
HAL Id: hal-02153203
https://inria.hal.science/hal-02153203v2

Preprint submitted on 16 Jul 2019 (v2), last revised 25 May 2020 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating Placement Challenges in Edge
Infrastructures through a Common Simulator (extended

version)
Adwait Bauskar, Anderson da Silva, Adrien Lebre, Clement Mommessin,

Pierre Neyron, Yanik Ngoko, Yoann Ricordel, Denis Trystram, Alexandre van
Kempen

To cite this version:
Adwait Bauskar, Anderson da Silva, Adrien Lebre, Clement Mommessin, Pierre Neyron, et al.. In-
vestigating Placement Challenges in Edge Infrastructures through a Common Simulator (extended
version). 2020. �hal-02153203v2�

https://inria.hal.science/hal-02153203v2
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

82
--

FR
+E

N
G

RESEARCH
REPORT
N° 9282
July 2019

Project-Teams DATAMOVE,
STACS

Investigating Placement
Challenges in Edge
Infrastructures through a
Common Simulator
Adwait Bauskar, Anderson Da Silva, Adrien Lebre, Clément
Mommessin, Pierre Neyron, Yanik Ngoko, Yoann Ricordel Denis
Trystram, Alexandre Van Kempen,





RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Investigating Placement Challenges in Edge
Infrastructures through a Common Simulator

Adwait Bauskar, Anderson Da Silva, Adrien Lebre, Clément
Mommessin, Pierre Neyron, Yanik Ngoko, Yoann Ricordel

Denis Trystram, Alexandre Van Kempen,

Project-Teams DATAMOVE, STACS

Research Report n° 9282 — July 2019 — 14 pages

Abstract: Efficiently scheduling computational jobs with data-sets dependencies is one of
the most important challenges of fog/edge computing infrastructures. Although several strategies
have been proposed, they have been evaluated through ad-hoc simulator extensions that are, when
available, usually not maintained. This is a critical problem because it prevents researchers to
–easily– conduct fair evaluations to compare each proposal.
In this research report, we propose to address this limitation by presenting the first elements of
a common simulator. More precisely, we describe an on-going project involving academics and
a high-tech company that aims at delivering a dedicated tool to evaluate scheduling policies in
edge computing infrastructures. This tool enables the community to simulate various policies and
to easily customize researchers/engineers’ use-cases, adding new functionalities if needed. The
implementation has been built upon the Batsim/SimGrid toolkit, which has been designed to
evaluate batch scheduling strategies in various distributed infrastructures. Although the complete
validation of the simulation toolkit is still on-going, we demonstrate its relevance by studying
different scheduling strategies on top of a simulated version of the Qarnot Computing platform, a
production edge infrastructure based on smart heaters.

Key-words: Cloud/Edge, Simulation, Scheduling



Investigations sur les challenges de placement dans une
infrastructure Edge á travers un simulateur commun

Résumé : Ordonnancer efficacement des travaux de calcul avec des dépendances de données
est un des plus importants challenges des infrastructures de calcul fog/edge. Bien que plusieurs
stratégies ont été proposées, elles ont toutes été évaluées avec des extensions de simulateur ad-hoc
qui sont, s’ils sont rendus disponibles, habituellement pas maintenus. C’est un problème critique
parce que cela empêche les chercheurs de – facilement – conduire des évaluations équitables pour
comparer chaque stratégie.

Dans ce rapport de recherche, nous proposons d’adresser cette limitation en présentant les
premières briques d’un simulateur commun. Plus précisément, nous décrivons un projet en cours
impliquant des académiciens et une entreprise high-tech qui vise à délivrer un outil dédié à
l’évaluation de politiques d’ordonnancement dans des infrastructures de calcul edge. Cet outil
permet à la communauté de simuler des politiques variées et de facilement personnaliser les
cas d’utilisations des ingénieurs/chercheurs, en ajoutant de nouvelles fonctionnalités si besoin.
L’implémentation a été faite au dessus des outils de simulation Batsim/SimGrid, qui ont été
conçus pour évaluer des stratégies d’ordonnancement de type batch dans des infrastructures dis-
tribuées variées. Bien que la validation complète de notre outil de simulation est toujours un tra-
vail en cours, nous démontrons sa pertinence en étudiant différentes stratégies d’ordonnancement
sur une version simulée de la plateforme de la société Qarnot Computing, une infrastructure edge
basée sur des radiateurs intelligents.

