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Short Note

Fault Heterogeneity and the Connection

between Aftershocks and Afterslip

by E. Lippiello, G. Petrillo, F. Landes,* and A. Rosso

Abstract Whether aftershocks originate directly from the mainshock and sur-
rounding stress environment or from afterslip dynamics is crucial to the understanding
of the nature of aftershocks. We build on a classical description of the fault and creep-
ing regions as two blocks connected elastically, subject to different friction laws. We
show analytically that, upon introduction of variability in the fault plane’s static fric-
tion threshold, a nontrivial stick-slip dynamics ensues. In particular, we support the
hypothesis (Perfettini and Avouac, 2004) that the aftershock occurrence rate is propor-
tional to the afterslip rate, up to a corrective factor that is also computed. Thus, the
Omori law originates from the afterslip’s logarithmic evolution in the velocity-
strengthening region. We confirm these analytical results with numerical simulations,
generating synthetic catalogs with statistical features in good agreement with instru-
mental catalogs. In particular, we recover the Gutenberg–Richter law with a realistic
b-value (b≃ 1) when Coulomb stress thresholds obey a power-law distribution.

Introduction

A mainshock is followed by the increase of seismic
activity caused by aftershocks as well as by a significant
time-dependent postseismic deformation known as afterslip.
The common interpretation is that afterslip is activated by the
stress increase due to the mainshock’s coseismic instantane-
ous deformation and mostly occurs in regions with a veloc-
ity-strengthening rheology. This interpretation dates back to
the seminal paper by Marone et al. (1991) who analytically
obtained a hyperbolic time decay of the postseismic defor-
mation rate _u�t� ∼ 1=t, for a velocity-strengthening region.
The hyperbolic temporal decay is similar to the one usually
observed for the aftershock occurrence rate λ�t�

EQ-TARGET;temp:intralink-;df1;55;253λ�t� � K
t� c

; �1�

and known as the Omori law.
The proportionality between aftershock occurrence rate

λ�t� and stress or strain rate _u�t� has been documented by the
postseismic deformation measured after several large earth-
quakes (Perfettini and Avouac, 2004, 2007; Perfettini et al.,
2005, 2018; Hsu et al., 2006; Perfettini and Ampuero, 2008;
Savage and Yu, 2007; Savage and Langbein, 2008; Savage,
2010; Canitano et al., 2018). Perfettini and Avouac (2004)

explained the observed proportionality under the assumption
that aftershocks are induced by afterslip. This result was sup-
ported by the analytical solution of a single spring-slider
model under velocity-strengthening friction, which models
brittle creeping. The proportionality has been also used to
obtain the friction parameters as well as the stressing rate,
in a given velocity-strengthening region, from the temporal
behavior of the recorded aftershocks (Frank et al., 2017).

In this short note, we present a minimal model of the fault
as a sliding block connected to the afterslip region treated, as in
Marone et al. (1991) and Perfettini and Avouac (2004), as a
second block with velocity-strengthening rheology (see
Fig. 1). In this two-block model, the slip of the fault block
induces the afterslip relaxation of the second block, which
in turns promotes further failures of the fault. The central
assumption is that instability thresholds fth, on the fault
plane, are not uniform but random with a distribution g�fth�.
This makes more realistic the description of the fault as a sin-
gle-slider block. Previous studies (Kaneko and Lapusta, 2007;
Ader et al., 2014), indeed, have shown that the absence of
heterogeneities is responsible for important differences
between single-slider models and 2D continuum models.
The presence of random thresholds allows us to analytically
demonstrate that, without any assumption on the initial stress
distribution, the proportionality λ�t� ∝ _u�t� is a stable feature
of earthquake triggering. We present analytical and numerical
results of the model evolution.

