E. Abramov, I. Dolev, H. Fogel, G. D. Ciccotosto, E. Ruff et al., Amyloid-? as a positive endogenous regulator of release probability at hippocampal synapses, Nat. Neurosci, vol.12, pp.1567-1576, 2009.

E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M. Segall et al., A Baseline for the Multivariate Comparison of Resting-State Networks, Front. Syst. Neurosci, vol.5, 2011.

A. Al-nuaimi, E. Jammeh, L. Sun, and E. Ifeachor, Complexity Measures for Quantifying Changes in Electroencephalogram in Alzheimer's Disease, Complexity, vol.2018, pp.1-12, 2018.

C. Babiloni, G. Binetti, E. Cassetta, G. D. Forno, C. D. Percio et al., Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study, Clin. Neurophysiol, vol.117, pp.252-268, 2006.

C. Babiloni, G. Frisoni, M. Pievani, F. Vecchio, R. Lizio et al., Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease, NeuroImage, vol.44, pp.123-135, 2009.

C. Babiloni, R. Lizio, N. Marzano, P. Capotosto, A. Soricelli et al., Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms, Int. J. Psychophysiol, vol.103, pp.88-102, 2016.

C. Babiloni, P. J. Visser, G. Frisoni, P. P. De-deyn, L. Bresciani et al., Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint, Neurobiol. Aging, vol.31, pp.1787-1798, 2010.

S. S. Bassett, D. M. Yousem, C. Cristinzio, I. Kusevic, M. A. Yassa et al., Familial risk for Alzheimer's disease alters fMRI activation patterns, Brain, vol.129, pp.1229-1239, 2006.

R. J. Bateman, C. Xiong, T. Benzinger, A. M. Fagan, A. Goate et al., Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease, N. Engl. J. Med, vol.367, pp.795-804, 2012.

D. A. Bennett, J. A. Schneider, Z. Arvanitakis, J. F. Kelly, N. T. Aggarwal et al., Neuropathology of older persons without cognitive impairment from two community-based studies, Neurology, vol.66, pp.1837-1844, 2006.

K. J. Blinowska, F. Rakowski, M. Kaminski, D. Vico-fallani, F. et al., Functional and effective brain connectivity for discrimination between Alzheimer's patients and healthy individuals: A study on resting state EEG rhythms, Clin. Neurophysiol, vol.128, pp.667-680, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443255

R. L. Bluhm, E. A. Osuch, R. A. Lanius, K. Boksman, R. Neufeld et al., Default mode network connectivity: effects of age, sex, and analytic approach, NeuroReport, vol.19, pp.887-891, 2008.

S. C. Burnham, P. Bourgeat, V. Doré, G. Savage, B. Brown et al., Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer's disease pathophysiology (SNAP) or Alzheimer's disease pathology: a longitudinal study, Lancet Neurol, vol.15, pp.1044-1053, 2016.

M. A. Busche, G. Eichhoff, H. Adelsberger, D. Abramowski, K. Wiederhold et al., Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease, Science, vol.321, pp.1686-1689, 2008.

A. Caroli, A. Prestia, S. Galluzzi, C. Ferrari, W. M. Van-der-flier et al., Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression, Neurology, vol.84, pp.508-515, 2015.

A. D. Cohen, J. C. Price, L. A. Weissfeld, J. James, B. L. Rosario et al., Basal Cerebral Metabolism May Modulate the Cognitive Effects of A in Mild Cognitive Impairment: An Example of Brain Reserve, J. Neurosci, vol.29, pp.14770-14778, 2009.

M. Dottori, L. Sedeño, M. Caro, M. Alifano, F. Hesse et al., Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing, Sci. Rep, vol.7, 2017.

A. Drzezga, N. Lautenschlager, H. Siebner, M. Riemenschneider, F. Willoch et al., Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study, Eur. J. Nucl. Med. Mol. Imaging, vol.30, pp.1104-1113, 2003.

B. Dubois, S. Epelbaum, F. Nyasse, H. Bakardjian, G. Gagliardi et al., Cognitive and neuroimaging features and brain ?-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study, Lancet Neurol, vol.17, pp.335-346, 2018.

D. Engemann, F. Raimondo, J. King, M. Jas, A. Gramfort et al., Automated measurement and prediction of consciousness in vegetative and minimally conscious patients, ICML workshop on statistics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225254

D. A. Engemann, F. Raimondo, J. King, B. Rohaut, G. Louppe et al., Robust EEGbased cross-site and cross-protocol classification of states of consciousness, Brain J. Neurol, vol.141, pp.3179-3192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01887793

F. M. Filbey, K. J. Slack, T. P. Sunderland, and R. M. Cohen, Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEϵ4 in young healthy adults, NeuroReport, vol.17, pp.1585-1590, 2006.