Mots-clés : Cloud/Edge, Simulation, Ordonnancement
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1 Introduction

The proliferation of Internet of Things (IoT) applications [7], as well as the advent of new
technologies such as Mobile Edge computing [3], and Network Function Virtualization [17] (NFV)
have been accelerating the deployment of Cloud Computing like capabilities at the edge of the
Internet. Referred to as the fog [8] or the edge computing [20] paradigms, the main objective is to
perform on demand computations close to the place where the data are produced and analyzed
in order to mitigate data exchanges and to avoid too high latency penalties [26]. Among the
open questions our community should address to favor the adoption of such infrastructures is the
computation/data placement problem i.e., where to transfer data-sets according to their sources
and schedule computations to satisfy specific criteria. Although several works have been dealing
with this question [4, 9, 11, 18, 21, 23, 24], it is difficult to understand how each proposal behaves
in a different context and with respect to different objectives (scalability, reactivity, etc.). In
addition to having been designed for specific use-cases, they have been evaluated either using
ad hoc simulators or in limited in-vivo (i.e., real-world) experiments. These methods are not
accurate and not representative enough to, first, ensure their correctness on real platforms and,
second, perform fair comparisons between them.

Similarly to what has been proposed for the Cloud Computing paradigm [15], we claim that a
dedicated simulator toolkit to help researchers investigate fog/edge scheduling strategies should
be released soon. However, we claim that using placement simulators for Cloud Computing is
not appropriate to study fog/edge challenges. In addition to resource heterogeneity, network
specifics (latency, throughput), and workloads, fog/edge computing infrastructures differ from
Cloud Computing platforms because of the uncertainties: connectivity between resources is in-
termittent and storage/computation resources can join or leave the infrastructure at any time,
for an unpredictable duration. In other words, a part of the infrastructure can be isolated for
minutes/hours preventing accessing some data-sets or assigning new computations.

In this preliminary work, we present several extensions we implemented on top of the Bat-
sim/SimGrid toolkit [10,12] to favor fair evaluations and comparisons between distinct scheduling
strategies for fog/edge infrastructures. In particular, we developed an external module to inject
any type of event that could occur during the simulation (e.g., a machine became unavailable at
time t). We also implemented a Storage Controller, to supervise all transfers of data-sets within
the simulated platform.

We chose to extend Batsim/SimGrid instead of available fog/edge simulators [13, 22, 25] for
several reasons:

• Batsim has been especially designed to test and compare batch scheduling policies in dis-
tributed infrastructures. In other words, the design of Batsim enforces researchers to use
the same abstractions and thus, favor straightforward comparisons of different strategies,
even if they have been implemented by different research groups.

• The accuracy of the internal models (computation and network) of SimGrid has been
already validated.

• Batsim provides a Python API that makes the development of a scheduling strategy simple.

By extending Batsim to the fog/edge paradigm, we target a tool that will enable researchers/engineers
to re-evaluate major load balancing strategies of the state-of-the-art. In particular, we expect
researchers to study whether scheduling algorithms that have been proposed two decades ago in
desktop computing platforms, volunteer computing and computational grids [5,6] can be slightly
revised to cope with edge specifics. While edge workloads differ from best-effort jobs, desk-
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top/volunteer computing and computational grids have several characteristics that are common
to fog/edge platforms.

Although the validation of our extensions as well as the integration of representative edge
workloads is still on-going, the first building blocks we implemented enabled us to study an
edge infrastructure as complex as the Qarnot Computing platform [1]. The Qarnot Computing
infrastructure is a production platform composed of 3,000 diskless machines distributed across
several locations in France and Europe. Each computing resource can be used remotely as
traditional cloud computing capabilities or locally in order to satisfy data processing requirements
of IoT devices that have been deployed in the vicinity of the computing resource. As such, the
Qarnot platform is a good example of an edge infrastructure, with computing units and mixed
local/global job submissions with datasets dependencies.

