
Reconciling Practice and Rigour in Ontology-based
Heterogeneous Information Systems Construction

Carme Quer1[0000-0002-9000-6371], Xavier Franch1[0000-0001-9733-8830], Cristina Palomares1[0000-

0003-4722-5584], Andreas Falkner2, Alexander Felfernig3[0000-0003-0108-3146], Davide Fucci4,
Walid Maalej4, Jennifer Nerlich5, Mikko Raatikainen6[0000-0002-2410-0722], Gottfried

Schenner2, Martin Stettinger3, Juha Tiihonen6

1Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{cquer, franch, cpalomares}@essi.upc.edu

2Siemens AG Österreich, Vienna, Austria
{andreas.a.falkner,gottfried.schenner}@siemens.com

3Graz University of Technology, Graz, Austria
{felfernig,stettinger}@ist.tugraz.at

4 University of Hamburg/HITeC
{fucci,maalej}@informatik.uni-hamburg.de

5Vogella GmbH
jennifer.nerlich@vogella.com

6University of Helsinki
{mikko.raatikainen,juha.tiihonen}@helsinki.fi

Abstract. Ontology integration addresses the problem of reconciling into one
single semantic framework different knowledge chunks defined according to its
own ontology. This field has been subject of analysis and many consolidated
theoretical results are available. Still, in practice, ontology integration is diffi-
cult in heterogeneous information systems (HIS) that need to integrate assets al-
ready built and running which cannot be changed. Furthermore, in practice, the
composed assets are usually not really defined according to an ontology but to a
data model which is less rigorous but fit for the purpose of defining a data
schema. In this paper, we propose a method for integrating assets participating
in a HIS using a domain ontology, aimed at finding an optimal balance between
semantic rigour and feasibility in terms of adoption in a real-world setting. The
method proposes the use of data models describing the semantics of existing as-
sets; their analysis in order to find commonalities and misalignments; the defi-
nition of the domain ontology, considering also other sources as standards, to
express the main concepts in the HIS domain; the connection of the local mod-
els with this domain ontology; and its abstraction into a metamodel to facilitate
further extensions. The method is an outcome of a collaborative software de-
velopment project, OpenReq, aimed at delivering an ontology for requirements
engineering (RE) designed to serve as baseline for the data model of an open
platform offering methods and techniques to the RE community. The construc-
tion process of this ontology will be used to illustrate the method.

Keywords: ontology integration; heterogeneous information systems; domain
ontology; requirements engineering ontology.

2

1 Introduction

Modern information systems are rarely monolithic, but instead they are heterogene-
ous, composed of different subsystems that altogether provide the required functional-
ity. Quite often, these subsystems follow their own rules and manage their own data
schemas, which need to fit together at different levels, from conceptual (e.g., to pro-
vide a consolidated vocabulary) to operational (e.g., to allow their interoperability).
This is especially true in collaborative software development projects, where different
organizations bring some existing assets that need to be combined into a holistic sys-
tem.

The reconciliation of the different data schemas can be implemented through on-
tology integration. An ontology defines an explicit specification of a conceptualiza-
tion [1]. Ontologies are tightly related to other conceptual modelling artifacts as mod-
elling languages and metamodels [2]. Ontology-based data model integration address-
es the problem of building a new ontology for heterogeneous information systems
(HIS) composed of subsystems that need to interoperate [3]. Methods for ontology
integration have been proposed for more than 20 years (see Section 2), but integration
in real settings remains a challenging problem due to several reasons. Among them,
there is the need to find an adequate trade-off between rigour in the integration and
feasibility in terms of return on investment for the organizations involved.

The need for such practical method became evident during the OpenReq collabora-
tive software development project in which the authors are participating
(www.openreq.eu). The main goal of OpenReq is to develop, evaluate, and transfer
highly innovative methods, algorithms, and tools for community-driven RE in large
and distributed software-intensive projects. To this end, four universities and five
companies from Europe collaborate in the deployment of a platform providing ser-
vices to the community. The platform will be built upon a data schema derived from a
domain ontology for RE which should reconcile a global perspective to satisfy the
requests of the community and a local perspective to integrate the current assets,
techniques and needs from all the project partners. The purpose of the ontology is thus
supporting the development and integration of techniques while serving as a reference
framework for the community.