*1 Also at Department of Physics and Astronomy, University of
Pennsylvania, Philadelphia, Pennsylvania U.S.A.; and Department of
Chemistry, Columbia University, New York, New York 10027 U.S.A.
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The Model

We describe the fault as a block H coupled by means of
a spring of elastic coupling k to a second block U, which
represents the creeping region of the crust, with velocity-
strengthening friction. Marone et al. (1991) identified the
region where afterslip occurs in a zone of unconsolidated
sediments above the fault, whereas Perfettini and Avouac
(2004, 2007) and Perfettini et al. (2005) assumed the creep-
ing region zone to be deeper because of the transition toward
ductile behavior caused by the increase of temperature with
depth. In other studies, afterslip has been observed very close
(Crescentini et al., 1999), or even on the fault within the seis-
mogenic zone (Miyazaki et al., 2004; Johnson et al., 2006;
Freed, 2007). In our approach, the precise position of the
velocity-strengthening region is not relevant and we assume
that the block U is embedded in a more extensive region
creeping at a constant velocity V0. We model this interaction
with a second spring of elastic constant k0 whose free end
moves with velocity V0 (Fig. 1). To simplify the model, we
assume that both blocks move in the V0 direction, and
therefore, only scalar quantities can be considered.
Indicating with u�t� and h�t�, the positions of the block
U and the block H at the time t, respectively, the shear stress
acting on U is k�h�t� − u�t�� � k0�V0t − u�t�� and the
friction force τu�t�, under steady-state condition, can be
written as

EQ-TARGET;temp:intralink-;df2;55;134τu�t� � σN

�
μc � A log

�
_u�t�
Vc

��
; �2�

in which _u�t� is the block velocity, σN is the effective normal
stress, μc is the static friction coefficient when the block U
slides at the steady velocity Vc and A > 0 for a velocity-

strengthening material. In the overdamped limit, the constit-
utive equation for U reads

EQ-TARGET;temp:intralink-;df3;313;430τu�t� � k�h�t� − u�t�� � k0�V0t − u�t��; �3�

which admits a stationary solution for _u�t� � Vc � k0
k0�k V0.

In general, one has

EQ-TARGET;temp:intralink-;df4;313;372 _u�t� � Vc exp
�
h�t�
ρ

� t
tR

−
μc
A
−
u�t�
ρ0

�
; �4�

in which ρ0 � AσN
k�k0

and ρ � AσN
k are two characteristic length,

whereas tR � AσN
k0V0

� ρ0
Vc

represents the long timescale associ-

ated with the extended creeping region at velocity V0.
We next consider the evolution of the block U starting

from the stationary solution _u�0� � Vc at the time t � 0. The
solution for u�t� was written in Perfettini and Avouac (2004)
in terms of the evolution of h�t�:
EQ-TARGET;temp:intralink-;df5;313;246

u�t� � u�0� � ρ0 log
�
1� 1

tR
F�t�

�

F�t� �
Z

t

0

exp
�
t′

tR
� �h�t′� − h�0��

ρ

�
dt′: �5�

Concerning the dynamics of the blockH, we assume the
Coulomb failure criterion (CFC): the instability is only con-
trolled by the Coulomb stress SH�t� acting at time t on the
block H, with SH�t� � k�u�t� − h�t�� − μHσH�t�. Here
k�u�t� − h�t�� is the shear stress, μH is a friction coefficient
and σH�t� is the effective normal stress represented by the
normal stress reduced by the pore pressure. According to
the CFC, under the assumption that σH�t� is constant, the
block H is unstable as soon as the shear stress overcomes

Figure 1.2 (a) The two block model. The block H, at the position h�t�, represents the fault, which performs discrete jumps of fixed
amplitude Δh and can be stuck in different positions indicated by dots. The size of each dot represents the local value of fth. The block
U, at the position u�t�, is subject to a velocity-strengthening friction and is driven at a constant rate k0V0. Both blocks are subject to confining
pressures σN and σH. The exact solution of equation (3) assuming the slip starts at t � 0 and ends at t � ts with the block H moving at a
constant velocity VS. Distances are expressed in units of ρ and time in unit of ts. We use Δh � 33ρ, V0 � 10−5δh=ts, and k=k0 � 33. The
fault displacement h�t�=ρ is plotted with a continuous black line, whereas the full analytical solution of equation (3) for u�t�=ρ is represented
by a continuous gray line. Different colors3 and symbols indicate the evolution of u�t� in the three regimes: circles (slip regime), diamonds
(afterslip regime), and triangles (interseismic regime). The color version of this figure is available only in the electronic edition.
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a reference frictional stress fth. Treating each slip as instan-
taneous implies that H either is at rest or it slips in an infi-
nitely short time. This approximation corresponds to a
vanishing nucleation size coherently with the steady-state
approximation in the constitutive equation (equation 3)
(Rice and Ben-Zion, 1996). Within our hypothesis, the
dynamics of the two blocks can be written in terms of the
equation (5) and split in three regimes:

