S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, 2013.
DOI : 10.1007/978-0-8176-4948-7

S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Jour. on Scient. Comp, 1998.
DOI : 10.1137/s003614450037906x

R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society. Series B, 1996.
DOI : 10.1111/j.2517-6161.1996.tb02080.x

G. Gasso, A. Rakotomamonjy, and S. Canu, Recovering sparse signals with a certain family of nonconvex penalties and DC programming, IEEE Trans. on Sig. Proc, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439453

R. Gribonval, G. Blanchard, N. Keriven, and Y. Traonmilin, Compressive Statistical Learning with Random Feature Moments, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01544609

I. Barbu and C. Herzet, A new approach for volume reconstruction in tomoPIV with the alternating direction method of multipliers, Measurement Science and Technology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01419329

L. Denis, D. A. Lorenz, and D. Trede, Greedy solution of illposed problems : Error bounds and exact inversion, Inverse Problems, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00430075

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophysical Journal, 2006.

J. A. Tropp, Greed is good : algorithmic results for sparse approximation, IEEE Trans. on Inf. Th, 2004.

C. Soussen, R. Gribonval, J. Idier, and C. Herzet, Joint k-Step Analysis of Orthogonal Matching Pursuit and Orthogonal Least Squares, IEEE Trans. on Inf. Th, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00637003

R. Gribonval and P. Vandergheynst, On the exponential convergence of matching pursuits in quasi-incoherent dictionaries, IEEE Trans. on Inf. Th, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00544945

R. Gribonval and M. Nielsen, Sparse representations in unions of bases, IEEE Trans. on Inf. Th, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00071943

J. Fuchs, On sparse representations in arbitrary redundant bases, IEEE Trans. on Inf. Th, 2004.

J. A. Tropp, Just relax : convex programming methods for identifying sparse signals in noise, IEEE Trans. on Inf. Th, 2006.

C. Ekanadham, D. Tranchina, and E. P. Simoncelli, Recovery of sparse translation-invariant signals with continuous basis pursuit, IEEE Trans. on Sig. Proc, 2011.

E. J. Candès and C. Fernandez-granda, Towards a Mathematical Theory of Super-resolution, Communications on Pure and Applied Mathematics, 2014.

V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution, Found. Comput. Math, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00839635

K. Bredies and H. K. Pikkarainen, Inverse problems in spaces of measures, 2012.

Y. Castro and F. Gamboa, Exact reconstruction using Beurling minimal extrapolation, Jour. of Math. An. and App, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678423

C. Elvira, R. Gribonval, C. Soussen, and C. Herzet, Omp and continuous dictionaries : Is k-step recovery possible ?, ICASSP 2019 -2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5546-5550, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02049486

C. Elvira, R. Gribonval, C. Soussen, and C. Herzet, When does omp achieve support recovery with continuous dictionaries ?, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02099464

M. Merkle, Completely Monotone Functions : A Digest, 2014.

Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies, The Sliding Frank-Wolfe Algorithm and its Application to Super-Resolution Microscopy, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01921604