In this context, the present work addresses the following research goal:

Research Goal. To propose a method based on domain ontologies to integrate the
data models of assets participating in a HIS with optimal trade-off of semantic rig-
our and feasibility in terms of implementation effort and adoption in a real setting.

The rest of the paper is organized as follows. Section 2 provides the background.
Section 3 presents the context of our research. Section 4 shows the method proposed
to construct the domain ontology applied in the OpenReq case, which is developed in
details in sections 5 to 10. Finally, Section 11 conducts some discussion and identifies
future work.

3

2 Background

The application of ontology integration in the context of HIS was claimed by Sowa
[4], who also identified two possible ways to proceed: replace the original ontologies
by the new one, or use the new one as an intermediary between the HIS. This second
option seems more appropriate when integrating models with little room for changes,
as it is the case for the context that we are addressing in this paper.

Calvanese et al. [5] formally defined the semantics of integration in this scenario. It
is characterised by a mapping between the new ontology (called global ontology) and
local ontologies (which are used as a starting point for the integration). This mapping
can be defined adopting either a global-centric approach or a local-centric approach.
In the global-centric approach, every term in the global ontology has associated a
view (i.e., a query) over the local ontologies, while in the local-centric approach every
term in a local ontology is mapped onto a view over the global ontology.

In our work, we follow this idea reviewed also in De Giacomo et al. [6]. In this
kind of integration the ontology is a formal and conceptual view and constitutes the
component to which the clients of the integrated information systems use to interact
with them. In our case, we consider also as clients the own information systems inte-
grated that use the ontology to interact with the rest of the system. Thus, the ontology
provides the semantic data integration of the heterogeneous information systems.

3 The Context: The OpenReq Project

The OpenReq collaborative development project will support (see Fig. 1): a) the au-
tomated identification of requirements from different knowledge sources (e.g., com-
munities or natural language text documents); b) the personal recommendation of
requirements as well as requirement-related aspects (such as quality tips or requirement
metadata fields) and stakeholders; 3) the support of group decision making (e.g., in
release planning) by providing a solution that fulfills all users preferences or indicates
the conflicts that need to be solved to provide a solution; 4) the automated identification
of (hidden) dependencies between requirements. OpenReq will provide an open source
tool and a set of APIs that will integrate these innovative technologies applied to RE.

OpenReq is a classic example of a collaborative software development project that
needs to address contradicting challenges for producing a HIS, as defined in the intro-
duction:

• Different partners bring to the project their own assets in the form of implemented
software components. The partners developed these components for their own pur-
poses and they do not want to change their data model and (underlying) ontology.

• These assets need to be reconciled because the project aims at delivering a single,
unifying platform. Furthermore, given that the platform shall be open to the RE
community, it is utterly important that the resulting domain model is cohesive and
general-enough.

4

Fig. 1. The OpenReq approach to RE.

4 The Method

In this section, we briefly present the method proposed for ontology-based integration
in the context stated above, emerging from our experience in the OpenReq project.
The method is composed of five steps (see Fig. 2) briefly enumerated below and de-
veloped in detail in the next sections.

• Step I: Creation of the Baseline. Obtain (if they do not exist yet) the local data
model of each of the existing assets to be reconciled.

• Step II: Analysis of the Baseline. Local data models are aligned to understand
which are the core concepts and identify possible contradictions and variants.

• Step III: Definition of the Domain Ontology. From the previous analysis and con-
sidering conveniently standards and other reference models for the domain, the
domain ontology is defined around the core concepts, integrating the different vari-
ants and solving all detected contradictions.

• Step IV: Mapping among the Local Data Models and the Domain Ontology. In
order to support the semantic alignment of the existing assets, the mapping among
the local data models and the domain ontology is defined.