M. Filippi, P. Valsasina, P. Misci, A. Falini, G. Comi et al., The organization of intrinsic brain activity differs between genders: A resting-state fMRI study in a large cohort of young healthy subjects, Hum. Brain Mapp, vol.34, pp.1330-1343, 2013.

T. Gómez-isla, R. Hollister, H. West, S. Mui, J. H. Growdon et al., Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease: Neuronal Loss in the Superior Temporal Sulcus in Alzheimer's Disease, Ann. Neurol, vol.41, pp.17-24, 1997.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MEG and EEG data analysis with MNE-Python, Front. Neurosci, vol.7, p.267, 2013.

M. Grunwald, F. Busse, A. Hensel, F. Kruggel, S. Riedel-heller et al., Correlation between cortical theta activity and hippocampal volumes in health, mild cognitive impairment, and mild dementia, J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc, vol.18, pp.178-184, 2001.

W. De-haan, K. Mott, E. Van-straaten, P. Scheltens, and C. J. Stam, Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease, PLoS Comput. Biol, vol.8, p.1002582, 2012.

M. Habert, H. Bertin, M. Labit, M. Diallo, M. S. Martineau et al., Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds, Ann. Nucl. Med, vol.32, pp.75-86, 2018.

R. Hornero, D. Abasolo, J. Escudero, and C. Gomez, Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer's disease, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.367, pp.317-336, 2009.

C. R. Jack, D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn et al., Toward a biological definition of Alzheimer's disease, Alzheimers Dement, vol.14, pp.535-562, 2018.

C. R. Jack, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner et al., Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, Lancet Neurol, vol.12, pp.207-216, 2013.

C. R. Jack, D. S. Knopman, S. D. Weigand, H. J. Wiste, P. Vemuri et al., An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease, Ann. Neurol, vol.71, pp.765-775, 2012.

W. Jagust, Is amyloid-? harmful to the brain? Insights from human imaging studies, Brain, vol.139, pp.23-30, 2016.

W. Jagust, A. Gitcho, F. Sun, B. Kuczynski, D. Mungas et al., Brain imaging evidence of preclinical Alzheimer's disease in normal aging, Ann. Neurol, vol.59, pp.673-681, 2006.

V. Jelic, S. E. Johansson, O. Almkvist, M. Shigeta, P. Julin et al., Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease, Neurobiol. Aging, vol.21, pp.533-540, 2000.

J. Jeong, EEG dynamics in patients with Alzheimer's disease, Clin. Neurophysiol, vol.115, pp.1490-1505, 2004.

S. C. Johnson, B. T. Christian, O. C. Okonkwo, J. M. Oh, S. Harding et al., Amyloid burden and neural function in people at risk for Alzheimer's Disease, Neurobiol. Aging, vol.35, pp.576-584, 2014.

D. T. Jones, J. Graff-radford, V. J. Lowe, H. J. Wiste, J. L. Gunter et al., amyloid, and cascading network failure across the Alzheimer's disease spectrum, Cortex, vol.97, pp.143-159, 2017.

D. T. Jones, D. S. Knopman, J. L. Gunter, J. Graff-radford, P. Vemuri et al., Cascading network failure across the Alzheimer's disease spectrum, Brain, vol.139, pp.547-562, 2016.

J. King, J. D. Sitt, F. Faugeras, B. Rohaut, E. Karoui et al., Information Sharing in the Brain Indexes Consciousness in Noncommunicative Patients, Curr. Biol, vol.23, pp.1914-1919, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01865886

D. S. Knopman, C. R. Jack, H. J. Wiste, S. D. Weigand, P. Vemuri et al., Brain injury biomarkers are not dependent on ?-amyloid in normal elderly: Neuronal Injury Biomarkers, Ann. Neurol, vol.73, pp.472-480, 2013.

G. Kramer, W. M. Van-der-flier, C. De-langen, M. A. Blankenstein, P. Scheltens et al., EEG functional connectivity and ApoE genotype in Alzheimer's disease and controls, Clin. Neurophysiol, vol.119, pp.2727-2732, 2008.

M. J. De-leon, A. Convit, O. T. Wolf, C. Y. Tarshish, S. Desanti et al., Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positronemission tomography (FDG/PET), Proc. Natl. Acad. Sci, vol.98, pp.10966-10971, 2001.

H. K. Lim, R. Nebes, B. Snitz, A. Cohen, C. Mathis et al., Regional amyloid burden and intrinsic connectivity networks in cognitively normal elderly subjects, Brain, vol.137, pp.3327-3338, 2014.

J. Lind, J. Persson, M. Ingvar, A. Larsson, M. Cruts et al., Reduced functional brain activity response in cognitively intact apolipoprotein E ?4 carriers, Brain, vol.129, pp.1240-1248, 2006.