After giving an overview of our edge placement simulator, we present how the Qarnot infras-
tructure has been instantiated on top of our framework, how we used our injector to simulate the
Qarnot workload and, finally, how we evaluated different scheduling strategies for job placement
and data movements.

The rest of the paper is structured as follows. Section 2 gives an overview of the Bas-
tim/SimGrid toolkit and the extensions we implemented. Section 3 presents the Qarnot Com-
puting use-case. Section 4 describes how we simulated this case study and Section 5 discusses a
first analysis of different scheduling strategies for the Qarnot platform. Section 6 presents the
related work. Conclusion and future works are given in Section 7.

2 A dedicated Scheduling Simulator for edge platforms

At coarse-grained, our proposal relies on a few extensions developed on top of the Batsim/SimGrid
toolkit. Released in 2017, Batsim [12] delivers a high-level API to facilitate the development of
batch scheduling algorithms that can be then simulated on top of SimGrid [10], the well-proven
simulator toolkit for distributed infrastructures. Thus, we rely on high-level tools that have been
proposed and already validated. We have customized some parts to reflect the edge specifics,
and propose some extensions as explained in the followings.

2.1 Operational components

We discuss in this section the role of the different components, namely SimGrid, Batsim, the
decision process and their interactions.

2.1.1 SimGrid

SimGrid [10] is a generic simulator framework that enables simulation of any distributed system.
In addition to providing the program to be evaluated, performing simulations with SimGrid re-
quires (i) writing a platform specification, (ii) formatting workload input data, (iii) interfacing
the program to evaluate. The choice of using SimGrid as the main engine for Batsim is mainly
due to its relevance in terms of performance, as well as its validity that has been backed-up
by many publications [2]. Moreover, it enables the description of complex infrastructures, such
as hierarchical ones, that are composed of many interconnected devices with possibly highly
heterogeneous profiles. Finally, the injection of external events on demand, such as node ap-
paritions/removals or network disconnections, has allowed us to easily simulate complex systems
such as fog/edge infrastructures.

Inria
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2.1.2 Batsim and the decision process

Batsim [12] is an infrastructure simulator for jobs and I/O scheduling, built on top of SimGrid,
to help the design and analysis of batch schedulers. Batch schedulers, a.k.a., Resource and Jobs
Management Systems, are systems in charge of managing resources in large-scale computing
centres, notably by scheduling and placing jobs. Batsim allows researchers to simulate the
behaviour of a computational platform on which a workload is executed according to the rules
of a decision process. It uses a simple event-based communication interface; as soon as an event
occurs, Batsim stops the simulation and reports what happened to the decision process.

The decision process embeds the actual scheduling code to be evaluated. In other words, in
order to simulate a given scheduling algorithm, an experimenter has to implement this decision
process. Comparing different algorithms consists in switching between different decision pro-
cesses, which is straightforward. Internally, the decision process reacts to the simulation events
received from Batsim, takes decisions according to the given scheduling algorithm, and drives
the simulated platform by sending back its decisions to Batsim. Batsim and the decision pro-
cess communicate via a language-agnostic synchronous protocol. In this work, we used Batsim’s
Python API to implement our decision process, which provides functions to ease the communi-
cation with Batsim.

For more details on Batsim and SimGrid mechanisms, we invite the reader to refer to Chapter
4 of Millian Poquet’s manuscript [19].

2.2 Extensions

We are working on a couple of extensions to deal with edge challenges. In this section, we present
the ones that are already available, namely a SimGrid plug-in, the events injector and the storage
controller. Modifications made in Batsim1 and its Python API2 for this work are available in a
separate branch of their main repository.

2.2.1 Batsim/SimGrid plug-in

One of the strengths of SimGrid is its plug-in architecture. For instance, one plug-in of interest,
that have been validated by a previous work of the SimGrid team, is the estimation of the energy
consumption of a host for a period of time, given inputs such as the power state of a host, the
number of computing cores and the load of each core [14].

In the context of edge IoT platforms, providing other metrics to the simulation is of interest,
and can take the form of new plug-ins. We extended the Batsim communication protocol to
benefit from those plug-ins information (i.e., information related to SimGrid plug-ins can be
reified on demand to the decision process).

As we will discuss later in the document, we leveraged this extension in the Qarnot case study.
Concretely, we developed an additional service on top of the aforementioned energy plug-in that
computes the temperature of a host from its energy consumption and other physical parameters.