• Step V: Definition of the Metamodel. With the purpose to better structure the do-
main ontology and to support easier maintainability, a metamodel is built abstract-
ing the concepts appearing in the domain ontology.

5 Step I: Creation of the Baseline

In this first step, the goal is to represent in the same modelling paradigm the ontolo-
gies that the different partners participating in a collaborative development project are
currently using as semantic framework for their assets. This way, we avoid two of the

5

main types of ontology mismatches that could have make the integration process
harder: paradigm heterogeneity and language heterogeneity [7].

Fig. 2. The OpenReq approach to the definition of a domain ontology for RE.

6 Step I: Creation of the Baseline

In this first step, the goal is to represent in the same modelling paradigm the ontolo-
gies that the different partners participating in a collaborative development project are
currently using as semantic framework for their assets. This way, we avoid two of the
main types of ontology mismatches that could have make the integration process
harder: paradigm heterogeneity and language heterogeneity [7].

As already stated, it will not be usual to have fully-fledged ontologies defining the
assets to be integrated into the HIS. Therefore, we propose to use data models to de-
scribe such assets, as simplified representation of the (underlying) ontologies. More
precisely, we propose UML class diagrams plus a vocabulary of terms for each input
model, since the idea is to use UML for the domain ontology representation. The use
of UML class diagrams in ontology representation is quite usual and well-established
[8] and has two advantages. On the one hand, class diagrams for the assets may al-
ready exist or otherwise, they are easy to build from a database schema, which is a
technical artefact that can be assumed to exist. On the other hand, class diagrams

6

(particularly, in UML) are a widespread notation that usually will not require any kind
of training. Working with UML instead of other more accurate formalisms has one
drawback, namely the limitations in reasoning capabilities. If such capabilities were
required, we could still apply this same method, using other ontology representation
language, e.g., based on Description Logics.

The OpenReq case. In OpenReq, the baseline is composed of five local data models
(and associated vocabulary) that we identify hereafter with the acronym of the part-
ner1:

• The UPC data model. Quite general, it is a subpart of the PABRE system concep-
tual model for requirements reuse [9].

• The TUGRAZ data model. In addition to some general-purpose concepts for re-
quirements, this model also includes concepts related to release planning (i.e., dis-
tributing the requirements into releases).

• The HITEC data model. It is based on the concept of user feedback (as source of
requirements), expressed as comments and ratings in an app stores [10] and social
media [11], but also as usage data obtained, for example, from handheld devices.

• The SIEMENS data model. This model is specific for requests for proposal (RFPs)
in an industrial context such as rail automation.

• The VOGELLA data model. It comprises very few classes that correspond to the
Bugzilla system used by the Eclipse project to maintain issues.

In all the cases, the partners represented such data models with UML class diagrams,
which were leveraged in this first step by means of a vocabulary including all the
relevant concepts introduced in the diagram. For the sake of illustration, just to under-
stand the big diversity that we may find in such collaborative development projects, Fig.
3 shows the class diagrams of two partners, UPC and VOGELLA.

Fig. 3. Fig. 3 Class diagrams included in the baseline: UPC (up) and VOGELLA (down)
(UPC data model does not include attributes due to space reasons).

1 We refer to authors’ affiliations in the first page

7

7 Step II: Analysis of the Baseline

The main purpose of this step is to analyse the local models and vocabularies that
compose the baseline for their later alignment. In a collaborative software project, we
may expect different interests from all the partners, different contexts, scopes, etc. In
addition, every domain may have its own additional challenges, e.g. heterogeneity of
data sources. Therefore, it is utterly important to profoundly understand this variety to
find alignments, overlapping, contradictions and differences, i.e., data heterogeneity.

In general, we may expect several data heterogeneity causes to emerge [12]: sche-
matic (e.g., same concept with a different name), semantic (e.g., same name for dif-
ferent concepts) and intensional (e.g., fundamental differences in the domain).

