_2+QM+BHBM; S* +iB+2 M/ B:Qm > BM PMi

>2i2°Q:2M2Qmb AM7Q K iBQM avbi2Kb *Q1

* "K2Zm2 -s pB2 6" M+?-* BbiBM S HQK "2b- M/ 2

62H72 MB;- . pB/2 6m++B-q HB/J H2D-C2MMB72" L:
:Qii7 B2/ a+?2MM2 - 2i HX

hQ +Bi2 i?Bb p2° bBQM,

* K2 Zm2'-s pB2° 6° M+?- *"BbiBM S HQK "2b- M/°2 b6 HFM2 - H2t
QM+BHBM; S* +iB+2 M/ _B;Qm BM PMiQHQ;v@" b2/ >2i2°Q;2M2Qmb
RRi? A6GAS gQ FBM; *QM72 2M+2 QM h?2 S* +iB+2 Q7 1Mi2 T 'Bb2 JQ/2
mbi B X TTXky8@kky- RyXRyydfNd3@j@yjy@ykjyk@dnRj X ? H@YkKR

> G A/, ? H@YykR8e989
?2i1iTbh,ff? HXBM B X7 f? H@ykR8e989
am#KBii2/ QM R9 CmM kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

.Bbi'B#mi2/ mM/2 * 2 iBpR *EMOKIBRM% 9Xy AMi2 M iBQM H GB+2M

https://hal.inria.fr/hal-02156454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reconciling Practice and Rigour in Ontology-based
Heterogeneous Information Systems Construction

Carme Qugf°000-0002-9000-6371]y ayjiar FrancHC000-0001-9733-88300 risting Palomard§™
0003-4722-55841 Andreas Falknér Alexander Felfernfy’0%0-0003-0108-31461n ayjide Fucdj
Walid Maalef, Jennifer Nerlich Mikko Raatikainef{?000-0002-2410-0722 G tfried
Schennet Martin Stettinget, Juha Tiihoneh

Universitat Politécnica de Catalunya (UPC), Barcelona, Spain
{cquer, franch, cpalomares}@essi.upc.edu
2Siemens AG OsterreicNjienna, Austria
{andreas.a.falkner,gottfried.schenner}@siemens.com
3Graz University of Technology, Graz, Austria
{felfernig,stettinger}@ist.tugraz.at
4 University of Hamburg/HITeC
{fucci,maalej}@informatik.uni-hamburg.de
®Vogella GmbH
jennifer.nerlich@vogella.com
SUniversity of Helsinki
{mikko.raatikainen,juha.tihonen}@helsinki.fi

Abstract. Ontology integration addresses throblem of reconciling into one
single semantic framework different kniedge chunks defined according to its
own ontology. This field has been sulije¢ analysis and many consolidated
theoretical results are available. Still, in practice, ontology integration is diffi-
cult in heterogeneous information system#SjHhat need to integrate assets al-
ready built and running which cannot be ped. Furthermore, in practice, the
composed assets are usually not reddifined according to an ontology but to a
data model which is less rigorous but fior the purpose of defining a data
schema. In this paper, we propose ahoe for integrating assets participating
in a HIS using a domain ontology, aimatdfinding an optimal balance between
semantic rigour and feasibility in terms of adoption in a real-world setting. The
method proposes the use of data modedsrileing the semantics of existing as-
sets; their analysis in order to fisdmmonalities and misalignments; the defi-
nition of the domain ontology, considegi also other sourcess standards, to
express the main concepts in the HiSnain; the connection of the local mod-
els with this domain ontology; and its abstraction into a metamodel to facilitate
further extensions. The method is ancomte of a collaborative software de-
velopment project, OpenReq, aimedativering an ontology for requirements
engineering (RE) designed to serve aseline for the data model of an open
platform offering methods and technéguto the RE community. The construc-
tion process of this ontology will hesed to illustrate the method.

Keywords: ontology integration; heterogemgs information systems; domain
ontology; requirements engineering ontology.

