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A Statistical Unsupervised Learning Algorithm for
Inferring Reaction Networks from Time Series Data

Julien Martinelli 1 2 Jeremy Grignard 1 3 Sylvain Soliman 1 François Fages 1

Abstract

With the automation of biological experiments
and the increase of quality of single cell data
that can now be obtained by phosphoproteomic
and time lapse videomicroscopy, automating the
building of mechanistic models from these time
series data becomes conceivable and a necessity
for many new applications. While learning nu-
merical parameters to fit a given model structure
to observed data is now a quite well understood
subject, learning the structure of the model is a
more challenging problem that previous attempts
failed to solve without relying quite heavily on
prior knowledge about that structure. In this pa-
per, we consider mechanistic models based on
chemical reaction networks (CRN) with their con-
tinuous dynamics based on ordinary differential
equations, and finite time series about the time
evolution of concentration of molecular species
for a given time horizon and a finite set of per-
turbed initial conditions. We present a statistical
learning algorithm to learn CRNs with a time
complexity for inferring one reaction in O(t.n2)
where n is the number of species and t the num-
ber of observed transitions in the traces. We learn
both the structure and the reaction rates of the
CRN. We evaluate this algorithm and its sensitiv-
ity to its statistical threshold parameters, first on
simulated data from a hidden CRN, and second
on real videomicroscopy single cell time series
data over three days about the circadian clock and
cell cycle progression of NIH3T3 embryonic fi-
broblasts. In all cases, our algorithm is able to
reconstruct meaningful CRNs. We discuss some
limits according to the existence of multiple time
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scales and highly variable traces.

1. Introduction
Recent breakthroughs in Machine Learning are paving the
way for new kinds of algorithms for analysing data and
making diagnosis and predictions in biology and medicine.
However, the direct application of machine learning meth-
ods, while capable of making accurate predictions, do not
provide a biological understanding of the underlying pro-
cesses nor explanation for the predictions, and may be not
accepted in the biomedical domain. For these reasons, a
lot of work aims at providing explanations for the predic-
tions made as output of neural networks or other machine
learning algorithms trained on data.

Another approach is to try to learn mechanistic models that
will make predictions instead of learning directly the pre-
dictions from the data. Building mechanistic models of cell
processes is however a hard work which necessitates to de-
termine the biochemical mechanisms that are responsible
for the high level functions of the cell and its behaviors in
normal and perturbed conditions. Automating this process
would enable new applications such as automated experi-
ment design or patient-tailored therapeutics.

The main difficulty is to be able to discriminate between
causality and correlations in time series data (Pearl, 2009;
Preacher & Hayes, 2008). There has been work on this
problem for the detection of causal relationship among gene
networks. For instance in (Triantafillou et al., 2017), causal
relationships are searched between genes and accepted with
respect to statistical tests (local causal discovery method).
Causal inference can be achieved thanks to randomized ex-
periments, relying on multiple different initial conditions.
Supervised learning shows encouraging results as well. Us-
ing time series data, the authors of (Ganscha et al., 2018)
trained recurrent neural networks and applied them to the
DREAM gene regulatory network inference challenge data.
Besides good predictions results, their work highlights the
need for a simulation of biologically representative time-
series data as training set. In the framework of boolean
regulatory networks, Answer Set Programming (ASP), a
language in which problems and their solutions are respec-
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tively expressed in terms of logic programs and models of
those programs, has been applied to the discovery of influ-
ence relationships between species. In (Ostrowski et al.,
2016), considering a prior knowledge graph, a necessary
condition for a boolean network to be compatible with the
observed time series data is proposed. Then the efficiency
of ASP makes it possible to compute an over-approximation
of the set of boolean networks best fitting the experimen-
tal data. This is illustrated with DREAM challenge data.
In (Carcano et al., 2017) the Probably Approximatly Correct
(PAC) learnability theory of Leslie Valliant’s has been ap-
plied to Thomas’s influence models. This algorithm comes
with probabilistic guarantees, giving learning bounds de-
pending on the number of samples drawn, underlining the
need for diverse enough perturbed condition samples. This
shows the existence of a space-time trade-off in the traces
between the diversity of initial conditions with zero initial
values, and the length of the traces, the former transitions
being more informative than the latter. Prior knowledge can
also be specified by giving to a species a set of possible
species influencing it, resulting in a decreasing number of
samples needed. In practice however, these methods need
prior knowledge on the structure of the network to obtain
its Boolean dynamics with good results.

