R. Kohavi and F. Provost, Glossary of terms. Machine Learning, pp.271-274, 1998.

C. Gianfagna, H. Yu, M. Swaminathan, R. Pulugurtha, R. Tummala et al., Machine-Learning Approach for Design of Nanomagnetic-Based Antennas, Journal of Electronic Materials, vol.46, issue.8, pp.4963-4975, 2017.

A. Kusne, T. Gao, A. Mehta, L. Ke, M. Nguyen et al., Onthe-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets, Scientific Reports, vol.4, issue.1, 2014.
DOI : 10.1038/srep06367

URL : https://doi.org/10.1038/srep06367

M. Fernandez, J. Abreu, H. Shi, and A. Barnard, Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors, ACS Combinatorial Science, vol.18, issue.11, pp.661-664, 2016.

A. Yosipof, O. Nahum, A. Anderson, H. Barad, A. Zaban et al., Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells, Molecular Informatics, vol.34, issue.6-7, pp.367-379, 2015.

R. Hathout and A. Metwally, Towards better modelling of drugloading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning, European Journal of Pharmaceutics and Biopharmaceutics, vol.108, pp.262-268, 2016.

N. Laanait, Z. Zhang, and C. Schlepütz, Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data, Nanotechnology, vol.27, issue.37, p.374002, 2016.

W. Cheng, Identify problematic layout patterns through volume diagnosis, 2015 International Symposium on VLSI Technology, Systems and Applications, 2015.

A. Hughes, Z. Liu, M. Raftari, and M. Reeves, A workflow for characterizing nanoparticle monolayers for biosensors: Machine learning on real and artificial SEM images, PeerJ PrePrints, 2015.

Y. Ozaki, H. Yamada, H. Kikuchi, T. Murakami, T. Matsumoto et al., Labelfree imaging identification of WBCs based on the features of quantitative phase microscope images for negative selection of CTCs, Cancer Research, vol.76, issue.14, pp.3952-3952, 2016.

P. Krsti?, B. Ashcroft, and S. Lindsay, Physical model for recognition tunneling, Nanotechnology, vol.26, issue.8, p.84001, 2015.

E. Papa, J. Doucet, A. Sangion, and A. Doucet-panaye, Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches, SAR and QSAR in Environmental Research, vol.27, issue.7, pp.521-538, 2016.

J. Wolpaw, Brain-computer interfaces, p.9780195388855, 2012.

A. Butler and S. Page, Mental Practice With Motor Imagery: Evidence for Motor Recovery and Cortical Reorganization After Stroke, Archives of Physical Medicine and Rehabilitation, vol.87, issue.12, pp.2-11, 2006.

M. Jeannerod, Mental imagery in the motor context, Neuropsychologia, vol.33, issue.11, pp.1419-1432, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00655242

M. Lotze and U. Halsband, Motor imagery, Journal of Physiology-Paris, vol.99, issue.4-6, pp.386-395, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01857445

C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller, Imagery of motor actions: Differential effects of kinesthetic and visualmotor mode of imagery in single-trial EEG, Cognitive Brain Research, vol.25, issue.3, pp.668-677, 2005.

C. Lindig-leon, S. Rimbert, O. Avilov, and L. Bougrain, Scalp EEG activity during simple and combined motor imageries to control a robotic ARM, IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp.322-327, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519712

S. Rimbert, O. Avilov, L. Bougrain, and ;. Id, Discrete motor imageries can be used to allow a faster detection, 7th Graz Brain-Computer Interface Conference, p.1512407, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01512407

P. Rousseeuw and K. Van-driessen, A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics, vol.41, issue.3, p.212, 1999.

B. Schölkopf, J. Platt, J. Shawe-taylor, A. Smola, and R. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.13, issue.7, pp.1443-1471, 2001.

F. Liu, . Tony, K. Ting, . Ming, . Zhou et al., Isolation forest, Data Mining. ICDM'08. Eighth IEEE International Conference, 2008.
DOI : 10.1109/icdm.2008.17

J. Shin, A. Luhmann, B. Blankertz, D. Kim, J. Jeong et al., Open Access Dataset for EEG+NIRS Single-Trial Classification, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.25, pp.1735-1745, 2017.

S. Butterworth, On the Theory of Filter Amplifiers, Experimental Wireless and the Wireless Engineer, vol.7, pp.536-541, 1930.

G. Bianchi and R. Sorrentino, Electronic filter simulation design, pp.17-20, 2007.

G. Pfurtscheller, F. Lopes-da, and S. , Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology, vol.110, issue.11, pp.1842-1857, 1999.
DOI : 10.1016/s1388-2457(99)00141-8

G. Pfurtscheller and A. Berghold, Patterns of cortical activation during planning of voluntary movement, Electroencephalography and Clinical Neurophysiology, vol.72, issue.3, pp.250-258, 1989.

W. Klimesch, G. Pfurtscheller, W. Mohl, and H. Schimke, Eventrelated desynchronization, erd-mapping and hemispheric differences for words and numbers, International Journal of Psychophysiology, vol.8, issue.3, pp.297-308, 1990.

?. ?. ??????, ?. ?. ?????, ?. ?. ????????, ?. ??????, and ?. ????,

?. ?. ??????, ?. ?. ?????, ?. ?. ????????, ?. ??????, and ?. ????,

O. O. Avilov, Dr.Sc.(Eng.) Prof

L. Bougrain, e-mail: laurent.bougrain@loria.fr P. Henaff, PhD Assoc.Prof