1 Introduction

Modern information systems are rarely moéithic, but instead they are heterogene-
ous, composed of different subsystems that altogether provide the required functional-
ity. Quite often, these subsystems followithown rules and manage their own data
schemas, which need to fit together at défe levels, from conceptual (e.g., to pro-
vide a consolidated vocabulary) to operatil (e.g., to allow their interoperability).
This is especially true in collaborativeftseare development projects, where different
organizations bring some existing assets that need to be combined into a holistic sys-
tem.

The reconciliation of the different data schemas can be implemented through on-
tology integration. An ontology definem explicit specification of a conceptualiza-
tion [1]. Ontologies are tightly related to other conceptual modelling artifacts as mod-
elling languages and metamodels [2]. Ontology-based data model integration address-
es the problem of building a new ontology for heterogeneous information systems
(HIS) composed of subsystems that need to interoperate [3]. Methods for ontology
integration have been proposed for more than 20 years (see Section 2), but integration
in real settings remains a challenging problem due to several reasons. Among them,
there is the need to find an adequate trade-off between rigour in the integration and
feasibility in terms of return on investment for the organizations involved.

The need for such practical method beeamident during th OpenReq collabora-
tive software development project in which the authors are participating
(www.openreg.eu). The main goal of OpenReq is to develop, evaluate, and transfer
highly innovative methods, algorithms, and tools for community-driven RE in large
and distributed software-intensive project® this end, four universities and five
companies from Europe collaborate in the deployment of a platform providing ser-
vices to the community. The platform will be built upon a data schema derived from a
domain ontology for RE which should reconcile a global perspective to satisfy the
requests of the community and a local peddive to integratehe current assets,
techniques and needs from all the project partners. The purpose of the ontology is thus
supporting the development and integration of techniques while serving as a reference
framework for the community.

In this context, the present workdrdsses the following research goal:

Research Goal.To propose a method based on domain ontologies to integrate the
data models of assets participating iHI& with optimal trade-off of semantic rig-
our and feasibility in terms of implementation effort and adoption in a real setting.

The rest of the paper is organized a#ofes. Section 2 provides the background.
Section 3 presents the context of our research. Section 4 shows the method proposed
to construct the domain ontology applied in the OpenReq case, which is developed in
details in sections 5 to 10. Finally, Section 11 conducts some discussion and identifies
future work.

2 Background

The application of ontology integration in the context of HIS was claimed by Sowa
[4], who also identified two possible wai proceed: replace the original ontologies

by the new one, or use the new one asarmediary between the HIS. This second
option seems more appropriate when integrating models with little room for changes,
as it is the case for the context thet are addressing in this paper.

Calvanese et al. [5] formally defined the semantics of integration in this scenario. It
is characterised by a mapping betweenrtiw ontology (called global ontology) and
local ontologies (which are used as atsigrpoint for the integration). This mapping
can be defined adopting either a global-derdpproach or a tal-centric approach.

In the global-centric approach, every term in the global ontology has associated a
view (i.e., a query) over the local ontologiesile in the local-centric approach every
term in a local ontology is mapped onto a view over the global ontology.

In our work, we follow this idea reviewedsal in De Giacomo et al. [6]. In this
kind of integration the ontology is a formal and conceptual view and constitutes the
component to which the clients of the integrated information systems use to interact
with them. In our case, we consider also as clients the own information systems inte-
grated that use the ontology to interact with the rest of the system. Thus, the ontology
provides the semantic data integration of the heterogeneous information systems.

3 The Context: The OpenReq Project

The OpenReq collaborative development project will support (see Fig. 1): a) the au-
tomated identification of requirements from different knowledge sources (e.g., com-
munities or natural language text documents); b) the personal recommendation of
requirements as well as requirent-related aspects (such as quality tips or requirement
metadata fields) and stakeholders; 3) the support of group decision making (e.g., in
release planning) by providing a solution that fulfills all users preferences or indicates
the conflicts that need to be solved to provide a solution; 4) the automated identification
of (hidden) dependencies between requirements. OpenReq will provide an open source
tool and a set of APIs that will integrdteese innovative technologies applied to RE.

OpenReq is a classic example of a colfakive software development project that
needs to address contradicting challenges for producing a HIS, as defined in the intro-
duction:

€ Different partners bring to the project their own assets in the form of implemented
software components. The partners developed these components for their own pur-
poses and they do not want to change their data model and (underlying) ontology.

