On the efficiency of normal form systems for representing Boolean functions - Archive ouverte HAL Access content directly
Journal Articles Theoretical Computer Science Year : 2020

On the efficiency of normal form systems for representing Boolean functions

(1) , (2, 3) , (4) , (4)
1
2
3
4

Abstract

A normal form system (NFS) for representing Boolean functions is thought of as a set of stratified terms over a fixed set of connectives. For a fixed NFS A, the complexity of a Boolean function f with respect to A is the minimum of the sizes of terms in A that represent f. This induces a preordering of NFSs: an NFS A is polynomially as efficient as an NFS B if there is a polynomial P with nonnegative integer coefficients such that the complexity of any Boolean function f with respect to A is at most the value of P in the complexity of f with respect to B. In this paper we study monotonic NFSs, i.e., NFSs whose connectives are increasing or decreasing in each argument. We describe the monotonic NFSs that are optimal, i.e., that are minimal with respect to the latter preorder. We show that these minimal monotonic NFSs are all equivalent. Moreover, we address some natural questions, e.g.: does optimality depend on the arity of connectives? Does it depend on the number of connectives used? We show that optimal monotonic NFSs are exactly those that use a single connective or one connective and the negation. Finally, we show that optimality does not depend on the arity of the connectives.
Fichier principal
Vignette du fichier
TCS_HAL_CLMP.pdf (419.36 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02153506 , version 1 (12-06-2019)
hal-02153506 , version 2 (12-12-2019)

Identifiers

Cite

Miguel Couceiro, Erkko Lehtonen, Pierre Mercuriali, Romain Péchoux. On the efficiency of normal form systems for representing Boolean functions. Theoretical Computer Science, 2020, 813, pp.341-361. ⟨10.1016/j.tcs.2020.01.009⟩. ⟨hal-02153506v2⟩
179 View
159 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More