2.2.2 External events injector

To simulate the execution of a fog/edge infrastructure, which by essence is subject to very
frequent unexpected or unpredictable changes, our simulator offers the opportunity to inject
external events on demand. Those events impacts the behaviour of the platform during the

1https://gitlab.inria.fr/batsim/batsim/tree/temperature
2https://gitlab.inria.fr/batsim/pybatsim/tree/temperature
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simulation and thus the choices of the scheduling strategy. For example, one would be interested
in studying the behavior and resilience of a scheduling policy when a range of machines may
become unexpectedly unavailable for a period of time, due to a failure or action occurring at the
edge (e.g., from a local user).

The mechanism we implemented replays external events that occurred at a given time. When
an event occurs it is handled by the main process of Batsim, that updates the state of the platform
and the simulation, and then forwarded to the decision process.

We implemented the events to be the most generic possible. An event is represented as a
JSON object that contains two mandatory fields: a timestamp, that indicates when the event
should occur, and type, the type of the event. Then, depending on the type of event, other fields
can complement the event description, such as the name of the unavailable resource for example,
the new value of an environment parameter such as the network bandwidth, or anything that is
of interest to the decision process. External events are injected in Batsim by one of its internal
processes, which reads the list of events from an input file containing one of the above described
JSON objects per line.

This event injection mechanism is generic by concept: users can define their own types
of events and associated fields, which will be forwarded to the decision process without any
modification in the code of Batsim.

2.2.3 Storage Controller

The Storage Controller is a Python module that exposes multiple functions to the scheduler in
order to manage the storage entities as well as the data transfers. In order to give the scheduler
reliable information, it keeps track in real-time of the platform status, i.e., the on-going data
transfers, the available resources, etc. It also manages all aspects related to caching policies,
while offering advanced features such as speculation.

3 Case study: the Qarnot Computing platform

We present in this section the platform of the Qarnot Computing company, which serves as an
example for our case study.

3.1 Infrastructure overview

Qarnot Computing has been incorporated in 2010 to develop a disruptive solution able to turn
IT waste heat into a viable heating solution for buildings. The infrastructure is distributed in
housing buildings, offices and warehouses across several geographical areas in France and Europe,
in each situation valorizing the waste heat produced by IT computations to heat air and water for
the building. As of writing this paper, the whole platform is composed of about 1,000 computing
devices (QRads) hosting about 3,000 diskless machines, and is growing quickly. The diskless
machines have access to some storage area present on the deployment site (QBox ), shared as
NFS through a LAN. In a typical configuration a computing machine has a 1 Gbps uplink to
a common switch, which then has up to 40 Gbps uplink to the QBox. The latency between
a computing machine and its storage area is of the order of 1 ms. The various deployment
sites are connected to the Internet using either a public or enterprise ISP, with characteristics
varying from 100 Mbps to 1 Gbps symetric bandwidth to the Internet, and about 10 ms latency
to French data centers used by Qarnot to host control and monitoring infrastructure, central
storage services, and gateways to its distributed infrastructure.

Inria
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Figure 1: Scheme of the Qarnot platform.

On a daily basis, from a few hundred to several thousands of batch jobs are processed by
Qarnot batch computing PaaS, and thousands of cores are provisioned for corporate customers
deploying infrastructure. Up to tens of GBs of data are replicated from central storage to edge
computing sites.

Qarnot deploys high performance computing hardware and storage capacity to buildings,
which makes it a fitting infrastructure to locally gather and process data that is generated at
the edge of the network (for instance by smart buildings). One objective of the edge simulator
is to evaluate evolutions of the Qarnot architecture to handle such local use-cases. It will allow
investigating the edge infrastructure dimensioning as well as the optimization of the local data
and processes placement with regard to the global ones. This can reduce global data movements,
enable buildings to be autonomous in terms of IT and to handle Internet connectivity loss
gracefully.