€ These assets need to be reconciled bedhesproject aims alelivering a single,
unifying platform. Furthermore, given that the platform shall be open to the RE
community, it is utterly important that the resulting domain model is cohesive and
general-enough.

OPENREQ Platform e
Intelligence Recommender Group Decision Dependency
Engine Engine Engine Engine OPENREQ
Cloud
Interactive Recommender Preference Conflict Services
Visualization Algorithms Consensus Finder Resolver R n
Analytics = - Dependency ¢y
- OPENREQ
Backend Glossary & Index Stakeholder profiles Extractor
Interfaces
Requirements Knowledge Infrastructure DOORS
XIJIRA
P Bugzilla

Fig. 1. The OpenReq approach to RE.

4 The Method

In this section, we briefly present the method proposed for ontology-based integration
in the context stated abovemerging from our experience in the OpenReq project.
The method is composed of five steps (see Fig. 2) briefly enumerated below and de-
veloped in detail in the next sections.

€ Step I Creation of the BaselineDbtain (if they do not exist yet) the local data
model of each of the existing assets to be reconciled.

€ Step II: Analysis of the Baselind.ocal data models are aligned to understand
which are the core concepts and idenpidgsible contradictions and variants.

€ Step lll: Definition of the Domain Ontologyrrom the previous analysis and con-
sidering conveniently standards and other reference models for the domain, the
domain ontology is defined around the cooecepts, integrating the different vari-
ants and solving all detected contradictions.

€ Step IV: Mapping among the Local Data Models and the Domain Ontolbgy
order to support the semantic alignment of the existing assets, the mapping among
the local data models and the domain ontology is defined.

€ Step V: Definition of the MetamodeWith the purpose to better structure the do-
main ontology and to support easier maintainability, a metamodel is built abstract-
ing the concepts appearing in the domain ontology.

5 Step I: Creation of the Baseline

In this first step, the goal is to represent in the same modelling paradigm the ontolo-
gies that the different partners participating in a collaborative development project are
currently using as semantic framework for their assets. This way, we avoid two of the

main types of ontology mismatches that could have make the integration process
harder: paradigm heterogeneity and language heterogeneity [7].

|. Baseline
< creation
Local
Data
Models '« | Il.Baseline | -
analysis

Information
Assets

s+
r

/,

3;\{,

Local
Data
Models
Aligned

Domain

Body of = 1ll. Domain
Knowledge | , ontology
(standards..) ;f' definition

..,
" IV. Ontology Ml.o;a II
Domain .y | Mapping > Map‘;i:gsm
Ontology definition DA
I — Ontology
T | V. Meta- E
= model
definition
Domain
Ontology
Metamodel

Fig. 2. The OpenReq approach to the definition of a domain ontology for RE.

6 Step I: Creation of the Baseline

In this first step, the goal is to represent in the same modelling paradigm the ontolo-
gies that the different partners participating in a collaborative development project are
currently using as semantic framework for their assets. This way, we avoid two of the
main types of ontology mismatches that could have make the integration process
harder: paradigm heterogeneity and language heterogeneity [7].

As already stated, it will not be usual to have fully-fledged ontologies defining the
assets to be integrated into the HIS. Therefore, we propose to use data models to de-
scribe such assets, as simplified representation of the (underlying) ontologies. More
precisely, we propose UML class diagraphss a vocabulary of terms for each input
model, since the idea is to use UML for the domain ontology representation. The use
of UML class diagrams in ontology representation is quite usual and well-established
[8] and has two advantages. On the one hand, class diagrams for the assets may al-
ready exist or otherwise, déff are easy to build from a database schema, which is a
technical artefact that can be assume@xst. On the other hand, class diagrams

(particularly, in UML) are a widespread ntiban that usually will not require any kind

of training. Working withUML instead of other moraccurate formalisms has one
drawback, namely the limitations in reasoning capabilities. If such capabilities were
required, we could still apply this same method, using other ontology representation
language, e.g., based on Description Logics.