In (Choi et al., 2018) the problem of inferring chemical
reaction networks (CRNs) is defined as the minimization of
a fitness criterion based on the compatibility of the learned
mechanistic model with the observed traces. This evolution-
ary algorithm approach manages to recover reactions as well
as their mass action law kinetics parameters via a two-step
iterative procedure: first a set of reaction is inferred, then its
kinetics parameters are estimated.

In this paper, we present a statistical learning algorithm
dedicated to the same problem of inferring a CRN from
time series data. Our unsupervised learning algorithm does
not require prior knowledge nor training. We consider at
most binary reactions with mass-action, Michaelian or or-
der 4 Hill kinetics. Based on a pairing of the variations of
molecular species in each observed transition, the algorithm
repeatedly infers the reaction that minimizes the standard de-
viation of the inferred rate function among all the observed
transitions where the reaction can occur. Once inferred, the
contributions of that reaction to state change in the set of
observed transitions are subtracted before inferring the next
reaction.

Example 1. For instance, on a simple chain of 4 reactions
with mass action law kinetics over 5 molecular species,
our algorithm is able to reconstruct the CRN from a single
simulation trace (Fig. 1).

In the next section, we give some preliminaries on CRNs
and time series data. In Sec. 3 we present our statistical
learning algorithm with the table of statistical thresholds
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Figure 1. Chain example: simulation trace and learned CRN.

used. We show that its time complexity for inferring one
reaction is O(t.n2) where n is the number of species and t
the number of transitions in the traces. Then we evaluate this
algorithm first on simulated data with respectively reactant-
parallel, product-parallel, parallel and general hidden CRNs.
In each case we analyze the sensitivity of our algorithm to
its statistical threshold parameters. Then in Sec. 6 we apply
our algorithm to real videomicroscopy time series data on
NIH3T3 embryonic mice fibroblasts with FUCCI markers
of the cell cycle and Rev-erb-α marker of the circadian
clock, over three days, for a total of 91 tracked cell traces
and 26000 observed state transitions (Feillet et al., 2014). In
all cases, our algorithm is able to reconstruct meaningful yet
sometimes incomplete CRNs1. We conclude on its limits
with respect to incompleteness, i.e. false negatives, and
erroneous inferences, i.e. false positives, in particular in the
cases of highly variable data, and of CRN with multiple
time scales.

2. Preliminaries
Unless explicitly noted, we will denote sets and multisets by
capital letters (e.g., S or in some cases calligraphic letters
likeD, R), tuples of values by vectors (e.g., ~x) and elements
of those sets or vectors (i.e., real numbers, functions, etc.)
by small Roman or Greek letters. For a multiset M , M(x)
denotes the multiplicity of element x in M . R+ denotes the
set of non negative real numbers.

1The code and the examples described in this article are
available at https://lifeware.inria.fr/wiki/Main/
Software#CMSB19a

https://lifeware.inria.fr/wiki/Main/Software#CMSB19a
https://lifeware.inria.fr/wiki/Main/Software#CMSB19a
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2.1. Chemical Reaction Networks

We assume given a finite set S = {1, . . . , n} of n molecular
species. For the sake of readability in the examples, species
will also be noted with biological names (e.g., Cyc for a
Cyclin) or even simple capital letters like A,B,C, instead
of by their index 1, . . . , n.
Definition 1. A reaction over S is a triple (R,P, f), where
R is a multiset of reactants in S, P is a multiset of products
in S and f : R+

n −→ R+ is a rate function over molecular
concentrations.