3.2 Platform Terminology

The jobs and resource manager of the Qarnot platform, named Q.ware, is based on a hierarchy
of 3 levels as shown in Figure 1: the QNode-, the QBox - and the QRad -level. The QNode is
the root node, a “global” server that takes placement decisions for the whole platform. It can
be viewed as a load balancer for the platform. Connected to this QNode there are the QBoxes,
which are “local” servers in smart buildings that take scheduling decisions locally on their own
computing nodes. Each QBox is in charge of a set of computing nodes, the QRads, which are
composed of one or several computing units denoted by QMobos.

Moreover, a centralized storage server, the CEPH, is present at the QNode-level while each
QBox has its own local storage disk. From a physical point of view, the QNode and CEPH are
on the cloud while QBoxes are distributed over smart buildings of several cities. QRads among
a building are distributed in different rooms.

The Qarnot platform receives two types of user requests: requests for computing and requests
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for heating. The computing requests describe the workload to be executed on the platform. They
are made by users that first upload input data needed to execute their jobs (named QTasks) to
the centralized server and upload a Docker image either to the centralized server or the Docker
Hub. Then, they submit the QTasks to the QNode. A QTask can be decomposed in a bag of
several instances that share the same Docker image and data dependencies, but with different
command argument. This can be used for example to process each frame of a given movie, with
one frame or a range of frames per instance.

The heating requests are made by inhabitants that can turn on and off the smart heaters in
their homes, or set a target temperature for rooms to be reached as soon as possible. Since the
computing units in a smart heater are unavailable when cooling is necessary, and are available
otherwise, such changes increases the heterogeneity challenges of and edge infrastructure: the
computation resource does not simply appear or disappear but also vary according to the heating
needs.

3.3 Current scheduling policy
Whenever QTasks are submitted on the platform all the data dependencies should be uploaded
to the CEPH. To be executed, these QTasks have to be scheduled to the QBoxes and then
scheduled onto QMobos through two scheduling steps.

The first step takes place at the QNode-level. The QNode greedily dispatches as much
instances of the QTasks ordered by priority on QBoxes, depending on the amount of QMobos
available for computation on each QBox.

The second step takes place at the QBox-level. Upon receiving instances of a QTask, the
QBox will select and reserve a QMobo for each instance and fetch from the CEPH each missing
data dependency before starting the instances.

Notice that, at all times, a Frequency Regulator runs on each QRad to ensure that the ambient
air is close to the target temperature set by the inhabitant, by regulating the frequencies of the
QMobos and completely turning off a QRad if it is too warm. Moreover, whenever there is
no computation performed on the QMobos while heating is required, some “dummy” compute-
intensive programs are executed to keep the QRad warm.

4 Simulated Platform
We present in this section how we modeled the Qarnot platform and explain how we instantiated
the inputs that were required for the simulation.

4.1 Qarnot to Batsim/SimGrid Abstractions
Figure 2 depicts the real and the simulated platforms. Each QMobo of the platform is simulated
as a SimGrid host as they are the only computing units of the platform. QMobos belonging to
the same QRad are aggregated in the same SimGrid zone, as well as QRads of a same QBox, and
all QBoxes of the QNode. The management of storage spaces is done by adding special hosts
which handle the storage role. Thus, in each QBox zone there is one additional storage host for
the QBox disk. Similary, there is one storage host in the QNode zone to represent the CEPH.
For the computing requests, each instance of a given QTask can run independently of the others,
so we transcribed each instance as one Batsim job, with the same data-set dependencies and
submission time for jobs belonging to the same QTask. Regarding the heating requests, each
change of the target temperature of a QRad is simulated as an external event injected in the
simulation, as well as when a QRad was turned off for being too warm. Finally, the schedulers of

Inria
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Figure 2: Comparison between the real and simulated Qarnot platform.

the QNode- and QBox-level (including the Frequency Regulator) were implemented in Python
and both live in the same process, along with the Storage Controller.

4.2 Extracting Qarnot Traces

A log extractor was built to generate all the input files to feed Batsim and the decision process
from real logs of the Qarnot platform, for a given time period. These files describe the platform,
the workloads and their data-dependencies, the list of data-sets and all events that are mandatory
to simulate the Qarnot system.

While we had to build a specific extractor to gather and format information from the Qarnot
logs, generated files are generic with respect to Batsim/SimGrid interfaces. In this sense, one
could easily consider simulating another platform by taking our extractor as an example and
adapt it to its needs.