The OpenReq caseln OpenReq, the baseline is composed of five local data models
(and associated vocabulary) that we tdgrhereafter with the acronym of the part-
ner:

€ The UPC data model. Quite general, it is a subpart of the PABRE system concep-
tual model for requirements reuse [9].

€ The TUGRAZ data model. In addition smme general-purpose concepts for re-
quirements, this model also includes concepts related to release planning (i.e., dis-
tributing the requirements into releases).

€ The HITEC data model. It is based on the concept of user feedback (as source of
requirements), expressed as comments anmuggain an app stores [10] and social
media [11], but also as usage data obtained, for example, from handheld devices.

€ The SIEMENS data model. This modekjzecific for requests for proposal (RFPSs)
in an industrial context such as rail automation.

€ The VOGELLA data model. It comprisesryefew classes that correspond to the
Bugzilla system used by the Eclipse project to maintain issues.

In all the cases, the partners represented such data models with UML class diagrams,
which were leveraged in this first step by means of a vocabulary including all the
relevant concepts introduced in the diagram. For the sake of illustration, just to under-
stand the big diversity that we may find irtkicollaborative development projects, Fig.

3 shows the class diagrams of two partners, UPC and VOGELLA.

Requirement 1 Project Aftachment Bug
* rojec
Source 1 ! attachmentid: long ougld: long
crealedTimestamp: String ‘CJF:SSS;':;?OH' Sting
- lasiChangedTimestamp: String et
- description: String {7 product String
A * filename: String * component String
)) type: String reporter: String
Issue size: String lassignedTo: String
— aftacher. String creationTimestamp: String
Participation e isObsolete: boolean lastChangedTimestamp: String
o isPatch: boolean jrersion: String
v rep rm: String
H m: String
Social Media 1. Comment status: String
. 1 - resolution: String
Dependency User icommentld: long . lpriority. String
icommentCount: int 1 f:r:;gngmsr:cng
: i i
lauthor: String roles: Int
File publishTimestamp: String lccList: Set
. 1.* additionalLinks: Set
dependsOn: Set
Property |+ p.1| Rating blocks: Set
- comments: List
attachments: List

Fig. 3. Fig. 3 Class @igrams included in the basei UPC (up) and VOGELLA (down)
(UPC data model does not includ&ributes due to space reasons).

1 We refer to authors’ affations in the first page

7 Step II: Analysis of the Baseline

The main purpose of this step is to gsal the local models and vocabularies that
compose the baseline for their later alignméma collaborative software project, we
may expect different interests from all the partners, different contexts, scopes, etc. In
addition, every domain may have its own additional challenges, e.g. heterogeneity of
data sources. Therefore, it is utterly important to profoundly understand this variety to
find alignments, overlapping, contradictions and differences, i.e., data heterogeneity.

In general, we may expect several daterogeneity causes to emerge [12]: sche-
matic (e.g., same concept with a differeaine), semantic (e.g., same name for dif-
ferent concepts) and intensional (efgndamental differences in the domain).

The OpenReq caseln OpenReq, the central concept around which all models re-
volve is that of requirement. This contép represented explicitly in three models,
and remarkably in two of them (UPC and TUGRAZ) its notion is quite similar. How-
ever, since the attributes are slightly diéfiet, it cannot be said that the concept is
exactly the same. In the third case (i®IEMENS) the concept of requirement is
explicitly defined in the ontology, but in fact it is wider: in addition to requirements,
pieces of text that are candidate to becoeggiirements, and pieces of text that have
been assessed and finally discarded as reqeirts, also are incled in this concept.
In the other models, the requirement concept as such does not exist. Instead, two re-
lated concepts appear, namely bug (VOGELLA) and users’ feedback (HITEC). Both
concepts are a potential source of requirements. Fig. 4 summarizes these classes.

For the sake of illustration, Table 1 exemplifies the main causes of data heteroge-
neity at the level of attributes for theqrérement concept coitkering three of the
local data models. Note that it may be the case that more than one heterogeneity cause
occurs for a given attribute. An extended version of this table including all the models
and all the causes could be coesét] the outcome of this step.

Table 1. Examples of the main causes of data hetereiggeat the level of attributes in three of
the local data models with respect to the notion of requirement.

