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ABSTRACT
New emerging fields are developing a growing number of large-

scale applications with heterogeneous, dynamic and data-intensive

requirements that put a high emphasis on productivity and thus are

not tuned to run efficiently on today’s high performance computing

(HPC) systems. Some of these applications, such as neuroscience

workloads and those that use adaptive numerical algorithms, de-

velop modeling and simulation workflows with stochastic execu-

tion times and unpredictable resource requirements. When they are

deployed on current HPC systems using existing resource manage-

ment solutions, it can result in loss of efficiency for the users and

decrease in effective system utilization for the platform providers.

In this paper, we consider the current HPC scheduling model

and describe the challenge it poses for stochastic applications due

to the strict requirement in its job deployment policies. To address

the challenge, we present speculative scheduling techniques that

adapt the resource requirements of a stochastic application on-

the-fly, based on its past execution behavior instead of relying

on estimates given by the user. We focus on improving the overall

system utilization and application response time without disrupting

the current HPC scheduling model or the application development

process. Our solution can operate alongside existing HPC batch

schedulers without interfering with their usage modes. We show

that speculative scheduling can improve the system utilization

and average application response time by 25-30% compared to the

classical HPC approach.

KEYWORDS
Scheduling algorithm, HPC runtime, stochastic applications

ACM Reference Format:
Ana Gainaru, Guillaume Pallez (Aupy), Hongyang Sun, and Padma Ragha-

van. 2019. Speculative Scheduling for Stochastic HPC Applications. In Pro-
ceedings of the 48th International Conference on Parallel Processing (ICPP’19).
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP’19, August 05–08, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION
A growing number of new scientific fields start to emerge that have

heterogeneous, dynamic and data-intensive requirements for the

computing and storage systems of today’s HPC platforms. Some of

these fields focus on productivity but not efficiency, so they produce

codes that have not been optimized or tuned for the HPC hardware

and runtime. As a result, applications from these fields tend to have

stochastic execution times and unpredictable resource requirements.

This is typically the case, for example, in neuroscience applications

[10], but also in some classical HPC applications that use adaptive

numerical algorithms [24]. In addition, recent years have seen a

convergence of HPC/Big Data/Machine Learning models, which

introduce a new set of applications that are stochastic by nature

and are expected to run on large-scale platforms. All of these appli-

cations exhibit unique characteristics that differentiate them from

the traditional scientific HPC applications.

Current HPC batch schedulers are reservation-based, which re-

quire the user to specify the resource requirement of an application

upon submission. Accurate resource estimation is the key to high

performance: while under-estimation can result in a job being killed

before completion, over-estimation may lead to poor resource uti-

lization. Most HPC systems prefer over-estimation and then use

backfilling algorithms to fill up the wasted time with small jobs. On

Intrepid, an HPC system from the Argonne National Laboratory

between 2008 and 2014, the execution times of over 80% of the jobs

submitted were over-estimated by an average of more than one hour.

While scheduling algorithms continue to evolve, current systems

are becoming more complex, offering applications heterogeneous

nodes with non-uniform memory hierarchies, burst buffers, vector-

ization units and unified virtual memory. It is therefore becoming

harder for users to accurately estimate the resource consumption

even for known scientific applications. Today’s systems heavily

rely on backfilling algorithms to hide this inaccuracy in resource

estimation. However, studies have shown that the performance

of backfilling algorithms is also directly related to how well the

execution times of the small jobs can be estimated [9]. Thus, when

running stochastic applications with unpredictable resource needs,

users are forced to find ad-hoc solutions to overcome the resource

estimation requirement of current schedulers in order to utilize the

HPC resources, and this may lead to sub-optimal performance. One

such solution used by the neuroscience community is to request

reservations equal to the maximum execution time of an application

based on the last few runs. Our prior study [10] has shown that,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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using this solution, over 25% of the jobs are killed by the scheduler

for needing more time than requested while the rest create wasted

time in the system of more than 4 hours per day.

In this paper, we present speculative scheduling as an extension to
the classical reservation-based HPC batch schedulers. Specifically,

we use speculation to determine the resource requirements of a

stochastic application based on its past execution behavior. This is

achieved by speculatively overwriting the user requested times of

the application during submissions (including the initial one and all

subsequent resubmissions in case of failures). Since the performance

of backfilling greatly influences the efficiency of an HPC system,

we also investigate speculative backfilling by allowing stochastic

jobs to be backfilled into smaller spaces than their requested times.

These speculative techniques can operate with any existing HPC

scheduler without disrupting its usage mode while achieving better

system utilization and application response time.

The main contributions of this paper are summarized as follows:

• A speculative scheduling algorithm that computes the opti-

mal sequence of requested times for a stochastic application

based on a probability distribution of execution time from

its past behavior as well as an incoming stream of small jobs

that can be explored by the backfilling algorithm.

• A speculative backfilling algorithm that can either be inte-

grated on its own into an HPC scheduler or work together

with our speculative scheduler. The algorithm speculatively

schedules stochastic jobs (based on a cost model) that do

not fit in a given backfilling window based on its original

requested time when there is no available fitting job.

• A runtime framework that combines speculative schedul-

ing/backfilling with current HPC batch schedulers. We im-

plement this framework into a simulator, demonstrating

how speculative techniques can be naturally integrated into

reservation-based scheduling schemes.

• A extensive set of simulations based on both synthetic work-

loads and realistic neuroscience applications. The results

show that speculative scheduling can significantly benefit

stochastic applications in terms of both system-level and

user-level performance metrics under practical HPC sched-

uling scenarios.