The OpenReq case. In OpenReq, the central concept around which all models re-
volve is that of requirement. This concept is represented explicitly in three models,
and remarkably in two of them (UPC and TUGRAZ) its notion is quite similar. How-
ever, since the attributes are slightly different, it cannot be said that the concept is
exactly the same. In the third case (i.e., SIEMENS) the concept of requirement is
explicitly defined in the ontology, but in fact it is wider: in addition to requirements,
pieces of text that are candidate to become requirements, and pieces of text that have
been assessed and finally discarded as requirements, also are included in this concept.
In the other models, the requirement concept as such does not exist. Instead, two re-
lated concepts appear, namely bug (VOGELLA) and users’ feedback (HITEC). Both
concepts are a potential source of requirements. Fig. 4 summarizes these classes.

For the sake of illustration, Table 1 exemplifies the main causes of data heteroge-
neity at the level of attributes for the requirement concept considering three of the
local data models. Note that it may be the case that more than one heterogeneity cause
occurs for a given attribute. An extended version of this table including all the models
and all the causes could be considered the outcome of this step.

Table 1. Examples of the main causes of data heterogeneity at the level of attributes in three of
the local data models with respect to the notion of requirement.

SIEMENS TUGRAZ UPC Data heterogeneity
id: long --- ID:

Integer
Semantic: different scale for the same attribute
Intensional: attribute is not considered in all the models

text: Text description:
String

Description:
String

Schematic: different data type and name for the same
attribute

type: {DEF, Prose,
 Not Classified}

--- --- Intensional: attribute is not considered in all the mod-
els

--- status: Enum --- Intensional: attribute is not considered in all the models
--- creationDate:

DateTime
CreatedAt:
DateTime

Schematic: different name for the same attribute
Intensional: attribute is not considered in all the models

--- priority: Float Priority:
Integer

Schematic: different name for the same attribute
Semantic: different scale for the same attribute
Intensional: attribute is not considered in all the models

8

Fig. 4. The concept of requirement and related concepts in the 5 baseline data models.

9

8 Step III: Definition of the Domain Ontology (M1)

In the third step, the analysis made in the previous step is consolidated into a domain
ontology, again considering the needs outlined in Section 3: it is required to satisfy
the needs of the different project participants (i.e., asset providers), while opening the
space to accommodate new, sometimes unforeseen evolutionary paths. The domain
ontology will be represented through a UML class diagram plus associated glossary to
define all the classes, attributes and associations appearing therein.

The main task in this process is to solve the heterogeneity causes identified in Step
II. Schematic causes are the easiest to solve, while intensional causes are the most
difficult and require a strong decision based on the purposes of the domain ontology.
The use of bodies of knowledge pertaining to the domain, e.g. in the form of stand-
ards, can help to make decisions in this process.

The OpenReq case. From the analysis above, it is clear that the Requirement class
is central to the domain ontology. We present in detail the consolidation of this con-
cept from the analysis carried out in Step II (for the rest of the ontology, due to space
limitations, not all details are reported):

• The most fundamental intensional heterogeneity is agreeing on the concept of re-
quirement itself. We decided to define requirement according to the IEEE standard
glossary of software engineering terminology [13]: “A condition or capability that
must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed document”. This means that all
definitions need to fit this referential framework. As an additional advantage, ad-
hering to a well-known standard paves the way for dissemination and evolution.

• The rest of intensional heterogeneities refer to attributes that are not included in all
the local models (modulo other heterogeneities). The selection of the attributes to
include is based on expert judgement and, in a project of this nature, requires the
consensus from all partners, who evaluate them in terms of the impact on their as-
sets and their goal for evolution.

• Similarly, schematic and semantic heterogeneities are solved by expert criteria. In
general, they are not fundamental for the final result.

As for the rest of information conveyed in the domain ontology, requirements are
structured into a hierarchy by means of a decomposition association. Two other rela-
tionships, namely conflict and synergy, are mentioned in several local data models,
therefore we introduce two associations with the same name.
Since the ultimate concept of OpenReq is the planning of requirements into releases,
we introduce the Release class. Releases exist in the scope of Projects. Require-
ments bound to a release are bound to the project that defined such release, made
explicit with a derived association, belongs-to. TeamMembers are members of a Pro-
ject in which they participate (i.e., Participant) playing a given role. TeamMembers
may have requirements assigned.