SIEMENS TUGRAZ UPC | Data heterogeneity

id: long - ID: Semantic : different scale for the same attribute
Integer Intensional : attribute is not considered in all the models
text Text description: Description: | Schematic : different data type and name for the same |
String String attribute
type: {DEF, Prose, — Intensional : atfribute is not considered in all the mod-
Not Classified} els

— Status: Enum Intensional : atfribute is not considered in all the models

- creationDate: |CreatedAt |Schematic : different name for the same attribute
DateTime DateTime |Intensional : attribute is not considered in all the models
— priority: Float Priority: Schematic : different name for the same attribute
Integer Semantic : different scale for the same attribute
Intensional : atfribute is not considered in all the models

belongs_to_project included_in_release extracted_from_document

1.7 /1__:' *
Requirement Requirement

name: String id: long
description: String toolldentifier: String
creationDate: DateTime — text: Text
priority: Float] heading: Text
status: Enum type: {NotClassified, DEF, Prose}
accessCount: int " level: long

1 1 * position: long 1

depends on > A
has_dimensions has_rates 1

TUGraz assigned_to_domains decomposed_by>

-
Siemens
belongs_to_project comes_from_source
1" N file

*

Requirement
ID: Integer Feedback

Name: String . [ID: Integer

Description: String RawText: String

CreatedAt: DateTime issue Type: enum{Fix,Request}
Priority: Integer Source: enum{Implicit,Explicit}
Feasibility: Integer :Sf_r:Au_tllor

Duration: Float aung: in

Risk: Integer Context: Usage

Cost.' Flogt " CreatedAt: Datetime

- 5 [
. 1 = .

\ |H:lepent!s_om ’

has_properties has_rates proposed_in_post usage

Vogella | H1TEC

Bug

bugld: long

itle: String
lassification: String
product: String
omponent: String

-

has_attachments

ssignedTo: String
creationTimestamp: String
lastChangedTimestamp: String
version: String
reportedPlatform: String
operationSystem: String
status: String
resolution: String

\ priority: String

has_comments [Severity. String
milestone: String
otes: int
ccList: Set
additionalLinks: Set
dependsOn: Set
blocks: Set

comments: List
U PC attachments: List

-

Fig. 4. The concept of requirement and related concepts in the 5 baseline data models.

8 Step llI: Definition of th e Domain Ontology (M1)

In the third step, the analysis made in the previous step is consolidated into a domain
ontology, again considering the needs outlined in Section 3: it is required to satisfy
the needs of the different project particitsa(.e., asset providers), while opening the
space to accommodate new, sometimes uséere evolutionary paths. The domain
ontology will be represented through a UMlas$ diagram plus associated glossary to
define all the classes, attributesd associations appearing therein.

The main task in this process is to solve the heterogeneity causes identified in Step
Il. Schematic causes are the easiest toesohhile intensional causes are the most
difficult and require a strong decision based on the purposes of the domain ontology.
The use of bodies of knowledge pertaining to the domain, e.g. in the form of stand-
ards, can help to make decisions in this process.

The OpenReq casé&rom the analysis above, it is clear thatrbguirement class
is central to the domain ontology. We present in detail the consolidation of this con-
cept from the analysis carried out in Steffdr the rest of th@ntology, due to space
limitations, not all details are reported):

€ The most fundamental intensional heterogeneity is agreeing on the concept of re-
quirement itself. We decided to definguéement according to the IEEE standard
glossary of software engineering terminology [13]: “A condition or capability that
must be met or possessed by a systesystem component to satisfy a contract,
standard, specification, or other formaitgposed document”. This means that all
definitions need to fit this referentialaimework. As an additional advantage, ad-
hering to a well-known standard paves the way for dissemination and evolution.

€ The rest of intensional heterogeneities refer to attributes that are not included in all
the local modelsnjoduloother heterogeneities). The selection of the attributes to
include is based on expert judgement and, in a project of this nature, requires the
consensus from all partners, who evaluaantlin terms of the impact on their as-
sets and their goal for evolution.

€ Similarly, schematic and semantic heterogeneities are solved by expert criteria. In
general, they are not fundamental for the final result.