C. Luckhaus, B. Grass-kapanke, I. Blaeser, R. Ihl, T. Supprian et al., Quantitative EEG in progressing vs stable mild cognitive impairment (MCI): results of a 1-year follow-up study, Int. J. Geriatr. Psychiatry, vol.23, pp.1148-1155, 2008.

M. Melloni, L. Sedeño, E. Hesse, I. García-cordero, E. Mikulan et al., Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease, Sci. Rep, vol.5, 2015.

E. C. Mormino, R. A. Betensky, T. Hedden, A. P. Schultz, R. E. Amariglio et al.,

, Synergistic Effect of ?-Amyloid and Neurodegeneration on Cognitive Decline in Clinically Normal Individuals, JAMA Neurol, vol.71, p.1379, 2014.

E. C. Mormino, A. Smiljic, A. O. Hayenga, H. Onami, S. Greicius et al., Relationships between Beta-Amyloid and Functional Connectivity in Different Components of the Default Mode Network in Aging, Cereb. Cortex, vol.21, pp.2399-2407, 2011.

J. C. Morris, C. M. Roe, C. Xiong, A. M. Fagan, A. M. Goate et al., APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging, Ann. Neurol, vol.67, pp.122-131, 2010.

L. Mosconi, V. Berti, L. Glodzik, A. Pupi, D. Santi et al., Pre-Clinical Detection of Alzheimer's Disease Using FDG-PET, with or without Amyloid Imaging, J. Alzheimers Dis, vol.20, pp.843-854, 2010.

L. Mosconi, R. Mistur, R. Switalski, W. H. Tsui, L. Glodzik et al., FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease, Eur. J. Nucl. Med. Mol. Imaging, vol.36, pp.811-822, 2009.

A. Nakamura, P. Cuesta, A. Fernández, Y. Arahata, K. Iwata et al., Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease, Brain, vol.141, pp.1470-1485, 2018.

A. Nakamura, P. Cuesta, T. Kato, Y. Arahata, K. Iwata et al., Early functional network alterations in asymptomatic elders at risk for Alzheimer's disease, Sci. Rep, 2017.

P. T. Nelson, I. Alafuzoff, E. H. Bigio, C. Bouras, H. Braak et al., Correlation of Alzheimer Disease Neuropathologic Changes With Cognitive Status: A Review of the Literature, J. Neuropathol. Exp. Neurol, vol.71, pp.362-381, 2012.

J. J. Palop and L. Mucke, Amyloid-?-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks, Nat. Neurosci, vol.13, pp.812-818, 2010.

J. D. Sitt, J. King, E. Karoui, I. Rohaut, B. Faugeras et al., Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state, Brain, vol.137, pp.2258-2270, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01865883

S. M. Smith and T. E. Nichols, Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference, NeuroImage, vol.44, pp.83-98, 2009.

A. Soldan, C. Pettigrew, Q. Cai, M. Wang, A. R. Moghekar et al., Hypothetical Preclinical Alzheimer Disease Groups and Longitudinal Cognitive Change, JAMA Neurol, vol.73, p.698, 2016.

R. A. Sperling, P. S. Aisen, L. A. Beckett, D. A. Bennett, S. Craft et al., Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.280-292, 2011.

C. J. Stam, Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders, J. Neurol. Sci, vol.289, pp.128-134, 2010.

C. J. Stam, Y. Van-der-made, Y. Pijnenburg, and P. Scheltens, EEG synchronization in mild cognitive impairment and Alzheimer's disease, Acta Neurol. Scand, vol.108, pp.90-96, 2003.

T. Staudinger and R. Polikar, Analysis of complexity based EEG features for the diagnosis of Alzheimer's disease. IEEE, pp.2033-2036, 2011.

S. Teipel, H. Bakardjian, G. Gonzalez-escamilla, E. Cavedo, S. Weschke et al., No association of cortical amyloid load and EEG connectivity in older people with subjective memory complaints, NeuroImage Clin, vol.17, pp.435-443, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01738143

J. B. Toledo, M. W. Weiner, D. A. Wolk, X. Da, K. Chen et al., Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition, Acta Neuropathol. Commun, vol.2, 2014.

V. L. Villemagne, S. Burnham, P. Bourgeat, B. Brown, K. A. Ellis et al., Amyloid ? deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study, Lancet Neurol, vol.12, pp.357-367, 2013.

S. J. Vos, C. Xiong, P. J. Visser, M. S. Jasielec, J. Hassenstab et al., Alzheimer's disease and its outcome: a longitudinal cohort study, Lancet Neurol, vol.12, pp.957-965, 2013.