The rest of this paper is organized as follows. Section 2 presents

the related work, highlighting an overview of the HPC schedulers

and some stochastic scheduling techniques. Section 3 describes the

models and metrics we use for speculative scheduling. Details and

analyses for the proposed speculative algorithms, either for over-

writing the requested times at submission or at backfilling times, are

presented in Section 4. Section 5 presents the simulation results for

speculative scheduling and backfilling. This section also includes a

simulation based on the characteristics of real neuroscience appli-

cations combined with properties of HPC workloads on Intrepid, a

large-scale system from the Argonne National Laboratory. Finally,

Section 6 provides brief concluding remarks.

2 RELATEDWORK
In this section, we briefly review some related work on the current

scheduling practice in HPC systems, as well as some prior efforts

on coping with stochastic applications.

HPC Schedulers. Reservation-based batch scheduling with pri-

ority queues and backfilling represents the de facto approach in

HPC. It is adopted by many commonly used resource managers,

such as Slurm [27], Torque [18] and Moab [5]. Most of these sched-

uling implementations use an iteration algorithm in order to decide

which jobs to run and on what resources. Due to the use of reser-

vation, there exists a trade-off between the system efficiency and

application performance, and different HPC schedulers employ dif-

ferent priority schemes and backfilling algorithms to deal with this

trade-off while ensuring no job starvation. These reservation-based

schedulers also rely on the users to provide reasonably accurate run-

time for each submitted job. While this works well for applications

with deterministic resource needs, for stochastic jobs with large

variations in the walltime, it will lead to either over-estimation or

under-estimation of the resources, thus degrading system utiliza-

tion and/or application response time [10]. Clusters of commodity

servers that use computing frameworks, such as MapReduce [6]

or Dryad [15], offer alternative solutions to running HPC work-

loads. Schedulers for these frameworks, such as YARN [22] and

Mesos [13], offer several distinct features to the management of the

workloads (such as fairness, resource negotiation), but they gener-

ally also require accurate information regarding the applications’

resource demands.

Stochastic Scheduling. Many prior works have considered sto-

chastic job scheduling under various models and assumptions (see,

e.g., [3, 4, 7, 16, 20, 21, 25]). We refer interested readers to the book

by Pinedo [17] for a comprehensive survey of different stochastic

scheduling problems, and to the book chapter [11] for a comparison

of different stochastic task-resource systems. Most of these works,

however, do not consider the problem under the reservation-based

scheduling context. In our prior works [1, 10], we have proposed

near optimal reservation strategies for a single job without backfill-

ing, and extended it to a set of sequential jobs in a reservation-based

HPC scheduling environment.

In this paper, we study a more realistic scenario in HPC with par-

allel stochastic jobs and backfilling considerations. Our speculative

solutions are not intended to replace the existing batch schedulers,

but to augment them with the possibility to speculate the best re-

source requirements and scheduling options based on the jobs’ past

stochastic behaviors.

3 MODELS AND PERFORMANCE METRICS
In this section, we describe the models and assumptions we make

for scheduling stochastic jobs. We also present the metrics for

evaluating a scheduling algorithm in terms of both system-level

and user-level performance.

3.1 Job Models
We consider scheduling a batch J = {J1, J2, . . . , JM } of large sto-
chastic jobs along with a stream B of small jobs (for backfilling) on
a system with P identical processors.

Each stochastic job Jj ∈ J has a specified processor allocationpj
(i.e., jobs are assumed to be rigid). However, the execution time of

the job is unknown, and is assumed to be randomly and uniformly

sampled from a given probability distribution law Dj , whose den-

sity function (PDF) is fj and cumulative distribution function (CDF)
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is Fj . Note that although a job is stochastic, the execution time of

a particular instance of the job is deterministic, so two consecu-

tive executions of the same instance will have the same duration.

The probability distribution for each job Jj is assumed to be non-

negative, since it models execution times, and is defined on a finite

support [aj ,bj ], where 0 ≤ aj < bj . Hence, the execution time of

job Jj is a random variableX j with P(X j ≤ T ) = Fj (T ) =
∫ T
aj

fj (t)dt .

Our experience with neuroscience workloads [10] shows that this

model is consistent with large-scale stochastic applications.

The stream of small jobs arrives in the system and needs to be

scheduled using backfilling along with the large stochastic jobs. In

practice, small jobs are typically sequential ones with an arrival

rate λ and an average execution time ε much smaller than that of

the large jobs. This can be understood as every 1/λ units of time,

approximately ε additional work is added to the execution queue.

To model these small jobs, we make a continuous approximation:

a stream of work arrives continuously in the queue with a rate

Z = λε . Assuming that all processors have unit speed, the work rate

needs to satisfyZ ≤ P in order not to overflow the queue. Moreover,

this work is fully parallelizable and can be dynamically scheduled

on an arbitrary number of processors. Note that, in the evaluation

(Section 5), we study the impact of this continuous approximation

by simulating discrete small jobs.

3.2 Scheduling Models
Speculative Scheduling for Large Stochastic Jobs. To schedule the

large stochastic jobs, we consider speculative scheduling using the

reservation-based model, which is widely adopted by HPC batch

schedulers. For each job Jj ∈ J , the scheduler makes a reservation

of pj processors with initial duration, say tj ,1, on the platform at

time sj ,1. The job then runs starting from time sj ,1 until either it
has successfully completed or the reservation time has elapsed,

whichever comes first. In the latter case, the job does not complete

successfully and needs to be rescheduled with a longer duration,

say tj ,2 > tj ,1, along with a new starting time sj ,2. If the job still

does not complete successfully, then a third reservation (tj ,3, sj ,3)
needs to be made and so on until the job eventually completes

successfully. Hence, for each large job Jj , the scheduler needs to
make a sequence of speculative reservations:

Sj = ⟨(tj ,1, sj ,1), (tj ,2, sj ,2), . . . , (tj ,i , sj ,i ), . . . ⟩

where tj ,i+1 > tj ,i and sj ,i+1 ≥ sj ,i + tj ,i for all i ≥ 1.

