A New Ranking Function for Polynomial Selection in the Number Field Sieve

Nicolas David 1 Paul Zimmermann 2
2 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : This article explains why the classical Murphy-E ranking function might fail to correctly rank polynomial pairs in the Number Field Sieve, and proposes a new ranking function.
Document type :
Journal articles
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal.inria.fr/hal-02151093
Contributor : Paul Zimmermann <>
Submitted on : Wednesday, September 4, 2019 - 10:08:54 AM
Last modification on : Thursday, January 16, 2020 - 10:40:05 AM

File

rootsieve-revised2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02151093, version 3

Citation

Nicolas David, Paul Zimmermann. A New Ranking Function for Polynomial Selection in the Number Field Sieve. Contemporary mathematics, American Mathematical Society, In press. ⟨hal-02151093v3⟩

Share

Metrics

Record views

76

Files downloads

273