A catalyst in a reaction is a reactant i such that R(i) =
P (i). A strict reactant (resp. strict product, strict participant
species) in a reaction is a species such that R(i) > P (i)
(resp. P (i) > R(i), R(i) 6= P (i)).

A Chemical Reaction Network (CRN) is a finite set of reac-
tions.

For the sake of simplicity, this article only studies reactions
with stoichiometry at most 1. In other words, the multisets
R and P are actually sets of P(S). We shall also restrict
ourselves to the following rate functions: mass action law
kinetics, i.e. product of reactant concentrations by some
constant k, Michaelis-Menten kinetics, and Hill of order 4
kinetics.
Example 2. For reactions with mass action law kinetics,
the reactions will be written ({A,C}, {B,C}, kAC) as

(({A,C}, {B,C}), k) or even A+C
k

=⇒ B+C. For the
other kinetics, the rate functions are written explicitly.

Furthermore we introduce the following
Definition 2. A reactant-parallel CRN is a CRN in which
any two reactions do not share a same strict reactant. A
product-parallel CRN is a CRN in which any two reactions
do not share a same strict product. A parallel CRN is a
CRN in which any two reactions do not share a same strict
participant species.

It is worth noting that Ex. 1 of a linear chain of reactions
shows that a both reactant-parallel and product-parallel CRN
is not necessarily parallel.

As usual, a CRN can be interpreted in different manners, in
a hierarchy of continuous differential, stochastic, discrete
and Boolean semantics (Fages & Soliman, 2008). For this
article, we consider only the continuous interpretation by
ordinary differential equations,

∀s ∈ S, ds/dt =
∑

(R,P,f)∈R

f.(P (s)−R(s)).

2.2. Time Series Data

Definition 3. A state vector is a vector x ∈ R+
n+1 where

x0 represents the real time, and xi the concentration of

species i.

A trace, or time series data, is a finite sequence
(x(1), . . . ,x(d)) of state vectors at increasing times,
i.e. x0(1) < · · · < x0(d).

The time step between two time points may be non con-
stant and is given by the first components x0 of the state
vectors. Such traces can be produced either by numerical
simulations, e.g. by numerical integration of ordinary differ-
ential equations or by stochastic simulation, or by biological
experiments, e.g. by time lapse microscopy.

For the sake of evaluating a learning algorithm, synthetic
data obtained by simulation of a hidden model must be con-
sidered. Fig. 1 shows a simulation trace in dimension 5 for
Ex. 1. Furthermore, in order to produce traces close to real
data, simulation data can be subsampled at a low frequency,
and noise added. It is worth noting however that numerical
integration already introduces big time steps and a form
of noise on discrete time points due to the discretization
and approximation of the derivatives. In the following, we
analyze the sensitivity of our learning algorithm to subsam-
pling, trace length, and number of traces with random initial
conditions with zero values.

3. Unsupervised Learning Algorithm

Input set
of traces𝒟

Flattening into
Transition set𝒯

ℛ = ∅

𝒯 ←Filtering(𝒯 , 𝛽)

𝒞 ←Reaction
Inference(𝒯 , 𝛿)

𝒞 ← Kinetic
Inference
(𝒞 ,𝒯 , 𝛼)

𝑟∗←Selection
(𝒞 , 𝛼)

ℛ ←ℛ ∪ {𝑟∗}
𝒯 ←Update(𝒯 , 𝑟∗)

Output
CRN ℛ

no

yes

1

Figure 2. Flowchart of the CRN learning algorithm.