Backfilling for Small Jobs. Unlike large jobs, no reservation is

made for small jobs. Instead, they are scheduled by backfilling the

work stream into the gaps created by the reservations of the large

jobs or on-the-fly while no large job is running (e.g., when all large

jobs have completed).

Scheduling Objective. The objective is to design scheduling strate-
gies, i.e., a sequence Sj of reservations for each large job Jj ∈ J and

execution time for the stream B of small jobs, that optimizes both

system-level and user-level performance as described in Section 3.3.

In addition, a scheduling strategy needs to respect the processor

constraint: at any time, the sum of processors used by all running

jobs should not exceed the total number P of available processors

on the platform.

3.3 Performance Metrics
We consider two metrics to evaluate the performance of a schedul-

ing strategy from both the user level and the system level.

We first define some notations. Given a schedule S for J and B,

let τS (X j ) be a random variable that denotes the successful com-

pletion time of the large job Jj ∈ J , i.e., τS (X j ) = sj ,i + tj ,i for

tj ,i−1 < X j ≤ tj ,i .
1
We further define τS (J) = maxj=1...M τS (X j )

to be the completion time of the last successfully completed large

job. For the small jobs, letCS (t) denote a random variable that indi-

cates the amount of small work completed at time t , andσS (J ,B) =

inf{t |t ≥ τS (J),CS (t) ≥ λεt} another random variable that indi-

cates the first time the small work queue becomes empty after all

the large jobs have completed.

We use the following performance metrics in this paper.

• Expected system utilization: This is a system-level metric that

measures the expected utilization of the system when all the

work has been completed, i.e.,

US = E

(∑M
j=1 X j + λε · σS (J ,B)

P · σS (J ,B)

)
(1)

Note that a failed reservation for a job is considered wasted

and is therefore not counted towards the utilization.

• Expected average job response time: This is a user-level metric

that measures the average response time for all the large

jobs in expectation, i.e.,

CS = E

(∑M
j=1 τS (X j )

M

)
(2)

4 SPECULATIVE SCHEDULING STRATEGIES
In this section, we present speculative scheduling strategies for

large stochastic jobs in the presence of small backfilling jobs. To

that end, we consider amulti-pronged approach, which first finds an

optimal reservation sequence for each stochastic job independently

of the other jobs in the system (Sections 4.1 and 4.2), and then uses

a round-based greedy heuristic that uses the sequences to schedule

all jobs and that relies on speculative backfilling (Section 4.3).

4.1 Optimal Reservation Sequence for a Single
Stochastic Job

We first present a strategy for determining the optimal reservation

sequence of a single stochastic job. The goal is to minimize the

expected cumulative execution time (or makespan) of the job (until

success) in the presence of the backfilling work stream. When only

one large job exists in the system, this is equivalent to the optimal

expected job response time and well approximates the optimal

expected system utilization.

The optimal strategy in this section is derived for a particular

type of execution time distribution: discrete distributions where the

execution time values are equally spaced. The motivation behind

this is: (i) we can easily approximate a continuous distribution with

such a distribution (Section 4.2); (ii) in this context, we can provide

an optimal algorithm for the problem with backfilling (Theorem 2).

1
Here, we make the pessimistic assumption that the job completes at the end of the

reservation period, since in the worst case there will be no small jobs to fill in the gap

created due to over-estimation, thus resulting in waste of resources.
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Definition 1 (Equally-Spaced Discrete Distribution (ESDD)). A

discrete distribution X ∼ (vi , fi = P(X = vi ))0≤i≤n is equally-

spaced if there exists a δ = vn−v0

n such that ∀i ≤ n, we have:

vi = v0 + i · δ

In the following, we will consider a stochastic job with discrete

execution timeX ∼ ESDD(v0, δ ,n, (fi )i ), and design a strategy that

minimizes the expected makespan of the single job.

Note that the possibility to backfill with small jobs in the sys-

tem encourages strategies that slightly over-estimate a reservation

time: Indeed, in case the job is shorter, this over-estimation can be

compensated by the backfilling jobs. Recall that, in Section 3, we

have made the assumption that the arrival of the backfilling jobs

is independent of the status of the system (whether a large job is

running or not) and can be modeled by a stream of work with rate

Z. Here, for fairness, we assume that the stochastic job is responsible
for a fraction of the small jobs that is proportional to its processor

allocation. Hence, suppose the large job is allocated p processors,

then the rate of work that arrives in the queue of the large job is

given by ζ = Z ·
p
P = λε ·

p
P ≤ p.

We start by providing an equation for the expected makespan of

the stochastic job in the presence of backfilling, which we will use

later for the design of an optimal solution.