10

Fig. 5. The OpenReq reference model for requirements engineering.

Last, for practical reasons, we introduce one abstract class, Element. It is the most
generic in the model and encapsulates attributes that are shared by virtually all the
classes: identifier, name, description, creation date, last update date and their source.
Also the associations to Comment and Attachment are related to Element, to allow for
adding these explanatory elements to all type of elements. This generalization serves
to exemplify the need of adding non-graphical integrity constraints to the model, e.g.,
an attachment cannot be attached to another attachment.

Fig. 5 shows the OpenReq domain ontology for requirements engineering. The
domain ontology includes also the vocabulary, not reported due to space limitations.

9 Step IV: Mapping among the Local Data Models and the
Domain Ontology (M1)

As mentioned in Section 2.2, mappings are a central element in the integration of HIS
through ontologies [5].

The concrete definition of the mapping ultimately depends on the purpose for
building the domain ontology. In some contexts, the ontology has the purpose of me-
diating among the local data models, e.g., interconnecting software components or
data bases, or providing a single access point to a distributed data base, in which case

11

an implementation in the form of, for instance, SPARQL queries is required [14]. In
other cases, the domain ontology is conceived as a semantic framework to provide an
intermediate layer to the consumers and providers of a heterogeneous information
system, facilitating the development of services on top of this layer. In this situation, a
more conceptual implementation of the mapping is convenient.

We propose to implement the mapping at the level of the UML class diagrams used
to represent the global ontology and local data models. In particular, we bind concepts
in the local models to the domain ontology through specialization. At the end, all
those concepts in the local data models which are related to the domain ontology will
have their correspondence to the domain ontology, which could eventually be ex-
pressed through OCL expressions if needed. In some cases, they will be subclasses of
a class in the domain ontology, in other cases there will be necessary to create a new
class in the local data model that will be subclass of the domain ontology. Elements in
the local ontologies not clearly related to the domain will remain independent of the
domain ontology.

The OpenReq case. For the sake of space, we illustrate this step with two representa-
tive situations. First, we focus on how the different local data models connect with the
Requirement class introduced in the domain ontology. Given that the definition of
requirement in the domain ontology has been kept generic enough to accommodate
the semantics of that concept in all the local models, we define a specialization from
the local class (renamed into XX-Requirement, being XX the name of the partner) to
the domain ontology class. The declaration of this specialization implies removing
from XX-Requirement all the attributes and associations that are inherited from the
domain ontology, e.g., id, name and text. This way, schematic and semantic heteroge-
neities are automatically fixed. Fig. 6(a) shows the details for one of the OpenReq
cases.

Fig. 6. Mappings with the OpenReq RE domain ontology: (a) mapping SIEMENS require-
ments; (b) Mapping HITEC user feedback.

12

Second, there are several concepts in the local data models that do not specialize any
class in the domain ontology but are related. For instance, this is the case of HITEC’s
Feedback class. User feedback is not a type of requirement but one possible source of
requirements; therefore, a subclass has been added to the HITEC ontology that spe-
cializes Requirement and a new association definedFrom so that a requirement may
have its origin after an undetermined number of feedback instances (see Fig. 6(b)).

10 Step V: Definition of the Metamodel (M2)

Finally, we aim at consolidating the core concepts of the domain ontology into a met-
amodel. This allows a more compact view of the concepts at hand and support future
evolution and extension of the domain ontology as new business cases and opportuni-
ties arise. Some points worth to remark are:

• The metamodel shall be such that most concepts of the domain ontology are in-
stances of metaclasses. However, it may be the case that some concepts are not, if
they are not considered in the backbone of the domain ontology. In addition, the
classes introduced as abstract for convenience (in the case of OpenReq, the class
Element, see Section 7) are not intended to be instances of any metaclass.

