S. Abiteboul, I. Manolescu, P. Rigaux, M. Rousset, and P. Senellart, , 2011.

C. Bizer, T. Heath, and T. Berners-lee, Linked data -the story so far, Int. J. Semantic Web Inf. Syst, vol.5, issue.3, pp.1-22, 2009.

A. Bordes, N. Usunier, A. García-durán, J. Weston, and O. Yakhnenko, Translating embeddings for modeling multi-relational data, Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems, pp.2787-2795, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920777

H. Cai, V. W. Zheng, and K. C. Chang, A comprehensive survey of graph embedding: Problems, techniques, and applications, IEEE Trans. Knowl. Data Eng, vol.30, issue.9, pp.1616-1637, 2018.

A. Coulet and M. Smaïl-tabbone, Mining electronic health records to validate knowledge in pharmacogenomics, ERCIM News, issue.104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01369501

J. Euzenat and P. Shvaiko, Ontology Matching, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817824

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, 2016.

L. Mcinnes, J. Healy, N. Saul, and L. Grossberger, Umap: Uniform manifold approximation and projection, The Journal of Open Source Software, vol.3, issue.29, p.861, 2018.

P. Monnin, J. Legrand, G. Husson, P. Ringot, A. Tchechmedjiev et al., PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison, BMC Bioinformatics, vol.20, issue.4, p.16, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02103899

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, A review of relational machine learning for knowledge graphs: From multi-relational link prediction to automated knowledge graph construction, Proceedings of the IEEE, vol.104, issue.1, pp.11-33, 2016.

H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation methods, Semantic Web, vol.8, issue.3, pp.489-508, 2017.

H. Paulheim, Make embeddings semantic again, Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018), 2018.

P. Ristoski and H. Paulheim, Rdf2vec: RDF graph embeddings for data mining, The Semantic Web -ISWC 2016 -15th International Semantic Web Conference, pp.498-514, 2016.

M. S. Schlichtkrull, T. N. Kipf, P. Bloem, . Van-den, R. Berg et al., Modeling relational data with graph convolutional networks, The Semantic Web -15th International Conference, pp.593-607, 2018.

L. Serafini, A. S. Garcez, and . Ai*ia, Learning and reasoning with logic tensor networks, Advances in Artificial Intelligence -XVth International Conference of the Italian Association for Artificial Intelligence, pp.334-348, 2016.