Theorem1. Consider a stochastic job withX ∼ ESDD(v0, δ ,n, (fi )i ),
a sequence S = (vπ (1), . . . ,vπ ( |S |) = vn ) of reservations, and a back-
filling rate ζ . LetT be a random variable that represents the makespan
of executing X . We have:

E(T ) =

|S |∑
m=1

©«vπ (m) ·

( π ( |S |)∑
ℓ=π (m)+1

fℓ

)
+

xSm∑
ℓ=π (m)+1

vπ (m+1) · fℓ

+
1

1 − ζ

π (m+1)∑
ℓ=xSm+1

vℓ fℓ +
ζ

1 − ζ

m∑
i=1

vπ (i) ·

π (m+1)∑
ℓ=xSm+1

fℓ
ª®¬ (3)

where xSm is the unique integer such that:

vxSm ≤ min

(
vπ (m), (1 − ζ )vπ (m+1) − ζ

m∑
i=1

vπ (i)

)
< vxSm+1

Proof. We consider the case such that vπ (m) < X ≤ vπ (m+1),
and evaluate the backfilling work that is accumulated over the

execution of X : (1) During the actual execution of X (total time of

T1 =
∑m
i=1vπ (i) + X ), we accumulate T2 = ζT1 units of backfilling

work; (2) Then, during the execution ofT2, we accumulate ζT2 units
of backfilling work, etc. After the job is successfully executed, the

total amount of backfilling work is

∑∞
x=1 ζ

xT1 =
ζ

1−ζ T1. Finally, the

total work to execute is
ζ

1−ζ T1 +T1 =
1

1−ζ T1. Hence, the random

variable T is given by:

T = max

(m+1∑
i=1

vπ (i),
1

1 − ζ

( m∑
i=1

vπ (i) + X
))

The first term above is when the remaining time at the end

of the last reservation (i.e., vπ (m+1)) is enough to execute all the

backfilling work accumulated, while the second term is when it is

not. We can further define:

XS
m+1 = min

(
(1 − ζ )vπ (m+1) − ζ

m∑
i=1

vπ (i), vπ (m)

)
(4)

to be the threshold execution time for the job such that themakespan

can be expressed as:

T =

{∑m+1
i=1 vπ (i) if vπ (m) < X ≤ XS

m+1
1

1−ζ

(∑m
i=1vπ (i) + X

)
if XS

m+1 < X ≤ vπ (m+1)
(5)

Let us denote by xSm the unique integer such thatvxSm ≤ XS
m+1 <

vxSm+1. With Eq. (5), we can write the expected makespan with

backfilling as:

E(T ) =

|S |∑
m=1

©«
xSm∑

ℓ=π (m)+1

(m+1∑
i=1

vπ (i)

)
· fℓ

+

π (m+1)∑
ℓ=xSm+1

1

1 − ζ

( m∑
i=1

vπ (i) +vℓ

)
· fℓ

ª®¬
=

|S |∑
m=1

©«
xSm∑

ℓ=π (m)+1

( m∑
i=1

vπ (i) · fℓ +vπ (m+1) · fℓ

)
+

π (m+1)∑
ℓ=xSm+1

( vℓ fℓ
1 − ζ

+

m∑
i=1

vπ (i) · fℓ +
ζ

1 − ζ

m∑
i=1

vπ (i) · fℓ

)ª®¬
Finally, using the following equation:

|S |∑
m=1

©«
xSm∑

ℓ=π (m)+1

( m∑
i=1

vπ (i) · fℓ

)
+

π (m)+1∑
ℓ=xSm+1

( m∑
i=1

vπ (i) · fℓ

)ª®¬
=

|S |∑
m=1

©«
π (m+1)∑

ℓ=π (m)+1

( m∑
i=1

vπ (i) · fℓ

)ª®¬ =
|S |∑
m=1

©«
m∑
i=1

vπ (i) ·
( π (m+1)∑
ℓ=π (m)+1

fℓ

)ª®¬
=

|S |∑
i=1

©«vπ (i) ·
( π ( |S |)∑
ℓ=π (i)+1

fℓ

)ª®¬
we can obtain the result as shown in Eq. (3). □

Note that, when ζ approaches 0, XS
m+1 is very close to vπ (m+1)

and the objective reduces to the case without backfilling [1]. On

the other hand, when ζ is large, XS
m+1 gets close to vπ (m) and the

objective function is reduced to

∑
i

(
vπ (i) ·

∑n
ℓ=π (i)+1 fℓ

)
, which is

minimized when the strategy chooses a single reservation vn .
Generally, we can construct a dynamic programming algorithm

to compute the optimal reservation sequence for the stochastic job

with backfilling.

Theorem2. Consider a stochastic job withX ∼ ESDD(v0, δ ,n, (fi )i )
and a backfilling rate ζ . The minimal expected makespan of the job
is returned by E(0, 0, 0), where:

E(i,m,k) = min

i<i′≤n

(
vi′ ·

x (i ,m,k ,i′)∑
ℓ=i+1

fℓ +
ζ (mv0 + kδ )

1 − ζ

i′∑
ℓ=x (i ,m,k ,i′)+1

fℓ

+
1

1 − ζ

i′∑
ℓ=x (i ,m,k ,i′)+1

fℓvℓ +vi′
n∑

ℓ=i′+1

fℓ + E(i
′,m + 1,k + i ′)

)
(6)
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with x(i,m,k, i ′) = max

(
i,

⌊
i ′ − ζ (i ′ + k) − ζ (m+1)v0

δ

⌋ )
and for all

m,k , we have E(n,m,k) = 0. The complexity of the algorithm is
O(n5).

Proof. We define E(i,m,k) to be the expected execution time of

the job when: (1) There arem reservations (vπ (1),vπ (2), . . . ,vπ (m))

that are smaller than or equal to vi ; (2)
∑m

ℓ=1
vπ (ℓ) =m ·v0 + k · δ ;

and (3) vi = vπ (m) is them-th reservation. Given these constraints,

we look for i ′, the index of the next reservation, that minimizes the

expected makespan.

