A. Absalom, J. Gien, G. Zwart, T. Schnider, and M. Struys, , 2016.

, Target-controlled infusion: a mature technology, Anesth. Analg, vol.122, pp.70-78

D. Almeida, Awake and unable to move: what can perioperative practitioners do to avoid accidental awareness under general anesthesia?, J. Perioper. Pract, vol.25, pp.257-261, 2015.

K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b, Front. Neurosci, vol.6, p.39, 2012.
DOI : 10.3389/fnins.2012.00039

URL : https://www.frontiersin.org/articles/10.3389/fnins.2012.00039/pdf

M. S. Avidan and G. A. Mashour, II. The incidence of intraoperative awareness in the uk: under the rate or under the radar?, Br. J. Anaesth, vol.110, pp.494-497, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00603263

M. S. Avidan, L. Zhang, B. A. Burnside, K. J. Finkel, A. C. Searleman et al., Anesthesia awareness and the bispectral index, New Engl. J. Med, vol.358, pp.1097-1108, 2008.

A. Barachant, S. Bonnet, M. Congedo, J. , and C. , Riemannian geometry applied to bci classification, International Conference on Latent Variable Analysis and Signal Separation, pp.629-636, 2010.
DOI : 10.1007/978-3-642-15995-4_78

URL : https://hal.archives-ouvertes.fr/hal-00602700

P. Bischoff and I. Rundshagen, Awareness under general anesthesia, Dtsch. Arztebl. Int, vol.108, pp.1-7, 2011.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanaba, and K. Müller, Optimizing spatial filters for robust EEG single-trial analysis, IEEE Signal Process. Mag, vol.25, pp.41-56, 2008.
DOI : 10.1109/msp.2008.4408441

Y. Blokland, J. Farquhar, J. Lerou, J. Mourisse, G. J. Scheffer et al., Decoding motor responses from the EEG during altered states of consciousness induced by propofol, J. Neural Eng, vol.13, p.26014, 2016.

C. Brunner, A. Delorme, and S. Makeig, EEGLAB -an open source matlab toolbox for electrophysiological research, Biomed. Tech, vol.58, pp.9-21, 2013.
DOI : 10.1515/bmt-2013-4182

URL : http://www.degruyter.com/downloadpdf/j/bmte.2013.58.issue-s1-G/bmt-2013-4182/bmt-2013-4182.xml

M. Clerc, L. Bougrain, L. , and F. , EEG feature extraction, BrainComputer Interfaces, vol.1, pp.130-131, 2016.

A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, vol.134, pp.9-21, 2004.

J. Dien, Issues in the application of the average reference: review, critiques, and recommendations, Behav. Res. Methods, vol.30, pp.34-43, 1998.

A. Duprès, F. Cabestaing, and J. Rouillard, Human expert supervised selection of time-frequency intervals in EEG signals for brain-computer interfacing, 2016 24th European Signal Processing Conference (EUSIPCO), pp.1733-1737, 2016.

N. Erbil and P. Ungan, Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements, Brain Res, vol.1169, pp.44-56, 2007.

A. Filgueiras, E. Quintas-conde, and C. Hall, The neural basis of kinesthetic and visual imagery in sports: an ale meta-analysis, Brain Imaging Behav, vol.12, pp.1513-1523, 2017.

N. T. Gayraud, A. Rakotomamonjy, and M. Clerc, Optimal transport applied to transfer learning for p300 detection, BCI 2017-7th Graz Brain-Computer Interface Conference, p.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01556603

M. M. Ghoneim, R. I. Block, M. Haffarnan, and M. J. Mathews, Awareness during anesthesia: risk factors, causes and sequelae: a review of reported cases in the literature, Anesth Analg, vol.108, pp.527-535, 2009.

A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards et al., Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum. Brain Mapp, vol.30, pp.2157-2172, 2009.
DOI : 10.1002/hbm.20658

Y. Hashimoto and J. Ushiba, EEG-based classification of imaginary left and right foot movements using beta rebound, Clin. Neurophysiol, vol.124, pp.2153-2160, 2013.

H. Hendin, Suicide and guilt as manifestations of ptsd in vietnam combat veterans, Am. J. Psychiatry, vol.148, pp.586-591, 1991.