• Slip Regime: If at time t � 0, k�u�0� − h�0�� > fth, the
position of the block H becomes unstable and jumps of Δh
inducing the coslip of the block U, which depends on the
precise dynamics of the block H. For example in Figure 1,
we present an explicit solution when h�t� moves steadily at
velocity Vs ≫ V0 for a short time ts. In all cases, the block
U slips coseismically with the block H of an amount qΔh
with q∈�0; 1�, so that the slip is given by

EQ-TARGET;temp:intralink-;df6;55;535h�0� → h�0� � Δh �6�

EQ-TARGET;temp:intralink-;df7;55;513u�0� → u�0� � qΔh: �7�

The precise value of q is a complicated function of model
parameters and of the specific slip profile. In our minimal
model, we assume that q is a fixed value equal for all slips.
At the end of the slip, the blockH experiences a stress drop
k�1 − q�Δh, and if k�u�ts� − h�ts�� < fth the fault is stuck
again h�t� � h�ts�. In the hypothesis of a uniform frictional
stress fth, the fault exhibits a trivial dynamics characterized
by jumps of equal size (Δh) separated by a constant time
interval. In this case, the prestress value fth − k�u�0�
−h�0�� is peaked at a characteristic value and stress and
seismic rate are not proportional. Nevertheless, different
sources of heterogeneity should affect the local value of the
friction coefficient: the presence of asperities, which induces
fluctuations in the normal and pore pressure values, the
variation of the basal friction coefficient, or again, the fluc-
tuations of A. These parameters are temperature and water
dependent and are likely to vary along the fault. Thus, it is
reasonable that the frictional stress experienced after a slip
Δh is typically different from the previous one (see the var-
iable intensity of pinning points in Fig. 1, dots). Concretely,
after each slip it is reasonable that the block H comes up
against a new value of fth � fth1 extracted from a
distribution g�fth� with a finite probability that
k�u�ts� − h�ts�� > fth1 . Hence, the block is still unstable
and accordingly can perform n subsequent slips until the
distance to failure δFh � fthn − k�u�0� − h�0�� − n�1 − q�
Δh > 0. In this case, the slip instability corresponds to a
single slip of size nΔh (a single earthquake) and the dynam-
ics is characterized by earthquakes of different sizes. Large
earthquakes can be, therefore, viewed as a succession of
smaller seismic ruptures. After the slip, the blockH is stuck
in the novel position h�t� � h�0� � nΔh and the evolution
of u�t� is given by the explicit solution of equation (5):

EQ-TARGET;temp:intralink-;df8;313;733F�t� � tRe
nΔh
ρ

�
e

t
tR − 1

�
; �8�

EQ-TARGET;temp:intralink-;df9;313;706u�t�� u�0��nqΔh�ρ0 log
�
1�e

nΔh
ρ

�
e

t
tR −1

��
: �9�

Two distinct regimes can be identified.
• Afterslip Regime: At times shorter than tR, one can replace
tR�e

t
tR − 1�≃ t so that

EQ-TARGET;temp:intralink-;df10;313;635u�t� � u�0� � nqΔh� ρ0 log
�
1� e

nΔh
ρ

tR
t
�
: �10�

In this regime, the motion of U increases the stress on H
inducing further slips of the block H, that is, the after-

shocks. This occurs if kρ0 log�1� e
nΔh
ρ

tR
tAS� � δFh, namely

EQ-TARGET;temp:intralink-;df11;313;548tAS � tR

e
nΔh
ρ

�
e
δFh
kρ0 − 1

�
with tAS ≪ tR: �11�

• Interseismic Regime: At t > tR, the motion of the block U
is dominated by the creeping velocity V0. In this regime,
one can assume �e t

tR − 1�≃ e
t
tR and neglect the one in the

logarithm of equation (10). We obtain that the block U
slides at the steady velocity Vc � k0

k�k0
V0:

EQ-TARGET;temp:intralink-;df12;313;434u�t� � Vct� const: �12�

Statistics of Slip Events: Analytical Results

In the following, we explore the statistical features of the
evolution of a single fault represented by the block H which,
because of the coupling with the block U, can experience
multiple slip events. The statistics of the single fault is
expected to be representative of the statistics of a population
of faults with random initial stress conditions.