Note that x(i,m,k, i ′) = max

(
i,

⌊
i ′ − ζ (i ′ + k) − ζ (m+1)v0

δ

⌋ )
is

the index of the threshold value as defined in Eq. (4):

XS
m+1 = (1 − ζ )vi′ − ζ

m∑
ℓ=1

vπ (ℓ)

= v0 + δ

(
i ′ − ζ (i ′ + k) − ζ

(m + 1)v0
δ

)
We define the subequation of Eq. (3) as:

Eπ (i) =

|S |∑
m=i

©«vπ (m) ·

( π ( |S |)∑
ℓ=π (m)+1

fℓ

)
+vπ (m+1) ·

xSm∑
ℓ=π (m)+1

fℓ

+
1

1 − ζ

π (m+1)∑
ℓ=xSm+1

vℓ fℓ +
ζ

1 − ζ

m∑
j=1

vπ (j) ·

π (m+1)∑
ℓ=xSm+1

fℓ
ª®¬

= Eπ (i+1) +
©«vπ (i) ·

( n∑
ℓ=π (i)+1

fℓ

)
+vπ (i+1) ·

xSi∑
ℓ=π (i)+1

fℓ

+
1

1 − ζ

π (i+1)∑
ℓ=xSi +1

vℓ fℓ +
ζ

1 − ζ

i∑
j=1

vπ (j) ·

π (i+1)∑
ℓ=xSi +1

fℓ
ª®®¬ (7)

In addition, we have (by construction):

xSm = x

(
π (m),m,

∑m
ℓ=1

(vπ (ℓ) −v0)

δ
, π (m + 1)

)
.

We can now express E(i,m,k) using the following dynamic pro-

gramming formulation:

E(i,m,k) = min

i<i′≤n

(
vi′ ·

x (i ,m,k ,i′)∑
ℓ=i+1

fℓ +
ζ (mv0 + kδ )

1 − ζ

i′∑
ℓ=x (i ,m,k ,i′)+1

fℓ

+
1

1 − ζ

i′∑
ℓ=x (i ,m,k ,i′)+1

fℓvℓ +vi′
n∑

ℓ=i′+1

fℓ + E(i
′,m + 1,k + i ′)

)
which we initialize with for allm ∈ {1, · · · ,n} and k ∈ {n +m(m −

1)/2, · · · ,m(2n−m+ 1)/2} (the smallest k is when the reservations

are v1,v2, · · · ,vm−1,vn , and the largest is when the reservations

are vn−m+1,vn−m+2, · · · ,vn−1,vn ), and E(n,m,k) = 0.

We can show by decreasing induction that, for allm, we have

Eπ (m) ≥ E(σ (m),m,km ), where km =
∑m
i=1(vπ (i )−v0)

δ . This is true

for π (|S |) = n, i.e., Eπ ( |S |) = 0 = E(n,m,km ). Then for each m,

we can replace the value of Eπ (i+1) in Eq. (7) and minimize for

E(σ (m),m,km ). This proves the optimality of E(0, 0, 0), which is

smaller than the expected makespan of any reservation strategy.

Since there areO(n4) entries in the dynamic programming table,

and computing each entry relies on at most n other entries, the

complexity of the algorithm is O(n5). □

We point out that although the complexity of the above dynamic

programming algorithm is seemingly high, the optimal solution

typically has just a few reservations (m ≤ 5), which limits the

complexity inm and k so that the total complexity isO(n3). Further,
When used in conjunction with the discretization scheme of a

continuous distribution (Section 4.2), it converges quite fast (with

n < 30) for the distributions we studied. Hence, the algorithm can be

used in practice to efficiently approximate the optimal reservation

sequence of a continuous distribution.

For the remainder of the paper, we will refer to the above algo-

rithm as Time Optimal (or TOptimal) when we use E(0, 0, 0) and
ζ = 0 to compute the reservation sequence, which is called the

TOptimal sequence. For 0 < ζ < 1, the algorithm adapts to an

incoming stream of backfilling jobs, thus the algorithm and the

resulting reservation sequence are referred to as Adaptive Time
Optimal (or ATOptimal).

4.2 Equally-Spaced Discretization Scheme
The result of the previous section are optimal for a specific type

of probability distribution: Equally-Spaced Discrete Distributions

(ESDD). In order to use it in a more general framework, we apply a

discretization scheme for a continuous distribution in this section.

Given a continuous distribution with finite support [a,b], where
0 ≤ a < b, we can construct a discrete distribution as follows. By

choosing the number n of discrete values we will sample from the

continuous distribution, we get a set of n + 1 pairs (vi , fi )i=0...n ,
where thevi ’s represent the discrete execution times of the jobs, and

the fi ’s represent the corresponding probabilities. The discretiza-
tion scheme makes the discrete execution times equally spaced in

the interval [a,b]. Thus, for all i = 1, 2, . . . ,n, we have:

vi = a + i · δ and fi = F (vi ) − F (vi−1)

where δ = b−a
n is the space between two consecutive execution

time values and (v0, f0) = (a, F (a)) by definition.

4.3 Scheduling for a Set of Stochastic Jobs
Wenowdescribe scheduling strategies for a setJ = {J1, J2, . . . , JM }

of stochastic jobs. The problem is clearly NP-complete because it

contains the problem with deterministic jobs as a special case. To

solve the problem, we first compute a reservation sequence Sj in-
dependently for each job Jj ∈ J as described in Sections 4.1 and

4.2. We then use a round-based greedy scheduling heuristic with

speculative backfilling to schedule the jobs.

Round-Based Greedy Scheduling. To schedule a set of jobs, we

employ a greedy approach that works in rounds: In the first round,

each job Jj takes its first reservation tj ,1, and the jobs are prioritized
in the non-increasing order of processor-time product, defined as pj ·
tj ,1. The jobs are then scheduled greedily in this order at the earliest
time possible in the system. Once the first round completes, the

jobs that fail due to insufficient first reservation are then scheduled

in the second round using their second reservations. This process

repeats until all jobs eventually complete. During any round, the



ICPP’19, August 05–08, 2019, Kyoto, Japan Ana Gainaru, Guillaume Pallez (Aupy), Hongyang Sun, and Padma Raghavan

Figure 1: The workflow of our simulator. Teal-colored mod-
ules are used for classical HPC batch scheduler, and orange-
colored modules are used for speculative scheduling.

stream of small jobs is used to backfill any gap created by the

stochastic jobs due to: (1) over-estimation of the jobs’ reservation

times; and (2) imperfect packing of the jobs in the schedule.