• The definition of the metamodel can require slight adjustments in the domain on-
tology. The mappings defined in the former step need to be adjusted accordingly.

The OpenReq case. We consider as starting point a metamodel for requirements
proposed by UH based in the metamodel presented in [15] for the area of variability
modelling. The upper part of Figure 7 shows the metamodel (M2), and the lower part
shows an excerpt of some of its instantiations at the domain ontology (M1).

• Requirements as introduced in the domain ontology have been assumed to be free
text in natural language. However, if we aim at having a comprehensive frame-
work, it is necessary to allow other formats: diagrams, formulae, etc., or even natu-
ral language according to a template or user stories. Therefore, we define in M2 the
RequirementType metaclass, which allows the definition of a requirements class in
M1 that instantiates this metaclass for each format of requirements that is neces-
sary. As attribute, apart from the name, the contents (i.e., the requirement in any
type of notation) is declared as Object. In the current domain ontology at M1, just
one class of requirement is needed, and we change the name of the Requirement
class into NL-Requirement and adjust the mappings to this name change.

• In addition to the attributes included in the domain ontology, we consider that in
other contexts there can be other attributes of interest. Therefore, we associate Re-
quirementType to a new metaclass, Attribute. We relate this metaclass with a
new one, AttributeType (note that for simplicity we do not include in Figure 7
the metaclasses corresponding to enumerates or sets). Names as identifiers are the
only attributes in these two metaclasses.

13

• Similarly, we can think that eventually other type of relationships over require-
ments could be stated; therefore, we introduce a metaclass RelationshipType
where the name of the relationship (synergy, conflict, …) is declared as attribute.

Fig. 7. The OpenReq metamodel for requirements.

On the other hand, we realize that there are two types of classes with respect to
their relationship with Requirements:

• Classes extending requirements to provide richer information. These are Comment
and Attachment. Note that they are optional (i.e., a requirement does not need a
comment or attachment to exist). We define a metaclass AdditionalInformation
to capture this concept.

• Classes defining elements that describe some context of the requirement. These are
Release, Project and TeamMember. Note that they may be mandatory (i.e., a re-
quirements needs to be defined in the context of a project) or optional (i.e., a re-
quirement may be temporarily not assigned to any release). We define a metaclass
RelatedConcept to capture these types of elements.

11 Discussion and Future Work

In this paper, we have presented a method to be used in the context of HIS construc-
tion in collaborative development projects. The method follows the principles of on-
tology-based integration balancing several somehow conflicting forces: semantic

14

rigour, practicality in terms of effort, fit for purpose and open adoption. The final
product is a domain ontology with a corresponding metamodel, which also combines
a general-purpose point of view (to serve an unforeseen portfolio of adopters) with a
specific point of view (to satisfy the needs of the project partners).

The method has been used in the OpenReq project to develop a domain ontology
for requirements engineering. The domain ontology and metamodel will be used to
derive the schema for the implementation of OpenReq, i.e., platform and cloud ser-
vices. The mappings among the local data models and the domain ontology will be
used in the OpenReq interfaces to know how OpenReq concepts should be translated
to local concepts. From a practical point of view, the ontology is being represented
through JSON derived from the metamodel.

A lesson learned from this case study is the importance of understanding the local
data models to be integrated. The role of glossaries (which are part of the ontologies)
is key, and in fact they need to arrive to the level of defining the attributes. We found
useful to use examples that complement definitions of terms. Even with these glossa-
ries, some misunderstandings appeared and clarifications were needed. Thus, it was
needed to ensure continuous and fluent communication among all ontology providers.

As in any other modelling endeavour, modelling was useful not only to produce a
final result but also because the process of modelling uncovered some aspects in the
original models that were subject of improvement, e.g. redundancies or non-optimal
modelling solutions. We fixed these problems before defining the mapping.