Fig. 2 shows the flowchart of our unsupervised CRN learn-
ing algorithm. Table 1 lists the global variables and thresh-
old parameters used with ther default values. Alg. 1 de-
scribes the main structure of the algorithm. First, the set of
traces D is flattened into a set of transitions T represented
by the triple of predecessor state, difference vector and in-
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dex of the trace from where it originates. The transitions
are then filtered (Alg. 2) by keeping only the variations that
are significant compared to the maximum variation of the
species’ concentration values along the trace it originates
from. Then, from each transition (x,d, j) ∈ T , Alg. 3 in-
fers a set of one or two reaction candidates that can explain
the most important variation in a transition. Each reaction
candidate is returned together with a variable (reactant or
product) on which the rate function should be estimated.

Parameter Value Threshold description

α 0.3 reaction rate variability in Alg.1
β 0.03 species variation in Alg.2
δ 1 species variation pairing in Alg.3
γ 10−4 zero value in Alg.8

Variable Description

x state vector
d difference vector
T transition set
D set of traces
R inferred CRN (set of reactions)
r (inferred) reaction
σ standard deviation of reaction rate

Table 1. Variables and threshold parameters of the algorithm.

Algorithm 1 Main reaction learning loop
Input: Array of l traces:
D = [(x1(1), . . . ,x1(d1)), . . . , (xl(1), . . . ,xl(dl))]
Output: CRNR
Parameter: α

1: R ← ∅, σ∗ ← 0
2: T ← {(xj(t),xj(t+ 1)− xj(t), j) |
3: 1 6 j 6 l, 1 6 t 6 dj − 1}
4: while σ∗ < α do
5: σ∗ ← +∞, TRANSITION FILTERING(T ,D)
6: for (i, R, P ) ∈

⋃
(x,d,j)∈T

REACTION(d) do

7: Tr ← {(x, e, j) ∈ T |
8: (i, R, P ) ∈REACTION(e)}
9: TR ← {(x, e, j) ∈ T s.t. xm > 0 ∀m ∈ R}

10: (r, σ)← KINETIC(i, R, P , TR)
11: if σ > α then (r, σ)←CATALYST(i, R, P , TR)
12: σ ← σ/(1 + SPARSITY(Tr,D))
13: if σ < σ∗ then σ∗ ← σ, r∗ ← r

14: if σ∗ < α thenR ← R
⋃
{r∗},

15: TRANSITION UPDATE(T , r∗)
16: returnR

For each reaction candidate, Alg. 4 returns the rate function
with the best statistical score over mass action law kinetics
(Alg. 5), Michaelis-Menten and Hill kinetics (Alg. 6). The
score is the standard deviation of the ratio of the inferred

kinetics over the observed kinetics in all transitions. If the
score is above some threshold α, a catalyst is searched for
by the function Alg. 7. Furthermore, as a heuristic to mini-
mize the risk of interference with other not yet discovered
reactions, the score of the rate functions estimated on transi-
tions with zero values in the predecessor states are favored
by Alg. 8. At the end of the body of the main loop, the
reaction with the best score is inferred, and the whole set of
transitions is updated by removing its effects on the transi-
tions (Alg. 9), before iterating until no more reactions can
be inferred.

Algorithm 2 Slow variation filtering
Parameter: β

1: procedure TRANSITION FILTERING(T , D)
2: for (x,d, j) ∈ T do
3: let (xj(1), . . . ,xj(dj)) = Dj
4: for i ∈ S do

5: if
∣∣∣∣did0

∣∣∣∣ < β. max
1≤t<dj

∣∣∣∣∣xji (t+ 1)− xji (t)

xj0(t+ 1)− xj0(t)

∣∣∣∣∣
then di ← 0

Algorithm 3 Reaction inference
Parameter: δ

1: function REACTION(d)
2: R← ∅, P ← ∅
3: s∗ ← argmax

s∈S
|ds|

4: I ← {i ∈ S s.t. |ds∗ | 6 (1 + δ).|di|}
5: if |I| > 1 then
6: for i ∈ I do
7: if di < 0 then R← R