Speculative Backfilling. To improve the system utilization and

job response time, we also attempt to use backfilling to schedule

the failed jobs in each round. Suppose a job Jj failed in a round

(due to insufficient reservation tj ,k ) but can fit in a gap later in

the round with its next reservation tj ,k+1, we will then schedule

the job there instead of delaying it to the next round. Moreover,

since the jobs are stochastic, we can speculatively backfill a job

even if its reservation is larger than the length of the gap, with the

hope that the job may complete in this gap with some probability.

When more than one such jobs are available, we choose the one

that maximizes the expected utilization of the gap. Specifically, for a

gap with q processors and duration d , and a subset J ′
of stochastic

jobs for potential backfilling, we choose a job Jj that maximizes the

expected utilization of the gap as follows:

max

Jj ∈J′
G j =

pj
∫ d
a′j
t · f ′j (t)dt

q · d

where pj ≤ q is the processor allocation of the job, a′j is the updated

lower bound on the execution time of the job (possibly after previ-

ously failed reservations), and f ′j (t) = fj (t |t ≥ a′j ) is the updated

PDF of the job.

5 EXPERIMENTS
In this section, we use simulation to evaluate the performance of

our speculative scheduling approaches. We conduct experiments

using a simulator for HPC schedulers [8], which works on an input

of applications with given resource requirements and submission

times. The diagrams in teal shades from Figure 1 show the original

workflow of the simulator. This workflow has been used and vali-

dated in [10] for analyzing the characteristics and performance of

neuroscience applications.

We have modified the simulator by adding speculative compo-

nents in the scheduling process. Specifically, the runtime system

adjusts each application’s submission by replacing its requested

time with the value computed by the algorithm presented in the

previous section. In addition, the runtime system is responsible

for resubmitting any failed job with a corresponding new walltime

request if necessary. For example, when using the TOptimal algo-

rithm, if an application Jj is submitted by the user with a requested

time t , this value is overwritten by the runtime to be tj ,1, corre-
sponding to the first value in the reservation sequence given by

TOptimal. If the application fails, the runtime system resubmits Jj
requesting tj ,2 time and so on.

We have also configured the simulator to work with speculative

backfilling by temporarily overwriting the requested time of an

application just for the additional speculative run. Applications that

fit in a given backfilling gap will be chosen before speculative ones.

If there is still space left after all applications have been considered,

we use the algorithm in Section 4.3 to make a speculative run that

maximizes the expected utilization of the gap. If the application

fails after the speculative run, we simply reset its normal requested

time and add it back to the top of the waiting queue.

5.1 Simulated Scenarios
We are interested in simulating the following scenarios:

• Scenario 1: A comparison of classical HPC scheduler and

speculative scheduler (TOptimal) that uses the sequence of

requested times at submission time;

• Scenario 2: A comparison of classical HPC scheduler and

speculative scheduler (TOptimal) with and without specula-

tive backfilling;

• Scenario 3: A comparison of classical HPC scheduler and

speculative scheduler (ATOptimal) when the system has an

incoming stream of small jobs for backfilling;

• Scenario 4: A simulation of twoweeks of execution on a large-

scale machine with stochastic neuroscience applications.

The requested time for an application in the classical HPC sched-

uler is usually chosen to minimize the number of failures the ap-

plication might encounter. For stochastic and unpredictable appli-

cations, this usually corresponds to the highest execution time. In

practice, users can either submit with the highest execution time

from the previous runs for a given application (which in our case

corresponds to the distribution’s upper bound) or use a more com-

plex approach. The neuroscience applications from Vanderbilt are

extremely dynamic, so their users choose to adapt the requested

time to each new module development and algorithmic update [12].

For this reason, they typically use the last few runs of a given ap-

plication (instead of the entire history) for choosing the highest

value to be used for the next submission. In our experiments, we

compare speculative scheduling with both approaches (choosing

the distribution upper bound will be called classical HPC while

using the adaptive method will be called Neuroscience).

5.2 Simulation Setup
We configure the applications to have four different walltime dis-

tributions: (1) Truncated Normal with µ = 8 and σ = 2, and values

from 6 to 16 hours; (2) Beta with α = 2 and β = 2, and values from

a few seconds to one hour; (3) Exponential with λ = 1 and values

between a few seconds to 16 hours; and (4) Bounded Pareto with

values from one hour to 20 hours and α = 2.1.
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Table 1: Reservation sequences for a Truncated Normal dis-
tribution with values from a = 0 to b = 20 hours, and µ = 8,
σ = 2 for different algorithms and scenarios.

Algorithm Sequence of requests (in hours)

Classical HPC 20.0

TOptimal 10.8, 13.4, 15.4, 17.1, 18.7, 20.0

ATOptimal (ζ = 0.1) 10.86, 13.91, 18.69, 20.0

ATOptimal (ζ = 0.5) 13.04, 20.0

ATOptimal (ζ = 0.9) 17.39, 20.0

We simulate a machine with P = 100 processors, and the proces-

sor allocations of the jobs are generated according to four cases:

(1) Each job requests the entire machine for execution (Full); (2)

Each job requests half of the machine for execution (Half); (3) Jobs

are allocated with different numbers of processors in [1, P] follow-
ing a Truncated Normal distribution with µ = 0.5P and σ = 0.3P
(Truncnormal); and (4) Jobs are allocated with different numbers of

processors following a Beta distribution with α = 2, β = 2 (Beta).