I. Weissman-fogel, M. Moayedi, K. S. Taylor, G. Pope, and K. D. Davis, Cognitive and default-mode resting state networks: do male and female brains 'rest' differently? Hum, Brain Mapp, vol.31, pp.1713-1726, 2010.

M. Wirth, S. Villeneuve, C. M. Haase, C. M. Madison, H. Oh et al., Associations Between Alzheimer Disease Biomarkers, Neurodegeneration, and Cognition in Cognitively Normal Older People, JAMA Neurol, 2013.

A. A+n+ and A. , There was no impact of amyloid load and no interaction between amyloid load and neurodegeneration for PLV and wPLI in alpha and theta bands. Men had lower PLV alpha and lower PLV theta (FDR-corrected P<0.0001) (Supplementary Fig. 10). There was no impact of age, educational level, ApoE4 status and hippocampal volume on PLV and wPLI in alpha and theta bands. 224 electrodes topographical analysis for wPLI and PLV We evaluated topographical differences across FC measures between the control group (A-N-) and the three other groups, We did multiple linear regression of average wPLI and PLV on all scalp electrodes to assess the impact of amyloid load and brain metabolism on these EEG metrics, adjusting on the following potential confounding variables: age, gender, education level, ApoE4 status and hippocampal volume

, All p-values were adjusted on ApoE4 status, gender, education level, age and hippocampal volume. Pvalues were corrected for multiplicity on 224 electrodes by cluster permutation test

, FDR-corrected P=0.1323, respectively) and a significant interaction between neurodegeneration status and electrodes for PLV alpha and PLV theta (FDR-corrected P<0.0001) and for wPLI theta (FDR-corrected P=0.0315). A-N+ subjects presented a decrease of PLV alpha and PLV theta in fronto-central and parieto-occipital regions compared to A-N-subjects (Supplementary Fig. 11). PLV alpha and PLV theta decreased in fronto-central and parieto-occipital regions in N+ subjects, There was a main effect of neurodegeneration status for PLV alpha and PLV theta (P=0.0065

, There was no correlation between wSMI alpha and PLV alpha (R2=0.01, p=0.143) and between wSMI theta and wPLI theta (R2=0.00, p=0.436). wSMI theta and PLV theta were anti-correlated (R2=0.17, p<0.001). Anti-correlation between wSMI theta and PLV theta explains why while wSMI theta increased in fronto-central regions in N+ subjects, Correlation between wSMI, PLV and wPLI wSMI alpha was correlated with wPLI alpha (R2=0.22, p<0.001) (Supplementary Fig. 13)

. Imperatori, In contrast to PLV, instead of measuring basic oscillatory correlations, wSMI assesses the non-linear coupling of information sharing among distant networks. wSMI presents several other advantages, including a fast and robust estimation of the signals' entropies and the absence of spurious correlations between EEG signals arising from common sources, These results can be linked to the distinct information provided by each of the FC markers. It has been shown that wSMI has a higher sensitivity towards nonlinear interactions between signals while wPLI has optimal sensitivity for both linear and nonlinear interactions, 2011.

A. A+n-vs-a-n-, There was no significant difference between FC matrices after FDR correction on 91 inter-ROI connections, neither for wSMI, PLV or wPLI. These results can be explained by a lack of power due to the analysis of a small random sample of subjects from each group (n=25) and multiple comparison correction on 91 inter-ROI connections

R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage, vol.31, pp.968-980, 2006.

M. Dottori, L. Sedeño, M. Caro, M. Alifano, F. Hesse et al., Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing, Scientific Reports, 2017.

E. Hesse, E. Mikulan, J. Decety, M. Sigman, C. Garcia-m-del et al., Early detection of intentional harm in the human amygdala, Brain, vol.139, pp.54-61, 2016.

L. S. Imperatori, M. Betta, L. Cecchetti, A. Canales-johnson, E. Ricciardi et al., EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions, 2018.

J. P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, Measuring phase synchrony in brain signals, Hum Brain Mapp, vol.8, pp.194-208, 1999.

M. Melloni, L. Sedeño, E. Hesse, I. García-cordero, E. Mikulan et al., Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson's disease, Scientific Reports, vol.5, 2015.

M. Reuter, N. J. Schmansky, H. D. Rosas, and B. Fischl, Within-subject template estimation for unbiased longitudinal image analysis, Neuroimage, vol.61, pp.1402-1418, 2012.

C. J. Stam, G. Nolte, and A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources, Hum Brain Mapp, vol.28, pp.1178-1193, 2007.

M. Vinck, R. Oostenveld, M. Van-wingerden, F. Battaglia, and C. Pennartz, An improved index of phasesynchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias, Neuroimage, vol.55, pp.1548-1565, 2011.