The block H exhibits a stick-slip dynamics with nontri-
vial temporal correlations for a sufficiently broad distribution
g�f�, which leads to a broad distributed distance to the next
instability. In particular, we indicate with t0 � 0 the time of
the last slip and consider the probability P0�t� of no slip up to
time t. Because u�t� is monotonically increasing with time
(equation 5), P0�t� corresponds to the probability to extract a
friction threshold fth1 larger than k�u�t� − h�t��,
P0�t� �

R∞
k�u�t�−h�t�� g�f�df. In the hypothesis that g�f� does

not present sharp discontinuities, the evolution of the block
H can be described as a time-dependent nonhomogeneous
Poisson process with P0�t� � exp�− R

t
0 λ�t′�dt′�, in which

λ�t� is the seismicity rate, that is, the number of earthquake
for unit time triggered by the mainshock. As a consequence,

λ�t� � − ∂ log�P0�t��∂t leading to
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EQ-TARGET;temp:intralink-;df13;55;733λ�t� � Q�k�u�t� − h�t���k ∂�u�t� − h�t��
∂t �13�

with

EQ-TARGET;temp:intralink-;df14;55;689Q�x� � g�x�R∞
x g�f�df : �14�

Taking into account that h�t� � const, outside the very short
slip regime, we find

EQ-TARGET;temp:intralink-;df15;55;618λ�t� � Q�k�u�t� − h�t���k _u�t�: �15�

Because of the presence of the time-dependent coefficient
Q�k�u�t� − h�t���, equation (15) shows that in our model
the seismic rate λ�t� is not exactly proportional to the stress
rate. However, we argue that in the afterslip regime
Q�k�u − h�� can only depend logarithmically on time and
the proportionality between aftershock and stress rate is,
at first order, satisfied. More precisely, we first focus on three
types of distributions for the friction thresholds: a Gaussian
distribution g�f� � ��

α
π

p
exp�−α�f − f0�2� restricted to posi-

tive f, a power-law distribution g�f� � �β−1�fβ−1
0

�f�f0�β and an expo-

nential distribution g�f� � 1
γ exp�−γf�. In the case of the

exponential distribution, Q�k�u − h�� is exactly a constant,
whereas it displays logarithmic time dependence for the
power law (Q�k�u − h�� ∼ 1=�k�u − h�� ∼ 1= log�t�) and
for the Gaussian distribution (Q�k�u − h�� ∼ k�u − h�∼
log�t�). Therefore, using ∂k�u−h�

∂t � k _u�t� ∼ 1=t in the after-
slip regime (equation 10), we always obtain the Omori
hyperbolic decay λ�t� ∼ _u ∼ 1=t, with possible logarithmic
corrections coming from Q�t�. An important exception to
this behavior is represented by the distributions with an
upper cutoff fmax. In this case, one can easily derive (e.g.,
by considering the uniform distribution �0; fmax�) that
Q�k�u − h�� ∝ 1=�fmax − k�u�t� − h�t���, which can
diverge at finite time. Our results then shows that the key
ingredients for the Omori law are represented by hetero-
geneities in the frictional stress values combined with the
logarithmic stress relaxation induced by the velocity-
strengthening rheology. This behavior is very general pro-
vided that the maximal values of the frictional stress are large
compared to the increase of the stress that can be experienced
during the afterslip phase.

The presence of frictional heterogeneities also produces
a nontrivial slip-size distribution p�n�, which corresponds to
the probability that the fault H performs a slip of size nΔh.
Assuming a small stress drop k�1 − q�Δh and the independ-
ence between subsequent jumps, we can use the mapping to a
record problem. More precisely, we neglect the stress change
after each slip assuming k�u�t� − h�t�� − k�1 − q�Δh≃
k�u�t0� − h�t0��, and calculate p�n� as the probability to
draw n� 1 independent and identically distributed random
variables fth0 ; f

th
1 ;…; fthn , such that fthj < fth0 for j∈�1; n − 1�

and fthn > fth0 . In this case, we find p�n� ∝ 1=�n2 � n� for
any probability density function g�f0� and independently of
its domain �fmin; fmax� (here we assumed fmin ≥ 0 and