In this last case, since the Beta distribution produces values in [0,

1], the resulting processor allocations are scaled to be in [1, P].
In the experiments, we generate a set of applications (with their

processor allocations and execution time distributions) that will

be used by all algorithms. After the set is generated, we compute

the reservation sequence for each algorithm we want to analyze.

As an example, Table 1 shows the reservation sequences when the

application follows a Truncated Normal distribution with execution

times ranging from a few seconds to 20 hours, and an average of

8 hours and a standard deviation of 2 hours. The classical HPC

approach will always ask for 20 hours (the upper bound), while our

TOptimal algorithm will generate a sequence of requests (initially

asking for 10.8 hours, and if the application failed, resubmission

will ask for 13.4 hours, etc.). The ATOptimal strategy tends to ask

for larger times than TOptimal as the stream of small jobs can be

used to backfill the gaps due to over-estimation.

In the experiments, we start by simulating the simplest scenario

that uses applications requiring the same number of processors

and whose execution times follow the same distribution. With each

experiment we relax restrictions until Section 5.6 where we simulate

the behavior of real applications.

All experiments useM = 100 large jobs, unless otherwise speci-

fied. In each simulation, we make 50 runs and present the average

results. When small jobs are included, their walltimes follow the

same distributions as the ones for large jobs but scaled down by a

factor of 100. Their average walltime is used to derive the rate Z

for the work stream used by the ATOptimal algorithm.

5.3 Speculative Scheduling (Scenario 1)
In this section, we compare speculative scheduling with the classical

HPC and Neuroscience approaches. Figure 2

The percentage improvements are similar for different parame-

ters of each distribution, so we chose the parameters that reflect

closely our observations of realistic stochastic applications. Overall,

speculative scheduling gives an average of 10-11% improvement in

system utilization for the Truncated Normal and Beta distributions,

and a 12-14% improvement in average job response time compared

(a) System utilization

(b) Average job response time

Figure 2: System utilization and average job response time
under different walltime distributions for jobs that occupy
the entire machine (Full) and jobs whose processor alloca-
tions follow the Beta distribution.

Figure 3: System utilization for different walltime distribu-
tions and processor allocations for the jobs.

to the best result for the HPC scenarios. For Pareto and Exponential

distributions, the improvements are over 1.5x and 2.5x respectively

for the two metrics.

To better understand the impact of the processor allocations of

the applications on the results, we simulate the same scenarios

(same number of applications, following the same walltime distri-

butions) when varying the processor allocation distributions for

the jobs. Figure 3 shows the system utilizations under different

distributions for the classical HPC approach (in the foreground)

and our TOptimal algorithm (in the background). The results show

that regardless of the jobs’ walltime distributions and processor

allocation distributions, using speculative scheduling can lead to

benefit in system utilization (the same benefit was also observed

for average job response time).

In the experiments, we observe that the Neuroscience approach

gives better results than the classical HPC approach. Figure 4 shows
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(a) Utilization (b) Average job response time

Figure 4: Results when varying the number of previous runs
used by the Neuroscience approach to compute the requests.

(a) Utilization (b) Average job response time

Figure 5: Results when varying the percentage of smaller
jobs within the total number of jobs in the simulation.

the utilization and job response time of TOptimal, classical HPC

and Neuroscience when varying the number of previous runs used

to compute the next request time by Neuroscience. Since each run

generates random applications, TOptimal and HPC show slightly

different results, within the margin of error, for each simulation.

As expected, when using a longer history for computing the re-

quests, Neuroscience’s results approach those of the classical HPC

approach (which is equivalent to using all past runs of an appli-

cation). The best results seem to be when using approximately 10

previous runs. Thus, for the remaining simulations in this paper,

we will use Neuroscience with 10 previous runs.

5.4 Speculative Backfilling (Scenario 2)
The simulations presented in the previous section contain mostly

large jobs that are not particularly useful for backfilling algorithms.

In this section, we relax this constraint and allow smaller jobs to run

together with the large ones. We analyze the impact of speculative

backfilling on the performance of the scheduling algorithms.

Figure 5 shows the system utilization and average job response

time when varying the percentage of smaller jobs within the total

number of jobs, which is fixed to beM = 200. The execution times

of all jobs follow the Truncated Normal distribution. The large

ones are between 1 hour and 8 hours with µ = 4 and σ = 2,

and the small ones are between a few seconds and 4 hours with

µ = 1 and σ = 1. Compared to the classic backfilling approach,

speculative backfilling drastically improves the performance for

the HPC scheduler while giving only slight improvements for the

TOptimal scheduler. This is due to the use of speculative scheduling

in TOptimal, which produces more restricted walltime requests,

thus not leaving much room for further backfilling. In this case,

once the percentage of small jobs exceeds 50%, the HPC scheduler

does not need speculation at submission time and can achieve good

performance with just speculative backfilling.

5.5 Considering Backfilling Jobs (Scenario 3)
The reservation sequence given by TOptimal does not take into

consideration the availability of small backfilling jobs in the system.

In this section, we focus on understanding the limitations of TOp-

timal and on analyzing the benefits of ATOptimal that considers

the additional amount of work introduced through backfilling jobs,

which can vary on an HPC system depending on the day. We use

the sequence generated by ATOpimal to overwrite a large job’s

requests in the presence of these backfilling jobs, and compare the

results with those of TOptimal and the HPC scheduler.

