J. P. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora et al., SONYC: A system for the monitoring, analysis and mitigation of urban noise pollution, Communications of the ACM, 2018.

J. P. Bello, C. Mydlarz, and J. Salamon, Sound analysis in smart cities, Computational Analysis of Sound Scenes and Events, pp.373-397, 2018.

R. Radhakrishnan, A. Divakaran, and A. Smaragdis, Audio analysis for surveillance applications, Proc. WASPAA. IEEE, pp.158-161, 2005.

E. Wold, T. Blum, D. Keislar, and J. Wheaten, Content-based classification, search, and retrieval of audio, IEEE multimedia, vol.3, issue.3, pp.27-36, 1996.

Q. Jin, P. Schulam, S. Rawat, S. Burger, D. Ding et al., Event-based video retrieval using audio, Proc. Interspeech, 2012.

R. Serizel, N. Turpault, H. Eghbal-zadeh, and A. Shah, Large-Scale Weakly Labeled Semi-Supervised Sound Event Detection in Domestic Environments, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01850270

C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis et al., Monitoring activities of daily living in smart homes: Understanding human behavior, IEEE Signal Processing Magazine, vol.33, issue.2, pp.81-94, 2016.

Y. Zigel, D. Litvak, and I. Gannot, A method for automatic fall detection of elderly people using floor vibrations and soundproof of concept on human mimicking doll falls, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, pp.2858-2867, 2009.

A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah et al., Dcase 2017 challenge setup: Tasks, datasets and baseline system, Proc. DCASE Workshop, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01627981

R. Serizel and N. Turpault, Sound Event Detection from Partially Annotated Data: Trends and Challenges, Proc. IcE-TRAN conference, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02114652

A. Shah, A. Kumar, A. G. Hauptmann, and B. Raj, A closer look at weak label learning for audio events, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01839252

B. Mcfee, J. Salamon, and J. P. Bello, Adaptive pooling operators for weakly labeled sound event detection, IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol.26, issue.11, pp.2180-2193, 2018.

J. Salamon, D. Macconnell, M. Cartwright, P. Li, and J. P. Bello, Scaper: A library for soundscape synthesis and augmentation, Proc. WASPAA. IEEE, pp.344-348, 2017.

J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence et al., Audio set: An ontology and human-labeled dataset for audio events, Proc. ICASSP, 2017.

F. Font, G. Roma, and X. Serra, Freesound technical demo, Proc. ACMM, pp.411-412, 2013.

E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov et al., Freesound datasets: a platform for the creation of open audio datasets, Proc. ISMIR, pp.486-493, 2017.

G. Dekkers, S. Lauwereins, B. Thoen, M. W. Adhana, H. Brouckxon et al., The SINS database for detection of daily activities in a home environment using an acoustic sensor network, Proc. DCASE Workshop, pp.32-36, 2017.

E. J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R. Bittner et al., JAMS: A JSON annotated music specification for reproducible MIR research, pp.591-596, 2014.

D. Snyder, G. Chen, and D. Povey, MUSAN: A Music, Speech, and Noise Corpus, 2015.

M. Mauch and S. Ewert, The audio degradation toolbox and its application to robustness evaluation, Proc. ISMIR, pp.83-88, 2013.

L. Jiakai, Mean teacher convolution system for dcase 2018 task 4," DCASE2018 Challenge, 2018.

A. Tarvainen and H. Valpola, Mean teachers are better role models: Weight-averaged consistency targets improve semisupervised deep learning results, Proc. NeurIPS, p.10, 2017.

A. Mesaros, T. Heittola, and T. Virtanen, Metrics for polyphonic sound event detection, Applied Sciences, vol.6, issue.6, p.162, 2016.

L. Lin and X. Wang, Guided learning convolution system for dcase 2019 task 4, Institute of Computing Technology, Chinese Academy of Sciences, 2019.

L. Delphin-poulat and C. Plapous, Mean teacher with data augmentation for dcase 2019 task 4, Orange Labs Lannion, 2019.

Z. Shi, Hodgepodge: Sound event detection based on ensemble of semi-supervised learning methods, Fujitsu Research and Development Center, 2019.

L. Lin, X. Wang, H. Liu, and Y. Qian, What you need is a more professional teacher, 2019.

L. Cances, T. Pellegrini, and P. Guyot, Multi task learning and post processing optimization for sound event detection, Tech. Rep, 2019.

R. Caruana, Multitask learning, Machine learning, vol.28, issue.1, pp.41-75, 1997.

S. Kothinti, G. Sell, S. Watanabe, and M. Elhilali, Integrated bottom-up and top-down inference for sound event detection, Tech. Rep, 2019.