fmax � ∞). To show it, we remark p�n� � R fmax
fmin

df0g�f0�
�P<�f0��n−1 × P>�f0�, in which P<�f0� �

R f0
fmin

df′g�f′�
is the probability to draw a threshold smaller than f0
and, similarly, P>�f0� � 1 − P<�f0�, which gives g�f0�
� dP<�f0�

df0
. As a consequence, p�n� � R fmax

fmin
df0

dP<�f0��
df

��P<�f0��n−1 − �P<�f0��n� � 1
n −

1
n�1

. For sufficiently large
n, we obtain the power-law behavior p�n� ∼ n−η with η � 2.
This is in qualitative agreement with the Gutenberg–Richter
(GR) law for the magnitude distribution. Indeed, taking into
account that the size of a slip nΔh is proportional to the seis-
mic moment released during a slip instability, the GR law
combined with the logarithmic relation between magnitude
and seismic moment corresponds to a power-law behavior
p�n� ∼ n−η with η � 1� �2=3�b, in which b≃ 1 is the coef-
ficient of the GR law.

Numerical Results

In numerical simulations, the blockH is at rest at time t0.
We consider k�u�t0� − h�t0�� < fth and u�t� evolving accord-
ing to equation (12) which corresponds to the interseismic
regime. The evolution of the blockU increases the shear stress
τh�t� and the first slip occurs at the time t0 � tM with

EQ-TARGET;temp:intralink-;df16;313;410tM � 1

kVc
δFh � tR

δFh

kρ0
�16�

obtained by the inversion of equation (12). The block H, then
performs n subsequent slips before reaching the stable condi-
tion τ�n�h < fthn , which corresponds to an earthquake of size
nΔh occurred at the time t0 � tM. The subsequent slip will
occur at a time t0 � tM � δt, in which δt is the minimum
between tAS and tM given by equations (11) and (16), respec-
tively. If δt � tAS, the new slip is correlated to the first one and
they are considered belonging to the same seismic sequence.
The process is iterated and therefore the sequence can contain
many correlated earthquakes. A new sequence starts as soon
as δt � tM. In numerical simulations, we fix the value Δh �
10ρ to have a clear time separation between tAS and tM (equa-
tions 11 and 16) and vary the only the g-related parame-
ters α; β; γ; f0.

A typical numerical sequence is plotted in Figure 2a,
where each point corresponds to an event with occurrence
time t and size nΔh. The presence of correlated sequences,
that is, the clusters, is manifest. In the majority of cases
(more than 70%), the first event of the cluster is also the larg-
est event belonging to the same sequence (Fig. 2c). In the
remaining sequences, the largest event, the mainshock, is
anticipated by few smaller events, the foreshocks (Fig. 2b).

In equation (11), we define aftershocks as those events
following the first event of the sequence. In the following, we
adopt the more standard definition as those events following
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the mainshock. Because the number of foreshocks is always
much smaller than the aftershock one, statistical features of
aftershocks do not depend on the specific definition. Figure 3
shows the rate of aftershocks λ�t� as a function of time since
the mainshock, which is in good agreement with the hyper-
bolic time decay predicted by the Omori law, for any distri-
bution g�f� and for different choices of parameters.

In Figure 4, we plot the slip-size distribution p�n� in the
synthetic catalog. Results of numerical simulations (Fig. 4)
show that for all choices of the distribution g�f� and for differ-
ent values of parameters, p�n� exhibits a power-law decay. We
find the exponent η≃ 2 for the Gaussian and exponential
g�f�. Very interestingly, for a power-law-distributed g�f� and
for a wide range of β-values (β∈�3; 8�), we find η∈�1:6; 1:7�
corresponding to a b-value close to 1, which is in quantitative
agreement with the GR law of instrumental catalogs.

Conclusions

We presented a minimal model for a seismic fault
described as a system of two elastically interconnected
blocks, with a block representing the fault plane being sub-
ject to a random frictional force as opposed to another block
having a velocity-strengthening rheology. The evolution of
the model presents the typical stick-slip behavior of real fault
systems with mainshocks followed by aftershocks distrib-
uted in time according to the Omori law. Furthermore, the
model reproduces the GR with a realistic b-value when the

friction distribution g�f� is a power law. This supports
the hypothesis of power-law-distributed Coulomb stress
thresholds in agreement with other indications of the self-
similar nature of seismic occurrence (Scholz, 2002).