A. Jain, R. Bansai, A. Kumar, and K. Singh, A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students, Int. J. Appl. Basic Med. Res, vol.5, pp.124-127, 2015.

J. Wolpaw and E. W. , Brain-Computer Interfaces: Principles and Practice, 2012.

C. Kent and K. Domino, Depth of anesthesia, Curr. Opin. Anaesthesiol, vol.22, pp.782-787, 2009.

B. E. Kilavik, M. Zaepffel, A. Brovelli, W. A. Mackay, and A. Riehle, The ups and downs of beta oscillations in sensorimotor cortex, Exp. Neurol, vol.245, pp.15-26, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01464144

D. Kumbhare, L. Robinson, and R. Buschbacher, Mediane nerve to the abductor pellicis brevis, Buschbacher's Manual of Nerve Conduction Studies, p.10, 2016.

K. Lau, B. Matta, D. Menon, A. , and A. , Attitudes of anaesthetists to awareness and depth of anaesthesia monitoring in the UK, Eur. J. Anaesthesiol, vol.23, pp.921-930, 2006.

X. Lei and K. Liao, Understanding the influences of eeg reference: a large-scale brain network perspective, Front. Neurosci, vol.11, p.205, 2017.

K. Leslie, M. Chan, P. Myles, A. Forbes, and T. Mcculloch, Posttraumatic stress disorder in aware patients from the b-aware trial, Anesth. Analg, vol.110, pp.823-828, 2010.

X. Li, S. Cui, and L. Voss, Using permutation entropy to measure the electroencephalographic effects of sevoflurane, Anesthesiology, vol.109, pp.448-456, 2008.

Z. Liang, Y. Wang, X. Sun, D. Li, L. J. Voss et al., Eeg entropy measures in anesthesia, Front. Comput. Neurosci, vol.9, p.16, 2015.

F. Lotte, Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces, Proc. IEEE 103, pp.871-890, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159171

K. Macgregor, A waking nightmare: how can we avoid accidental awareness during general anaesthesia?, J. Perioper. Pract, vol.23, pp.185-190, 2013.

B. Manly, The generation of random permutations, Randomization, Bootstrap and Monte Carlo Methods in Biology, 2006.

G. Mashour, A. , and M. , Intraoperative awareness: controversies and non-controversies, Br. J. Anaesth, vol.115, pp.20-26, 2015.
DOI : 10.1093/bja/aev034

G. Mashour, B. Orser, A. , and M. , Intraoperative awareness: from neurobiology to clinical practice, Anesthesiology, vol.114, pp.1218-1233, 2011.
DOI : 10.1097/aln.0b013e31820fc9b6

R. Mihai, S. Scott, and T. Cook, Litigation related to inadequate anaesthesia: an analysis of claims against the NHS in england, Curr. Opin. Anesthesiol, vol.64, pp.665-669, 1995.

P. Myles, K. Leslie, J. Mcneil, A. Forbes, C. et al., Bispectral index monitoring to prevent awareness during anaesthesia: the b-aware randomised controlled trial, Lancet, vol.363, pp.1757-1763, 2004.

C. Neuper and G. Pfurtscheller, Event-related dynamics of cortical thythms: frequency-specific features and functional correlates, Int. J. Psychophysiol, vol.43, pp.41-58, 2001.

L. Nicolas-alonso and J. Gomez-gil, Brain computer interfaces, a review, Sensors, vol.12, pp.1211-1279, 2012.

J. E. Osterman, J. Hopper, W. J. Heran, T. M. Keane, and B. A. Van-der-kolk, Awareness under anesthesia and the development of posttraumatic stress disorder, Gen. Hosp. Psychiatry, vol.23, pp.198-204, 2001.

J. Pandit and T. Cook, National institute for clinical excellence guidance on measuring depth of anaesthesia: limitations of eeg-based technology, Br. J. Anaesth, vol.110, pp.325-328, 2013.

J. J. Pandit, J. Andrade, D. G. Bogod, J. M. Hitchman, W. R. Jonker et al., 5th national audit project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors, Br. J. Anaesth, vol.113, pp.549-559, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

F. Perrin, J. Pernier, O. Betrand, and J. Echallier, Spherical splines for scalp potential and current density mapping, Electroencephalogr. Clin. Neurophysiol, vol.72, pp.90180-90186, 1989.