⋃
{i}

8:
9: else P ← P

⋃
{i}

10: j ← i ∈ P
11: return {(j, R, P )}
12: else
13: (i1, i2)← argmins,s′∈S,dsds′>0,dsds∗<0

14:
{∣∣∣1 + ds∗

ds+ds′

∣∣∣}
15: if

∣∣∣∣1 +
ds∗

di1 + di2

∣∣∣∣ < δ then

16: if ds∗ < 0 then
17: return {(i1, {s∗}, {i1}), (i2, {s∗}, {i2})}
18: else
19: return {(i1, {i1}, {s∗}), (i2, {i2}, {s∗})}
20: else
21: if ds∗ < 0 then return {(s∗, {s∗}, ∅)}
22:
23: else return {(s∗, ∅, {s∗})}
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Algorithm 4 Inference of reaction rate function
1: function KINETIC(i, R, P , T )
2: (f1, σ1)←MASS ACTION(i, R, P , T )
3: (f2, σ2)←HILL(i, R, P , T , 1)
4: (f3, σ3)←HILL(i, R, P , T , 4)
5: j = argmin

1≤j≤3
σj

6: return (fj , σj)

Algorithm 5 Estimation of mass action law kinetics
1: function MASS ACTION(i, R, P , T )
2: K ← ∅
3: for (x,d, j) ∈ T do K ← K ∪ {

∏
s∈R xs

di/d0
}

4: k ← |1/mean(K)|
5: return ((R, P, k.Πs∈Rxs), stddev(K))

Algorithm 6 Estimation of Hill kinetics of order λ
1: function HILL(i, {j}, P , T , λ)
2: V ← ∅
3: (.,d, .)← argmax

(x,.,.)∈T
xi

4: Vmax ← |di/d0|

5: (x, ., .)← argmin
(.,e,.)∈T

∣∣∣∣1− ∣∣∣∣Vmax/2ei/e0

∣∣∣∣∣∣∣∣
6: Km ← xj

7: for (x,d, .) ∈ T do V ← V ∪ {
xλj

Kλ
m + xλj

.
d0

di
}

8: Vmax ← |1/mean(V )|

9: return ({j}, P,
Vmax x

λ
j

Kλ
m + xλj

), stddev(V )

Algorithm 7 Search for a catalyst molecule
Parameter: α

1: function CATALYST(R, P , T )
2: for i ∈ S \ (P

⋃
R) do

3: Ri ← R
⋃
{i}

4: Pi ← P
⋃
{i}

5: Ti ← {(x,d, j) ∈ T | xi > 0}
6: fi, σi ←KINETIC((Ri, Pi, fi), Ti)
7: i∗ ← argmin

i
σi

8: if σi∗ > α then return (Ri∗ , Pi∗ , fi∗), σi∗ else
return (R, P, f), σ

Proposition 1. The time complexity of the CRN learning
algorithm for inferring one reaction is O(t.n2) where t is
the number of transitions in the traces and n the number of
variables.

Algorithm 8 Mean number of zero values in supporting
transition states.
Parameter: γ

1: function SPARSITY(T ,D)
2: n← 0, c← 0
3: for (x,d, j) ∈ T do
4: n← n+ 1
5: let (xj(1), . . . ,xj(dj)) = Dj
6: for i ∈ S do
7: if xi ≤ γ.max1≤t<dj x

j
i (t) then

8: c← c+ 1

9: return c/n

Algorithm 9 Remove the effects of an inferred reaction in
the transitions.

1: procedure TRANSITION UPDATE(T , (R,P, f))
2: for (x,d, j) ∈ T s.t. ∀i ∈ R,xi > 0 do
3: for i ∈ R do
4: di ← di + d0.f(x)

5: for i ∈ P do
6: di ← di − d0.f(x)

Proof. A simple worst-case analysis of algorithms 2, 7, 9
and 8 shows that they are in O(n|T |). Rate inference algo-
rithms 5 and 6 are linear in the size of the set of transitions.
The reaction inference of Alg. 3 is quadratic in n since there
is a potential lookup for pairs of species. Therefore, noting
that in the internal loop over r of Alg. 1 there are at most
2|T | transitions in all the supports Tr, the complexity of this
algorithm is in O(n2|T |).