As for the rest of information conveyed in the domain ontology, requirements are
structured into a hiarchy by means of @&composition ~ association. Two other rela-
tionships, namelyonflict ~ andsynergy , are mentioned in several local data models,
therefore we introduce two associations with the same name.

Since the ultimate concept of OpenReq is the planning of requirements into releases,
we introduce thekelease class. Releases exist in the scoperofects . Require-

ments bound to a release are bound toptingect that defined such release, made
explicit with a derived associatiobglongs-to . TeamMembers are members of ero-

ject in which they participate (i.eRarticipant) playing a given roleTeamMembers

may have requirements assigned.

10

Fig. 5. The OpenReq reference mofl@l requirements engineering.

Last, for practical reasons, vitroduce one abstract claggment . It is the most
generic in the model and encapsulates attributes that are shared by virtually all the
classes: identifier, name, description, creation date, last update date and their source.
Also the associations tomment andAttachment — are related t&lement , to allow for
adding these explanatory elent®ito all type of elements. This generalization serves
to exemplify the need of adding non-graphical integrity constraints to the model, e.g.,
an attachment cannot be attached to another attachment.

Fig. 5 shows the OpenReq domain ontology for requirements engineering. The
domain ontology includes also the vocabulary, not reported due to space limitations.

9 Step IV: Mapping among the Local Data Models and the
Domain Ontology (M1)

As mentioned in Section 2.2, mappings aceatral element in the integration of HIS
through ontologies [5].

The concrete definition of the mapping ultimately depends on the purpose for
building the domain ontology. In some contexts, the ontology has the purpose of me-
diating among the local data models, e.g., interconnecting software components or
data bases, or providing a single accesstpoia distributed data base, in which case

11

an implementation in the form of, for instance, SPARQL queries is required [14]. In
other cases, the domain ontology is conceived as a semantic framework to provide an
intermediate layer to the consumers and providers of a heterogeneous information
system, facilitating the development of services on top of this layer. In this situation, a
more conceptual implementation of the mapping is convenient.

We propose to implement the mapping at the level of the UML class diagrams used
to represent the global ontology and local data models. In particular, we bind concepts
in the local models to the domain ontology through specialization. At the end, all
those concepts in the local data models which are related to the domain ontology will
have their correspondence to the domain ontology, which could eventually be ex-
pressed through OCL expressions if neetiedome cases, they will be subclasses of
a class in the domain ontology, in otheresathere will be necessary to create a new
class in the local data model that will be subclass of the domain ontology. Elements in
the local ontologies not clearly related to the domain will remain independent of the
domain ontology.

The OpenReq caseFor the sake of space, we illustrate this step with two representa-
tive situations. First, we focus on how th&etient local data models connect with the
Requirement class introduced in the domain ontology. Given that the definition of
requirement in the domain ontology has been kept generic enough to accommodate
the semantics of that concept in all the local models, we define a specialization from
the local class (renamed inkx-Requirement , beingxx the name of the partner) to

the domain ontology clas¥he declaration of this specialization implies removing
from xX-Requirement all the attributes and associat®othat are inherited from the
domain ontology, e.g., id, name and text. This way, schematic and semantic heteroge-
neities are automatically fixed. Fig. 6(a) shows the details for one of the OpenReq
cases.

Fig. 6. Mappings with the OpenReq RE domaintology: (a) mapping SIEMENS require-
ments; (b) Mapping HITEC user feedback.

12

Second, there are several concepts in thal ldata models that do not specialize any
class in the domain ontology but are relateat. instance, this is the case of HITEC's
Feedback class. User feedback is not a type of requirement but one possible source of
requirements; therefore, a subclass has leleled to the HITEC ontology that spe-
cializesRequirement and a new associatiafinedFrom so that a requirement may
have its origin after an undetermined numbieieedback instances (see Fig. 6(b)).

10 Step V: Definition of the Metamodel (M2)

Finally, we aim at consolidating the core concepts of the domain ontology into a met-
amodel. This allows a more compact viewlod concepts at hand and support future
evolution and extension of the domain ontology as new business cases and opportuni-
ties arise. Some points worth to remark are:

€ The metamodel shall be such that mostcepts of the doriraontology are in-
stances of metaclasses. However, it majhbecase that somemcepts are not, if
they are not considered in the backbone of the domain ontology. In addition, the
classes introduced as alastr for convenience (in thease of OpenReq, the class
Element , See Section 7) are not intendedbéinstances of any metaclass.