G. Pfurtscheller, Induced oscillations in the alpha band: functional meaning, Epilepsia, vol.44, pp.2-8, 2003.

G. Pfurtscheller and F. H. Lopes-da-silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin. Neurophysiol, vol.110, pp.1842-1857, 1999.
DOI : 10.1016/s1388-2457(99)00141-8

G. Pfurtscheller and C. Neuper, Motor imagery activates primary sensorimotor area in humans, Neurosci. Lett, vol.239, pp.65-68, 1997.

G. Pfurtscheller and C. Neuper, Motor imagery and direct braincomputer communication, Proc. IEEE, vol.89, pp.1123-1134, 2001.
DOI : 10.1109/5.939829

C. Pomfrett, Heart rate variability, BIS and 'depth of anaesthesia', Br. J. Anaesth, vol.82, pp.659-662, 1999.

Y. Punjasawadwong, A. Phongchiewboon, and N. Bunchungmongkol, Bispectral index for improving anaesthetic delivery and postoperative recovery, Cochrane Database Syst. Rev, vol.17, p.3843, 2014.

R. Quiroga and H. Garcia, Single-trial event-related potentials with wavelet denoising, Clin. Neurophysiol, vol.114, pp.376-390, 2003.

Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby et al., Openvibe: an open-source software platform to design, test and use brain-computer interfaces in real and virtual environments, Presence, vol.10, pp.35-53, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00477153

S. Rimbert, R. Al-chwa, M. Zaepffel, and L. Bougrain, Electroencephalographic modulations during an open-or closed-eyes motor task, PeerJ, vol.6, p.4492, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736600

P. L. Rodrigues, C. Jutten, and M. Congedo, Riemannian procrustes analysis: Transfer learning for brain-computer interfaces, IEEE Trans. Biomed. Eng, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01971856

M. Saleh, J. Reimer, R. Penn, C. Ojakangas, and N. Hatsopoulos, Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues, Neuron, vol.65, pp.461-471, 2010.

S. Salenius, A. Schnitzler, R. Salmelin, V. Jousmäki, H. et al., Modulation of human cortical rolandic rhythms during natural sensorimotor tasks, Neuroimage, vol.5, pp.221-228, 1997.

S. L. Schafer and D. R. Stanski, Defining depth of anesthesia, Handb. Exp. Pharmacol, 2008.

G. Schneider, A. Mappes, T. Neissendorfer, M. Schabacker, H. Kuppe et al., Eeg-based indices of anaesthesia: correlation between bispectral index and patient state index?, Eur. J. Anaesthesiol, vol.21, pp.6-12, 2004.

A. Schnitzler, S. Salenius, R. Salmelin, V. Jousmaki, H. et al., Involvement of primary motor cortex in motor imagery: a neuromagnetic study, Neuroimage, vol.6, pp.201-208, 1997.

P. Schuller, S. Newell, P. Strickland, and J. Barry, Response of bispectral index to neuromuscular block in awake volunteers, Br. J. Anaesth, vol.115, pp.95-103, 2015.

D. Schwender, S. Klasing, M. Daunderer, C. Madler, E. Poppel et al., Awareness during general anesthesia. definition, incidence, clinical relevance, causes, avoidance and medicolegal aspects, Anaesthesist, vol.44, pp.743-754, 1995.

P. Sebel, T. Bowdle, M. Ghoneim, I. Rampil, R. Padilla et al., The incidence of awareness during anesthesia: a multicenter united states study, Anesth. Analg, vol.99, pp.833-839, 2004.

H. Shibasaki, N. Sadato, H. Lyshkow, Y. Yonekurg, M. Hiroshi et al., Both primary motor cortex and supplementary motor area play an important role in complex finger movements, Brain, vol.116, pp.1387-1398, 1993.

S. Tasbighou, M. Vogels, A. , and A. , Accidental awareness during general anaesthesia -a narrative review, Anaesthesia, vol.73, pp.112-122, 2018.

T. Weiser, A. Haynes, G. Molina, S. Lipsitz, M. Esquivel et al., Size and distribution of the global volume of surgery in 2012, Bull. World Health Organ, vol.94, pp.201-209, 2016.

L. Xu, A. Wu, and Y. Yue, The incidence of intra-operative awareness during general anesthesia in china: a multi-center observational study, Acta Anaesthesiol. Scand, vol.53, pp.873-882, 2009.