4. Evaluation on CRN Simulation Traces
In the context of evaluating the learning algorithm on simu-
lation traces, the hidden CRN used to generate those traces
can be used to compare the learned CRN in terms of cor-
rect reactions (true positives), wrong reactions (false posi-
tives) and missing reactions (false negatives). The F mea-
sure is a classical quality measure combining those crite-

ria: F = 2 · precision · recall
precision + recall

where precision =
tp

tp+fp

recall =
tp

tp+fn
and tp, fp, fn are the numbers of true posi-

tive, false positive and false negative inferences respectively.
The F score is equal to 1 for a perfect reconstruction of the
hidden CRN and equal to 0 if not a single reaction of the hid-
den CRN is found. It is worth noting also that the F score
penalizes the case where one reaction of the hidden CRN
lacks in the learned CRN (creation of a False Negative), but
it penalizes twice as much the case where the learned CRN
contains a reaction inexistent in the hidden CRN while still
missing one.
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In the following examples, we shall use traces obtained
with two different kinds of initial states: first a so-called
“canonical trace” where the initial state contains the CRN
input species that are necessary for all reactions to occur,
and random traces obtained by generating initial states with
probability 0.25 for a species to have a zero value, and an
exponential distribution law with mean 100 for non zero val-
ues. The random initial states are thus relatively sparse with
zero values (somehow similar to knock-outs) that prevent
the discovery of some reactions but are useful to disam-
biguate the effects of concurrent reactions.

4.1. Evaluation on Parallel and
Product/Reactant-Parallel CRNs

Hidden parallel CRN Learned CRN
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2

=⇒ B +D A+D
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Figure 3. Parallel CRN example — F score obtained for the
learned CRN as a function of the time lapse used for subsam-
pling (from 0% to 10% of the time horizon) the number of random
initial conditions with zero values, the time horizon of the trace,
and the reaction acceptance threshold α. The statistics (blue curve)
have been obtained with 10 runs using traces from perturbed initial
states with random zeroes. The results with the canonical trace
where A, C, E are initially present, are figured on the red curve.

Fig. 3 shows on a small example of parallel CRN the sen-
sitivity of the F score to, respectively, the level of trace
subsampling, the number of traces with random initial con-
ditions with zeroes, the length of the traces, and the reaction
acceptance threshold α of the algorithm. In the first plot, we
observe not surprisingly that the quality of the learned CRN
is negatively impacted by increasing the subsampling steps.
This is due to a less accurate estimation of the rate functions.
The second curve shows that the number of initial condi-
tions with zeroes in the dataset of random traces increases
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Figure 4. Product-parallel CRN example — sensitivity of the F
score to the learning parameters (subsampling, number of random
initial conditions, length, acceptance).

the score of the learned CRN, while the time horizon of the
traces has no impact. This is consistent with the space-time
trade-off observed with PAC learning for Boolean regula-
tory networks (Carcano et al., 2017). The fourth curves
draw the score of the learned network as a function of α,
the statistical threshold of acceptance of a reaction based on
its kinetics standard deviation. A high value of α allows a
reaction to be selected even if its score is low.

On a single trace of a non parallel CRNs, it is important
that the reaction inference algorithm tries to decompose the
variations of products and reactants in several reactions (two
in Alg. 3). The example in Fig. 4 is a slight modification of
the previous example making it non reactant-parallel with
C, but still product-parallel. The algorithm is still able
to recover the hidden CRN from the canonical trace, with
qualitatively similar sensitivity results.

Fig. 5 shows a reactant-parallel example on which the al-
gorithm is similarly able to recover the structure from the
canonical trace, or from random traces.