In this experiment, the execution times of all large jobs follow

the Truncated Normal distribution between 1 and 20 hours with

µ = 8, σ = 2, while the system receives an incoming stream of back-

filling jobs, whose execution times follow the same distribution but

scaled down by a factor of 100. These jobs are uniformly distributed

throughout the simulation time window to simulate a continuous

influx of available work with an arrival rate λ, which is configured

such that the normalized work rate Z/P is varied between 0.1 and

0.9. We assume these backfilling jobs are predictable and we use

the exact execution times as their requested times.

Figure 6 presents the system utilization and average job response

time when we vary the normalized work rate for backfilling jobs.

As expected, the ATOptimal sequence gives results that are close

to those of TOptimal for small work rates and approach those of

the HPC scheduler for larger rates. Overall, the system utilization

increases with the work rate and is always higher for ATOptimal.

For average job response time, ATOptimal falls in between the

other two, and as we increase the work rate, backfilling jobs start

to experience longer waiting times, thus driving up the average

response time of all jobs in the system.

Figure 7 shows the average response time when looking only

at the large jobs. The HPC scheduler’s large requested times leads

to the highest response time, while the conservative requested

times of TOptimal gives the lowest response time. The ATOptimal

algorithm again falls in between the two, with a response time that

increases with the work rate, due to the use of increasingly larger

requested times for the large jobs.

5.6 Two Weeks in an HPC System’s Life
(Scenario 4)

In this section, we simulate the execution on a large-scale HPC

system (Intrepid) with realistic stochastic applications.

Intrepid was a BlueGene/P supercomputer at the Argonne Na-

tional Laboratory between 2008 and 2014 (ranked 3rd on the June

2008 Top500 list). We use the logs from [19] to analyze the applica-

tion submissions on Intrepid [2] between January 5 to September

1, 2009. Table 2 presents the main characteristics of the machine



Speculative Scheduling for Stochastic HPC Applications ICPP’19, August 05–08, 2019, Kyoto, Japan

(a) Utilization (b) Average job response time

Figure 6: System utilization and average job response time when varying the normalized work rate for backfilling jobs.

Figure 7: Average response time only for large jobs when
varying the normalized work rate for backfilling jobs.

Table 2: Characteristics of the Intrepid system.

Total submissions 68936

Over-estimated submissions 82.2 %

Under-estimated submissions 17.7%

Average backfilling time 1.36 hours

Average backfilling space 2132 node hours

Average job size 880 nodes / 3089 node hours

Average small jobs size 48.6 nodes / 31 node hours

Percentage of small jobs 30.8%

Unused backfilling space 2.8 hours/day

Normalized rate of backfilling work 0.21

during this period. Specifically, over 82% of the submissions re-

quested more time than the actual walltime of the job, averaging

1.36 hours of backfilling time. While the majority of these jobs were

over-estimated by a maximum of 4 hours, there are cases where the

over-estimation created more than 10 hours of backfilling time. The

volume of these backfilling gaps (processing units times backfilling

time) is over 2000 node hours on average. The number of small jobs

running on Intrepid represents a third of all applications, but they

only account for <1% of the total work in the system. Even if all the

small jobs were used by the backfilling algorithm, the gap created

by over-estimation during the analyzed timeframe would keep the

system idle for almost 3 hours/day on average.

(a) Utilization (b) Average job response time

Figure 8: Results for simulating two weeks of neuroscience
applications’ execution on Intrepid.

A wide range of scientific and engineering applications were

run on Intrepid, including some large-scale simulation codes for

chemistry, astrophysics, genetics and material science. The logs do

not provide any information on the actual applications ran during

the specified timeframe. For our simulations, we instead use the

neuroscience applications from the Vanderbilt medical imaging

database [12]. We chose three applications whose characteristics

are presented in Table 3. We simulate 2 weeks of execution for these

applications on Intrepid with a total of 400 submissions, while

matching the normalized work rate of 0.21 for backfilling jobs

(simulated by the FSL application) seen on Intrepid (Table 2).

The results of the simulation are presented in Figure 8. We can

see that ATOptimal improves both system utilization and average

job response time by about 20% compared to HPC using classic

backfilling. Additionally, speculative backfilling further improves

the performance for both HPC and ATOptimal. Overall, our specu-

lative techniques provide 25-30% improvement over the classical

HPC scheduling approach.

6 CONCLUSION AND FUTUREWORK
There is currently an increasing number of stochastic and unpre-

dictable applications that use HPC platforms. In this paper, we
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Table 3: Characteristics of three neuroscience applications used in the simulation.

Neuroscience Application Walltime Distribution # Submissions

Abdominal multi-organ segmentation code (AbOrganSeq_Whole_v1) [23] Truncated Normal from 11 to 31 hours; µ = 20 and σ = 8 10

A whole brain segmentation and cortical reconstruction (maCRUISE) [14] Truncated Normal from 1.5 to 3 hours; µ = 1.7 and σ = 0.5 90

FSL library [26] of analysis tools for fMRI, MRI and DTI brain imaging data Truncated Normal from 10 to 35 minutes; µ = 20 and σ = 8 300

have shown that speculative scheduling has a great potential for

improving both system-level and user-level performance for these

applications. Our solutions can be easily integrated into the current

HPC schedulers by configuring the runtime system to use past

statistics of the applications upon submissions. This allows the

schedulers to compute speculatively the request reservation and

backfilling decisions for the jobs. Experimental results show that

speculative scheduling can improve system utilization and average

job response time by 25-30%. While this paper focuses on request

time, our model can be extended to other resources as well.

We seek to investigate multiple directions in the future. Adding

other resources in the model is a priority, as well as analyzing char-

acteristics of current HPC systems and including more complex

distributions. Another direction is to create more disruptive sched-

uling solutions that would not kill a job that exceeds the allocated

time but adapt other reservations to accommodate a longer run.
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