€ The definition of the metamodel can require slight adjustments in the domain on-
tology. The mappings defined in the former step need to be adjusted accordingly.

The OpenReq caseWe consider as starting point a metamodel for requirements
proposed by UH based in the metamodel presented in [15] for the area of variability
modelling. The upper part of Figure 7 shows the metamodel (M2), and the lower part
shows an excerpt of some of its instantiations at the domain ontology (M1).

€ Requirements as introduced in the domain ontology have been assumed to be free
text in natural language. However,vie aim at having a comprehensive frame-
work, it is necessary to allow other formadsagrams, formulae, etc., or even natu-
ral language according to a template or user stories. Therefore, we define in M2 the
RequirementType ~Mmetaclass, which allows the definition of a requirements class in
M1 that instantiates this metaclass forteédarmat of requirements that is neces-
sary. As attribute, apart from theme, thecontents (i.e., the requirement in any
type of notation) is declared asject . In the current domain ontology at M1, just
one class of requirement is needed, and we change the namerefirenent
class intonL-Requirement and adjust the mappings to this name change.

€ In addition to the attributes included in the domain ontology, we consider that in
other contexts there can be other attesudf interest. Therefore, we associde
quirementType to a new metaclasatribute . We relate this metaclass with a
new one AttributeType (note that for simplicity we do not include in Figure 7
the metaclasses correspondingenumerates or setd)lames as identifiers are the
only attributes in these two metaclasses.

13

€ Similarly, we can think that eventually other type of relationships over require-
ments could be stated; therefore, we introduce a metarkg®nshipType
where the name of the relationship (syneapnflict, ...) is declared as attribute.

Fig. 7. The OpenReq metamdder requirements.

On the other hand, we realize that thare two types of classes with respect to
their relationship with Requirements:

€ Classes extending requirements to pdeviicher information. These agemment
and Attachment . Note that they are optional (i.e., a requirement does not need a
comment or attachment to exist). We define a metasl@isnalinformation
to capture this concept.

€ Classes defining elements that describmescontext of the mriirement. These are
Release , Project andTeamMember Note that they may be mandatory (i.e., a re-

quirements needs to be defined in the context of a project) or optional (i.e., a re-
quirement may be temporarily not assigned to any release). We define a metaclass
RelatedConcept to capture these types of elements.

11 Discussion and Future Work

In this paper, we have presented a method to be used in the context of HIS construc-
tion in collaborative development projects. The method follows the principles of on-
tology-based integration balancing several somehow conflicting forces: semantic

14

rigour, practicality in terms of effort, fit for purpose and open adoption. The final
product is a domain ontology with a corresponding metamodel, which also combines
a general-purpose point of view (to serve an unforeseen portfolio of adopters) with a
specific point of view (to satisfy the needs of the project partners).

The method has been used in the OpenReq project to develop a domain ontology
for requirements engineering. The domain ontology and metamodel will be used to
derive the schema for the implementation of OpenReq, i.e., platform and cloud ser-
vices. The mappings among the local datadels and the domain ontology will be
used in the OpenReq interfaces to know how OpenReq concepts should be translated
to local concepts. From a practical point of view, the ontology is being represented
through JSON derived from the metamodel.

A lesson learned from this case study i itthportance of understanding the local
data models to be integrated. The role of glossaries (which are part of the ontologies)
is key, and in fact they need to arrive to the level of defining the attributes. We found
useful to use examples that complement definitions of terms. Even with these glossa-
ries, some misunderstandings appeareddamifications were needed. Thus, it was
needed to ensure continuous and fluent communication among all ontology providers.

As in any other modelling endeavour, modelling was useful not only to produce a
final result but also because the process of modelling uncovered some aspects in the
original models that were subject of imgement, e.g. redundeies or non-optimal
modelling solutions. We fixed these problems before defining the mapping.

