A New Ranking Function for Polynomial Selection in the Number Field Sieve

Nicolas David 1 Paul Zimmermann 2
2 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : This article explains why the classical Murphy-E ranking function might fail to correctly rank polynomial pairs in the Number Field Sieve, and proposes a new ranking function.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal.inria.fr/hal-02151093
Contributor : Paul Zimmermann <>
Submitted on : Wednesday, September 4, 2019 - 10:08:54 AM
Last modification on : Saturday, September 7, 2019 - 1:16:57 AM

File

rootsieve-revised2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02151093, version 3

Citation

Nicolas David, Paul Zimmermann. A New Ranking Function for Polynomial Selection in the Number Field Sieve. 2019. ⟨hal-02151093v3⟩

Share

Metrics

Record views

28

Files downloads

135