4.2. Evaluation on the Chain CRN

Example 1 of a chain is a non-parallel CRN for which we
are able to recover the full structure of the chain CRN using
only one trace, the canonical trace with the input A present.
First, reaction D =⇒ E is inferred based on the last non
zero variations of the trace. Its effect on the variations is then
suppressed and the filtering applied. The fact that species
D’s variations were updated allows for reaction C =⇒ D
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Hidden reactant-parallel CRN Learned CRN

A+D
2

=⇒ B +D A+D
2.2
=⇒ B +D

C
1

=⇒ D C
0.98
=⇒ D

E
3

=⇒ D E
2.78
=⇒ D
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Figure 5. Reactant-parallel CRN — F score versus learning pa-
rameters (subsampling, initial conditions, length, acceptance).

to be uncovered, and so on. The sensitivity results, depicted
in Fig. 6 are quite the same as for the other models, except
when the time length of the traces varies. Unlike for parallel
models, some reactions appear in a significant manner (and
the state variations they induced are not filtered) only after
a certain amount of time. The curve suggests that a time
horizon T ≈ 5 is enough to start having good results, This
is due to the chain structure of the CRN, as can be seen on
the trace displayed in Fig. 1.
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Figure 6. Chain CRN — F score versus learning parameters (sub-
sampling, initial conditions, length, acceptance).

5. Evaluation on a Yeast Cell Cycle Model
On the simulation trace depicted in Fig. 7 of the yeast cell
cycle model of Tyson (Tyson, 1991), our algorithm infers
the reactions given in Table 2. The discrepancies concern-
ing the synthesis reaction of the cyclin can be very well
explained by the existence of multiple time scales in this
example. Indeed when it is produced the Cyclin is immedi-
ately complexed with Cdc and phosphorylated by very fast
reactions. Therefore the free state of the Cyclin cannot be
observed and what is inferred is the synthesis of the fast
equilibrium state of the complexed Cyclin. On the other
hand, the autocatalysis reaction cannot be recovered since
we do not consider stoichiometric coefficient.
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Figure 7. Numerical simulation of the yeast cell cycle model of
(Tyson, 1991).

Hidden CRN Learned CRN

∅ 0.015
=⇒ cy ∅ 0.66

=⇒ cy1 + cdcy2

cy + cd1
200
=⇒ cdcy2 ∅ 0.01

=⇒ cdcy2

cdcy2
0.018
=⇒ cdcy1 cdcy2

0.1152
=⇒ cdcy1

cdcy2 + 2 ∗ cdcy1 cdcy2
0.05
=⇒ cy1

180
=⇒ 3 ∗ cdcy1

cdcy1
1

=⇒ cy1 + cd cdcy1
1.62
=⇒ ∅

cy1
0.6

=⇒ ∅ cy1
0.4

=⇒ cdcy1

cd1
100
=⇒ cd cd1

11259
=⇒ cd

cd
10000
=⇒ cd1 cd

5912
=⇒ cd1

Table 2. Cell cycle model of Tyson (Tyson, 1991) and learned CRN
from the canonical trace where cd is present, α = 5.

6. Evaluation on Real Videomicroscopy Data
In this section we consider data-time series obtained by
biological experiments on NIH3T3 embryonic fibroblast
cells. These data have been used to develop a coupled
model of the cell cycle and the circadian clock in this cell
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line in (Traynard et al., 2016). The reported experiments
have been done using time lapse videomicroscopy and cell
tracking using different fluorescent reporters for the cell
cycle and the circadian clock observed during 72 hours in
proliferating NIH3T3 embryonic mouse fibroblasts (Feillet
et al., 2014). This cell line was modified to include three
fluorescent markers of the circadian clock and the cell cycle:
the RevErb-α::Venus clock gene reporter (Nagoshi et al.,
2004) for measuring the expression of the circadian protein
RevErb-α, and the Fluorescence Ubiquitination Cell Cycle
Indicators (FUCCI), Cdt1 and Geminin, two cell cycle pro-
teins which accumulate during the G1 and S/G2/M phases
respectively, for measuring the cell cycle phases (Sakaue-
Sawano et al., 2008). The cells were left to proliferate in
regular medium supplemented with different concentrations
of FBS (20% in this data set). Long-term recording was per-
formed in constant conditions with one image taken every
15 minutes during 72 hours.
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Figure 8. Two videomicroscopy traces from the dataset of (Feillet
et al., 2014) about cell cycle progression and circadian clocks
markers in embryonic NIH3T3 fibroblasts over 3 days.

