. Awais, Muhammad Awais, Nasreen Badruddin, and Micheal Drieberg. A hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and Wearability, Sensors, 2017.

;. Baldi and . Baldi, Autoencoders, unsupervised learning, and deep architectures, vol.27, pp.37-50, 2012.

. Blanco-velasco, ECG signal denoising and baseline wander correction based on the empirical mode decomposition, Computers in Biology and Medicine, 2008.
DOI : 10.1016/j.compbiomed.2007.06.003

. Buendía-fuentes, High-Bandpass Filters in Electrocardiography: Source of Error in the Interpretation of the ST Segment. ISRN Cardiology, 2012.

F. Chazal and B. Michel, An introduction to topological data analysis: fundamental and practical aspects for data scientists. Submitted to the Journal de la Societe Francaise de Statistiques, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614384

, The structure and stability of persistence modules, SpringerBriefs in Mathematics, 2016.

[. Clifford, Improved detection and classification of arrhythmias in noise-corrupted electrocardiograms using contextual information. Harvard-MIT Division of Health Sciences and Technology, Goras and Fira, 1986.

. Houssein, Essam Houssein, Moataz Kilany, and Aboul Ella Hassanien. Ecg signals classification: a review, vol.5, p.376, 2017.

, Isin and Selen Ozdalili. Cardiac arrhythmia detection using deep learning, Procedia Computer Science, 2017.

;. Jianning and . Jianning, Detection of Premature Ventricular Contractions Using Densely Connected Deep Convolutional Neural Network with Spatial Pyramid Pooling Layer, 2018.

J. Ba-brendan-frey-;-lei, J. Ba-brendan-frey, and ;. , Ecg arrhythmia classification using a 2-d convolutional neural network (submitted). 04 2017, vol.06, 2013.

, ECG-based heartbeat classification for arrhythmia detection: A survey, Computer Methods and Programs in Biomedicine, 2016.

[. Maria, The gudhi library: Simplicial complexes and persistent homology, International Congress on Mathematical Software, pp.167-174, 2014.
DOI : 10.1007/978-3-662-44199-2_28

URL : https://hal.archives-ouvertes.fr/hal-01108461

M. , Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block, Journal of Physics: Conference Series, vol.345, pp.44-48, 2001.

S. Shirin and M. Behbood, A new personalized ecg signal classification algorithm using block-based neural network and particle swarm optimization, Biomedical Signal Processing and Control, vol.25, pp.12-23, 2016.

M. , E. S. Abd-elazim, S. M. Ali, and E. S. , A hybrid particle swarm optimization and bacterial foraging for optimal power system stabilizers design, International Journal of Electrical Power and Energy Systems, vol.46, pp.334-341, 2013.
DOI : 10.1016/j.ijepes.2012.10.047

. Srivastava, Training Very Deep Networks, 2015.

V. Umeda-;-yuhei-umeda-;-isha, H. Upganlawar, ;. Chowhan, and . Xia, Automatic detection of p, qrs and t patterns in 12 leads ecg signal based on cwt, Transactions of the Japanese Society for Artificial Intelligence, vol.32, issue.4, pp.46-52, 2014.