The main difference with previous results is the presence
of randomness in the frictional thresholds. This makes the
distance to the failure in our model always broadly distrib-
uted and allows us to avoid any assumption on the prestress
distribution. In our study, indeed, the stress conditions before
each slip instability originate from the previous stage of
earthquake occurrence. This is a novel result with respect
to other scenarios where the Omori decay is obtained only
starting from a population of fault patches in which pres-
tresses are uniformly distributed. Assuming the CFC, for
instance, the number of faults, which slips in the time interval
Δt, is that with k�u�0� − h�0��∈�fth − _τ�0�Δt; fth� and is
proportional to the stress rate _τ�0� for a uniformly distributed
fth − k�u�0� − h�0��. In particular, under stationary condi-
tions _τ�t� � const this hypothesis gives a steady seismicity
rate, whereas the Omori decay is obtained when the stress on
the fault increases because of the afterslip relaxation
(Perfettini et al., 2005, 2018; Perfettini and Avouac, 2007).
In an alternative interpretation (Dieterich, 1994), still assum-
ing that prestresses are uniformly distributed, aftershocks are
produced by the response of a population of rate-weakening
patches to a coseismic stress change. In the presence of a
rate-weakening friction, indeed, the relationship between
λ�t� and _u�t� is no further linear (Helmstetter and Shaw,
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Figure 2. (a) A typical numerical catalog with a power-law-distributed g�f� with, β � 5, f0 � 10, and Δh=ρ � 10. (b) Zoom inside the
temporal regions inside the dotted rectangle to show the mainshock–aftershock sequences with two foreshocks. Time has been shifted to have
the first event of the sequence at the time t � 10−4ts. The mainshock is indicated by a filled symbol. (c) As for (b) for the region inside the
dashed rectangle, corresponding to a sequence without foreshocks. The color version of this figure is available only in the electronic edition.
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τ∈�1:6; 1:7� for the power law g�f�, and τ≃ 2 for the two other choices of the distribution. The color version of this figure is available only in
the electronic edition.
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2006) and λ�t� decays consistently with the Omori law in
response to a stress drop. Savage (2010) has shown that the
combination of this relationship, which holds for a velocity-
weakening fault (Dieterich, 1994), with the hypothesis that
the driving stress is generated by the afterslip evolution
(Perfettini and Avouac, 2004) leads to an improved descrip-
tion of postseismic relaxation. A rate-weakening description
of the fault block H can be incorporated in our two-block
model instead of the more simple CFC. In our approach,
we do not include a rate-weakening description of the block
H and keep the more simple CFC because it allows us to
perform analytical calculations, and at the same time, makes
numerical simulations much more simple. Nevertheless,
because of heterogeneities in the frictional thresholds and
because slip instabilities occur on the instantaneous time-
scale ts, details of the friction law acting on the H block
are not expected to be relevant. The main effects of the fric-
tion laws should reflect in changes of the fault slip Δh,
which, however, is not a relevant parameter of our model.
Indeed, no significant differences are observed in numerical
simulations, in which Δh is not constant but is randomly
extracted from a Gaussian distribution.

The comparison with instrumental aftershock sequences
would be the subsequent step to support our main conclu-
sions. A further aspect, not investigated in this short note,
concerns the understanding of the mechanism leading to the
presence of small earthquakes, that is, the foreshocks, which
in our numerical simulations anticipate the occurrence of
large earthquakes. This could provide new insights on the
outstanding question of the nature of foreshocks (de
Arcangelis et al., 2016; Lippiello et al., 2017). As a further
step, the two-block model can be natural generalized to the
many-block Burridge–Knopoff (BK) model (Burrige and
Knopoff, 1967) coupled with a velocity-strengthening
region. Recent studies (Jagla, 2010; Jagla and Kolton, 2010;
Jagla et al., 2014; Lippiello et al., 2015; de Arcangelis et al.,
2016; Landes and Lippiello, 2016) have shown that, intro-
ducing an intermediate timescale for relaxation in a cellular
automata version of the BK model, one recovers statistical
features of instrumental catalogs such as the Omori law
and the GR law with a realistic b-value. Our results represent
a justification for this class of models and provide insights in
the mechanisms leading to realistic aftershock features.
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No data were used in this short note.
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