Fig. 8 shows two traces of this dataset, showing the high
variability of the cell behaviors. On the first trace, the al-
gorithm with α = 1.5 infers the following reactions with
recourse to Michaelis-Menten kinetics:

Learned CRN on the first trace Rate Functions

G1 =⇒ G2 53.66
G1

G1 + 11.6

RevErbα =⇒ G1 33.42
RevErbα

RevErbα+ 43.7

G1 =⇒ ∅ 133.62
G1

G1 + 150.4

On the second trace, the reactions inferred are

Learned CRN on second trace Rate Functions

RevErbα =⇒ G1 31.9
RevErbα

RevErbα+ 45.89

G2 =⇒ ∅ 21.39
G2

G2 + 44.82

Interestingly, on the whole dataset of 91 tracked cells and
26000 observed state transitions, the algorithm still manages
to infer meanigful reactions:

Learned CRN on all dataset Rate Functions

G1 =⇒ G2 7.1
G1

G1 + 3.68

RevErbα =⇒ G1 22.56
RevErbα

RevErbα+ 71.45

G1 =⇒ ∅ 5.96
G1

G1 + 5.0

G2 =⇒ ∅ 54.84
G2

G2 + 176.23

7. Conclusion
The statistical learning algorithm for learning CRNs from
time series data presented in this paper provides encouraging
results. It is a greedy algorithm in the sense that at each
step the reaction candidate with the best score among the
observed transitions is inferred and is never reconsidered.
The choice of the first reaction inference is thus crucial
to the global result of the learning algorithm. This choice
is facilitated when the traces contain regimes where some
molecular concentrations are quasi-stable, like in the chain
example, or in traces obtained from initial states with many
zeroes. This is not the case for oscillating trace which are
thus more challenging, as illustrated with the simple model
of the yeast cell cycle of (Tyson, 1991), and with the real
traces obtained by videomicroscopy of biomarkers of the
cell cycle and circadian clock of (Feillet et al., 2014).

One crucial feature of our algorithm is the inference of the
reaction structure together with a rate function with kinetic
parameters estimated on all the transitions where the reac-
tion can occur. The standard deviation of the reaction rates
is used to score the reaction candidates and choose to infer
the reaction with the best score. This process is iterated
after removing the changes due to the inferred reaction in
the traces before the computation of the next reaction can-
didates. One way of possible improvement would be to
update the estimation of the kinetic parameters of the previ-
ously inferred reactions when a new non parallel reaction is
inferred.

The application of our algorithm to the yeast cell cycle
model of Tyson which contains multiple time scales necessi-
tated to increase the acceptance parameter of our algorithm,
and to content ourselves with the inference of reactions cor-
responding to the slow timescale, the fast reactions being
just not observable. The application to real traces com-
ing from particularly noisy videomicroscopy data on mam-
malian cells showing moreover very high variability, was
very ambitious and necessitated to similarly adapt the thresh-
old parameters to obtain better results. It is remarkable that
meaningful reactions coupling the cell cycle progression
with the circadian clock marker could be inferred with this
dataset. More work is however needed to analyze the be-
haviour of our algorithm on such highly variable traces and
find strategies to automatically adapt the threshold parame-
ters of the algorithm to the quality of the traces.
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