4.2.1 Platform description

The definition of the platform is an XML file readable by SimGrid. The file describes the
whole platform to simulate, with in details: A list of QBoxes with for each: the id, the network
bandwidth and latency to the CEPH and to its QBoxes, the storage disk host and its size, the
localization and a list of QRads. For each QRad: the id and a list of QMobos. For each QMobo
represented by a SimGrid host: the id, the list of speeds and corresponding power usage, and
the coefficients required for the temperature plug-in.

RR n° 9282
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4.2.2 Workload description

The workload is represented by a JSON file containing a list of job descriptions and a list of
profile descriptions. Job descriptions are defined by the user requests and contain: the id, the
submission time, and the job profile to use. Profile descriptions represent how a job should be
simulated, plus other specific information, and contain: the type of the job to simulate, the
number of flops to compute, the job priority and the list of data-sets required as inputs.

The list of data-sets is also described as a list of JSON objects, with one per line in the file read
by the decision process and fed to the Storage Controller. Each data-set object is represented
by two fields: id, a unique identifier for the data-set, and size, the size in bytes of the data-set.
This list of data-sets is read by the Storage Controller upon initialization of the schedulers and
the storage representing the CEPH is filled accordingly.

4.2.3 External events description

We extracted the following events from the logs of the real platform:

• qrad_set_target_temperature: containing the id of the QRad and its new target tem-
perature. This event informs the associated QBox that the temperature target of a QRad
has changed.

• machine_available and machine_unavailable: containing a list of resources impacted by
this event.

• site_set_outside_temperature: containing the location and its new outside temperature.
This event is directly forwarded to the temperature plug-in(see Section 2.2.1).

As discussed in Section 2.2.2, each event is timestamped and is described as a JSON object.
We finally added a stop_simulation event to ask the scheduler to kill all executing jobs and

reject waiting jobs to strictly stop the simulation after a given time.

5 Simulation results

In order to illustrate the versatility of our tool, we compare various scheduling strategies based
on real-world traces of the Qarnot platform. We discuss in this section preliminary results.

Table 1: Metric values of the proposed policy variants compared to the Qarnot scheduler (Stan-
dard), for 1 week of simulation.

Metrics Standard LocalityBased FullReplicate Replicate10 Replicate3

Total transferred data (GB) 193.83 221.82 1110.27 668.96 414.19
− (+14.44%) (+472.81%) (+245.13%) (+113.69%)

Mean waiting time (s) 54.24 48.01 26.26 41.08 39.24
− (−11.49%) (−51.59%) (−24.26%) (−27.65%)

Mean bounded slowdown 2.57 2.65 1.39 1.85 2.13
− (+3.11%) (−45.91%) (−28.02%) (−17.12%)

Inria
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5.1 Scheduling Policies

Along with the real Qarnot scheduler that serves as a baseline for our experiments (see Sec-
tion 3.3), we also implemented four variants of the scheduling policy at the QNode-level.

First, the LocalityBased scheduler, that gives priority to the QBoxes already having in disk
all data dependencies of the QTask to be dispatched. This first variant aims at avoiding useless
data transfers if some QBoxes already have the required data dependencies of a given QTask.

The second scheduler, namely the FullReplicate, considers that all data dependencies of a
QTask are replicated on all QBox disks before that QTask arrives in the system. This variant
aims at visualizing the behaviours of the scheduling policy without any impact of the data
movements.

Finally, the Replicate3 and Replicate10 schedulers, that respectively replicates all data de-
pendencies of a QTask on the 3 and the 10 least loaded QBox disks upon submission of that
QTask before applying the same dispatching policy as the LocalityBased one. These two sched-
ulers are a trade-off between the two first variants. They aim at reducing the waiting time of
the instances of QTasks by providing more QBox candidates for the LocalityBased dispatcher.

5.2 Results

Since the simulation and the scheduling algorithms are deterministic, we ran one simulation with
each scheduler for various simulation inputs corresponding to logs of the Qarnot platform during
1 day, 3 days or 1 week. The running time of one simulation was less than 5 minutes for a 1-day
simulation, around 10 minutes for a 3-day simulation, and less than 35 minutes for a 1-week
simulation, with about 15% of the time spent in the decision process.