The domain ontology obtained through our method should not be seen as a final
product. For instance, we foresee that the OpenReq ontology will continue evolving
as the OpenReq project does, including new elements that did not appear in the local
data models. Candidate concepts at the moment are Classifiers (to allow grouping
requirements by concepts, e.g. to organize a requirements document) and External
Elements (such as code or tests cases) to be linked with requirements. Also new con-
cepts may be necessary in local models of partners working on contributing to Open-
Req new functionalities (see Section 3). In all the cases, the changes will be consid-
ered in order to evolve the domain ontology, and if it is necessary the metamodel.

Despite our effort to ensure validity, some threats could impact the results [16]. For
instance, internal validity concerns are covered by the fact that we restrain ourselves
to the retrieved evidence and expert knowledge. As for reducing reliability threats, we
departed from a set of RE data models from different domains (usually with charac-
teristics that are domain-dependent), some of them being already used by the industri-
al partners (i.e., SIEMENS and VOGELLA). Last, concerning external validity, we
have produced a method with the aim to be general, but we need to be aware that it
comes from a single experience in one particular domain, therefore further cases are
needed.

Our future work spreads along several directions. First, as mentioned above, we
envisage changes in the domain ontology due to evolution in the platform as the pro-
ject progresses and also at the end of the project, as new local ontologies implement-
ing additional functionalities will join the OpenReq platform.

15

Acknowledgments

This work is a result of the OpenReq project, which has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant
agreement No 732463.

References

1. Gruber, T.R.: A Translation Approach to Portable Ontologies. Knowledge Acquisition
5(2), 1993.

2. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (me-
ta) models. Frontiers in Artificial Intelligence and Applications 155(18), 2007.

3. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., &
Hübner, S.: Ontology-based Integration of Information-A survey of Existing Approaches.
IJCAI-01 workshop: ontologies and information sharing. 2001.

4. Sowa, J.F.: Building, Sharing, and Merging Ontologies. Available at
http://users.bestweb.net/~sowa/ontology/ontoshar.htm, 2001.

5. Calvanese, D., de Giacomo, G., Lenzerini, M.: Ontology of Integration and Integration of
Ontologies. DL Workshop 2001 – CEUR 49.

6. De Giacomo, Giuseppe, et al.: Using ontologies for semantic data integration. In A Com-
prehensive Guide Through the Italian Database Research Over the Last 25 Years. Spring-
er, Cham, 2018. 187-202.

7. Visser, P.R.S., Jones, D.M., Bench-Capon, T.J.M., Shave, M.J.R.: An Analysis of Ontolo-
gy Mismatches; Heterogeneity versus Interoperability. AAAI Spring Symposium on Onto-
logical Engineering, Stanford University, California, USA, 1997.

8. Cranefield, S., Purvis, M.: UML as an Ontology Modelling Language. IJCAI 1999.
9. Franch, X., Palomares, C., Quer, C., Renault, S., de Lazzer, F.: A Metamodel for Software

Requirement Patterns. REFSQ 2010.
10. Gómez, M., Adams, B., Maalej, W., Monperrus, M., & Rouvoy, R.: App Store 2.0: From

Crowdsourced Information to Actionable Feedback in Mobile Ecosystems. IEEE Software,
34(2), 2017.

11. Kurtanović, Z., Maalej, M.: Mining User Rationale from Software Reviews. RE 2017.
12. Goh, C.H.: Representing and Reasoning about Semantic Conflicts in Heterogeneous In-

formation Sources. PhD Thesis, MIT, 1996.
13. IEEE Std 610.12-1990 - IEEE Standard Glossary of Software Engineering Terminology,

1990.
14. Schenner, G., Bischof, S., Polleres, A., Steyskal, S.: Integrating Distributed Configurations

with RDFS and SPARQL. confWS 2014.
15. Asikainen, T., Männistö, T., Soininen. T.: Kumbang: A Domain Ontology for Modelling

Variability in Software Product Families. Advanced Engineering Informatics 21(1), 2007.
16. Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A: Experimentation in

Software Engineering: An Introduction. Kluwer Academic Publishers Norwell, MA, USA,
2012.

