/]Bow an inverse gamma distribution.
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Figure 23: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
EH]%S Sgg)]/]Bow an inverse gamma distribution.
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Figure 24: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 5]1-'5 and b ~ 2795. The values for
d and K follows a geometric progression between 1 and b ~ 2795. Execution
ir%ﬁlgs 58;]50W an inverse gamma distribution.
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Figure 25: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution

Eﬁl%s 58;]5)W a gamma distribution.



Scheduling independent stochastic tasks

54

VMs selection heuristics

zev =0

Fractional - t
GREEDY - {
GREEDYM -}
CosT - {
Costitd- |
EXPECT - t
ExpecTtd-
Fractional -
GREEDY -
GREEDY! -
Cost- |
CosTd - }
EXPECT -
ExprcT!td -

—_———

Fractional -
GREEDY -
GREEDY! - {
CosT - {
COSTltd i l
EXPECT - {
ExpecT!td - {

- g =

Fractional - {

GREEDY - {
GREEDY! -|
CosT -}
Costitd -}

EXPECT - {
ExpecT!®d -|

Fractional - {

GREEDY - {
GREEDY! -|
Cost-{
CosT!td -}

EXPECT - t
ExpeEcT!®d -|

Fractional - {
GREEDY - {
GREEDY! -|
CosT -
Costitd -|
EXPECT - {
Expect!td -]
1

8
Q
<

I

—

R T

2

=

&

8
Q
<

Il

[\

" hhg s

A

BRI ERLUL]

0-
%,
0 -mm
%,
%,
%,

Successful tasks

=M

P ‘GV6

T

SF6=PT=3 0C~PT6E~ T9~PCSGI~I SSI~PII~ I F6E~POVe~ M

Figure 26: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms

are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for

d and K follows a geometric progression between 1 and b = 945. Execution
Eﬁl%s 58;]5)W a gamma distribution.
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Figure 27: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 5;-5 and b = 2795. The values for
d and K follows a geometric progression between 1 and b ~ 2795. Execution

Eﬁl%s 58;]5)W a gamma distribution.
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Figure 28: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
times follow a half-normal distribution.
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Figure 29: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
times follow a half-normal distribution.

RR n°® 9275



Scheduling independent stochastic tasks 58

K =279,d=1 K ~572,d ~ 4.89 K ~117,d =~ 23.9

Fractional - |
GREEDY - |

& GREEDY!H - |
: CosT- |
Cost!td - |
EXPECT - |
ExpecT!td - |

K~239d~117 K=~489,d~572 K =1,d=2794.75

Fractional- 4 } |
GREEDY - | I i
GREEDY! - | t |
Cost- | | i
CostHd - | }
ExpPECT - |
ExprcTitd -

VMs selection heuristi

Successful tasks

Figure 30: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 3]1-'5 and b =~ 2795. The values for
d and K follows a geometric progression between 1 and b =~ 2795. Execution
times follow a half-normal distribution.
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Figure 31: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = sj, b = 63000. The values for
d follows a geometric progression between 100 and b = 63000. Execution

times follow a half-normal distribution.
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Figure 32: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 94500. The values
for d follows a geometric progression between 100 and b = 94500. Execution
times follow a half-normal distribution.
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Figure 33: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 3]1-'5 and b =~ 2795. The values for
d follows a geometric progression between 100 and b ~ 279000. Execution
times follow a half-normal distribution.
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Figure 34: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;, b = 630. The values for d
and K follows a geometric progression between 1 and b = 630. Execution
times follow an exponential distribution.
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Figure 35: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s; and b = 945. The values for
d and K follows a geometric progression between 1 and b = 945. Execution
times follow an exponential distribution.
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Figure 36: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 5]1-'5 and b ~ 2795. The values for
d and K follows a geometric progression between 1 and b ~ 2795. Execution
times follow an exponential distribution.
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Figure 37: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = s;j, b = 63000. The values for
d follows a geometric progression between 100 and b = 63000. Execution
times follow an exponential distribution.

RR n°® 9275



Scheduling independent stochastic tasks 66

K =945,d = 100 K ~ 240,d ~ 394 K =~ 61,d ~ 1550

Fractional - | i |
GREEDY - | | |
O GREEDY! - { | t
o
COST - | { |
Cost!td - { | |
EXPECT - | | |
Expectitd - I | |

K ~155,d~ 6100 K ~3.94,d~24000 K =1,d= 94500

Fractional - | } {
GREEDY - | | b
GREEDY! - | t |
COST - | | |
Cost!td - [ | |
EXPECT - | I |
ExpecTitd -

VMs selection heurist

Succeséful tasks

Figure 38: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 1.5s5; and b = 94500. The values
for d follows a geometric progression between 100 and b = 94500. Execution
times follow an exponential distribution.
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Figure 39: Number of successfully executed tasks of different methods to
choose VMs when interrupting tasks with heuristic OpPTRATIO. Platforms
are generated with m; = 10, M = 60, ¢; = 5]1-'5 and b ~ 2795. The values for
d follows a geometric progression between 100 and b =~ 279000. Execution
times follow an exponential distribution.
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