We compared the different scheduling policies according to various metrics, including the
total amount of transferred data, the mean waiting time of the jobs and the mean bounded
slowdown. For a job, the bounded slowdown (also called bounded stretch) represents the ratio
between the time spent in the system (including the waiting time) versus the maximum between
1 and the time, in seconds, to effectively process the job.

Due to lack of space, and as the simulations of the three periods (1-day, 3-days, 1-week) lead
to similar conclusions, we only present in Table 1 the results for the 1-week period. This 1-week
trace contains 5,506 instances grouped in 1,019 QTasks and uses 47 different data-sets.

The results show that, as expected, the three policies using replication improved the schedul-
ing metrics compared to Standard, with a cost of an increasing size of the data transfers. Re-
garding the LocalityBased scheduler, the improvement of performance are quite low and even
worse for the mean bounded slowdown, compared to the standard algorithm. This is quite sur-
prising as, for example, the total transferred amount of data actually increased, while the initial
purpose of this scheduler was to leverage the data transfer already performed. These unexpected
results has led us to conduct additional investigations that shed light upon some interleaving
of scheduled jobs that we did not envision at first. Such results, which are counter-intuitive,
clearly illustrates the importance of validating the behaviours of scheduling algorithms through
simulations before envisioning their real deployment.

Comparing the replication policies, we can see that Replicate3 and Replicate10 present simi-
lar results, and that the FullReplicate gains are almost double compared to the partial replication
policies with a cost of doubling the size of the data transfers as well. We can deduce that repli-
cating data-sets before applying the LocalityBased placement policy is beneficent from the users
point of view, but deciding how much replication the system should do is not trivial. Going
from 3 to 10 replicas does not seem to improve much the quality of service while doubling the
cost in terms of data transfers, and duplicating the datasets everywhere almost halves the mean
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12 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

waiting time and bounded slowdown compared to the standard Qarnot scheduler, at a cost of
multiplying by 5 the total size of data transfers.

Finding a good data-sets/jobs scheduling policy for Qarnot Computing is still an ongoing
action. Our goal through this preliminary study was to illustrate the use of our framework on
a concrete scenario, and to show how such a simulator would help to drive the design of an
improved scheduling strategy.

6 Related simulation tools
We described in this paper a novel simulation tool for easily designing and testing scheduling
strategies on edge computing platforms. We motivated the huge effort of building a new simulator
using adequate tools for modeling the processing and memory units and the network topology.
We discuss briefly below the main competitors and argument for our simulator.

Some simulators have constraints that would prevent us to correctly simulate a platform such
as the Qarnot ’s one. For example, EmuFog [16] does not support hierarchical fog infrastructures,
whereas Qarnot infrastructure is inherently hierarchical. Other simulators such as iFogSim [13],
EdgeCloudSim [22] and IOTsim [25], are simulation frameworks that enable to simulate fog
computing infrastructures and execute simulated applications on top of it. These are the closest
work to ours and all rely on the CloudSim simulator. However, CloudSim, while widely used to
validate algorithms and applications in different scientific publications, is based on a top-down
viewpoint of cloud environments. That is, to the best of our knowledge, there are no articles
that properly validate the different models it relies on. On the contrary, our simulator is built
on top of SimGrid, which has been validated in many publications [2] and allows finer-grained
simulations, as explained in Section 2.1.

7 Concluding remarks and future steps
We presented in this paper a dedicated toolkit to evaluate scheduling policies in edge computing
infrastructures. Its integration into a simulator leads to a complete managing system for edge
computing platforms that focuses on the evaluation of scheduling strategies.

While its complete validation is still an ongoing work, this toolkit already enables researchers/engineers
to easily evaluate existing load balancing and placement strategies. It may also serve at devel-
oping and testing new strategies thanks to its modular and clear interface.

To assess the interest of such simulator, we instantiated the toolkit to simulate the whole
edge platform of the Qarnot Company based on smart heaters. As a use case, we investigated
several scheduling strategies and compared them to the actual policy implemented in the Qarnot
platform. As expected, we showed that the best strategies are those which take into account
locality and replication of data-sets.

In a future work, we envision designing an automatic and probabilistic injector of machine
and network failures based on statistical studies of the platform logs and learning techniques.
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