The domain ontology obtained through our method should not be seen as a final
product. For instance, we foresee tha @penReq ontology will continue evolving
as the OpenReq project does, including neamehts that did nappear in the local
data models. Candidate concepts at the momertiasdfiers (to allow grouping
requirements by concepts, e.g.c@anize a requirements document) @r@rnal
Elements (such as code or tests cases) to be linked with requirements. Also new con-
cepts may be necessary in local models of partners working on contributing to Open-
Req new functionalities (see Section 3). In all the cases, the changes will be consid-
ered in order to evolve the domain ontology, and if it is necessary the metamodel.

Despite our effort to ensure validity, some threats could impact the results [16]. For
instance, internal validity caerns are covered by the fact that we restrain ourselves
to the retrieved evidence and expert knowledge. As for reducing reliability threats, we
departed from a set of RE data models from different domains (usually with charac-
teristics that are domain-dependent), some of them being already used by the industri-
al partners (i.e., SIEMENS and VOGELLA). Last, concerning external validity, we
have produced a method with the aim to be general, but we need to be aware that it
comes from a single experience in one paldicdomain, therefore further cases are
needed.

Our future work spreads along severakdiions. First, as mentioned above, we
envisage changes in the domain ontology due to evolution in the platform as the pro-
ject progresses and also at the end ofptiogect, as new local ontologies implement-
ing additional functionalities will join the OpenReq platform.

15

Acknowledgments

This work is a result ofhe OpenReq project, which has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant
agreement NG32463.

References

1. Gruber, T.R.: A Translation Appach to Portable Ontologie&Knowledge Acquisition
5(2), 1993.

2. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (me-
ta) modelsFrontiers in Artificial Intelligence and Applicatiorkb5(18), 2007.

3. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., &
Hubner, S.: Ontology-based Integration of Information-A survey of Existing Approaches.
IJCAI-01 workshop: ontologies and information shari2g§01.

4. Sowa, J.F.: Building, Sharing, andMerging Ontologies. Available at
http://users.bestweb.net/~sdmatology/ontoshar.htm, 2001.

5. Calvanese, D., de Giacomo, G., Lenzerini, M.: Ontology of Integration and Integration of
Ontologies. DL Workshop 2001 — CEUR 49.

6. De Giacomo, Giuseppe, et al.: Using ontodsgior semantic data integration. AnCom-
prehensive Guide Through the Italian Bhase Research Over the Last 25 Ye8ming-
er, Cham, 2018. 187-202.

7. Visser, P.R.S., Jones, D.M., B&-Capon, T.J.M., Shave, MRJ: An Analysis of Ontolo-
gy Mismatches; Heterogeneity versus InteroperabiiAl Spring Symposium on Onto-
logical Engineering Stanford University, California, USA, 1997.

8. Cranefield, S., Purvis, M.: UML as @ntology Modelling Language. IJCAI 1999.

9. Franch, X., Palomares, C., Quer, C., Renault, S., de Lazzer, F.: A Metamodel for Software
Requirement Patterns. REFSQ 2010.

10. Gémez, M., Adams, B., Maalej, W., Monperri.,, & Rouvoy, R.: App Store 2.0: From
Crowdsourced Information to ActionabFeedback in Mobile EcosysterntSEE Software
34(2), 2017.

11. Kurtanovii Z., Maalej, M.: Mining User Rationafeom Software Reviews. RE 2017.

12. Goh, C.H.:Representing and Reasoning about Semaddinflicts in Heterogeneous In-
formation SourcesPhD Thesis, MIT, 1996.

13. IEEE Std 610.12-1990 IEEE Standard Glossary of Softrve Engineering Terminology
1990.

14. Schenner, G., Bischof, S., Polleres, A., SteysRallntegrating Distributed Configurations
with RDFS and SPARQL. confwsS 2014.

15. Asikainen, T., Mannist6, T., Soininen. Kumbang: A Domain Ontology for Modelling
Variability in Software Product FamilieAdvanced Engineering Informati24 (1), 2007.

16. Wohlin C, Runeson P, Host M, Bson MC, Regnell B, Wesslen &xperimentation in
Software Engineering: An IntroductioKluwer Academic Publishers Norwell, MA, USA,
2012.

