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Abstract—This paper investigates the precise identification of
physical phenomena in the Internet of Things (IoT) context,
which is one of the main challenges when dealing with the massive
scale of IoT data. For this, we use information theory quantifiers
in the characterization and classification of physical phenomena
to minimize the effects of the lack of proper descriptions and
the high heterogeneity of IoT sensors. Thus, by understanding
the dynamics behind physical phenomena, we perform the
classification of sensor data based on their expected behavior, not
their data points. By using a simple classification algorithm, we
show that the behavioral dynamics of some physical phenomena
are more affected by different geographical regions than others.
This gives a classification accuracy of 75% when all phenomena
are considered and of 93% when considering only the invariant
ones, with a worst case of false positives of 12%. This result
indicates the high potential of our technique to correctly identify
physical phenomena from sensor data, a fundamental issue for
several applications, even in an unreliable IoT environment.

Keywords-Internet of things, Time series characterization,
Time series classification, Information theory quantifiers

I. INTRODUCTION

The convergence between physical and informational worlds
is increasingly becoming a reality. In recent years, the In-
ternet of Things (IoT) [1], [2] has received special attention
from both industry and academy, and plays an important
role in this context. By their ability to interact with real
world, IoT sensors are the “eyes” and ‘“ears” for the new
forthcoming systems. The number of IoT initiatives is rapidly
growing around the world, with the potential to collect an
unprecedented amount of data. From home automation [3]
and agricultural applications [4] to large smart cities [5]
and global weather forecasting [6], the range of physical
phenomena being monitored, as the amount of generated
data, is impressive. However, when dealing with this massive
scale of IoT [7], a challenging question is “how to precisely
characterize and classify physical phenomena in data collected
by a large population of sensors?”

In this question, there are two issues to examine. First,
a poor description of both data and resources of most de-
ployed sensors in current IoT solutions, with their sensors
deployed all over the world (some of those solutions have their
data available on the Web, e.g., ThingSpeak IoT Platform —
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http://thingspeak.com [8]). Generally, they are described by a
simple set of tags and textual information, freely assigned by
their owners. This makes the analysis and, consequently, the
understanding of the related physical phenomena prone to er-
rors and misunderstandings. Second, the high heterogeneity of
sensors brings differences in the resolution and magnitude of
their collected data. This may affect distance-based algorithms
when making comparisons between data collected by pairs of
Sensors.

Given such issues, we claim that solutions to handle data
collected from IoT platforms should avoid the use and the
processing of raw data. Instead, it is recommended (i) the
extraction of features able to capture data attributes of the
physical phenomena, and (ii) the analysis of such features
using machine learning techniques (e.g., classification and
clustering) [9]. This has the benefit of minimizing or cir-
cumventing the effects of inadequate descriptions and high
data variability, as mentioned above. In order to perform the
feature extraction and feature analysis, we will model the data
collected from sensors as time series.

The starting point of the characterization and classification
of physical phenomena is the identification of features to be
extracted. This may lead to a problem in which features can
depend on a given instance of the data and not represent the
phenomena behind it. For instance, a feature vector of different
sensors, even for the same phenomenon, but created at differ-
ent moments and locations, may lead to completely different
values, which may invalidate any further analysis [10].

To tackle all these challenges related to the precise identifi-
cation of physical phenomena in the IoT context, we make
the following contributions: (i) We use information theory
quantifiers to precisely characterize physical phenomena. In
this work, we will consider temperature, relative humidity,
atmospheric pressure and wind speed, which are physical
phenomena typically monitored in IoT solutions. These quan-
tifiers allow us fo know the behavior behind a given physical
phenomenon; (ii) We model data collected from heterogeneous
sensors, at different scales and sampling rates, as a unified rep-
resentation. We advance the state-of-the-art of understanding
and classifying IoT data by designing strategies based on the
phenomena’ expected behavior, rather than on the raw data of
a sensor itself. This also helps in the scalability problem in IoT



by avoiding comparisons with a large number of time series;
and (iii) We perform the classification of physical phenomena
by analyzing their placement on the Causality Complexity-
Entropy Plane (CCEP). We compare their placement with
previously learned placement regions from known physical
phenomena. We also employ a robust method to minimize
the lack of a proper distance measure for this plane, helping
further investigations and reducing the gap between the theory
from Bandt-Pompe transformations (method used in this work)
and their application to problems in real-world scenarios.

The rest of this paper is organized as follows. Section II
discusses the related work and motivates our main problem.
Section III presents the information theory concepts and the
background necessary to understand the proposed technique.
Section IV presents a data characterization of the physical
phenomena used in this work, and Section V shows our clas-
sification strategy to correctly identify an appropriate sensor
monitoring a given data type. Section VI concludes the work
and presents some open research issues.

II. RELATED WORK AND PROBLEM DEFINITION

Time series analysis is a research topic that gained a new
breath in last years, mainly due to the increasing attention for
big data, machine learning, and IoT initiatives. A considerable
number of algorithms and strategies has been proposed [9], in
which classification and clustering are the most representative
ones for the supervised and unsupervised cases, respectively.

These solutions are, basically, divided in those which use
raw time series data and those in which some processing is
applied before extracting information. The algorithms based
on raw data generally compute some distance metric (e.g.,
Euclidean, Fréchet, dynamic time warping (DTW) [11]) be-
tween pairs of time series. Those with the lower distances
are grouped together (clustering), or identified as similar
(classification). However, for IoT scenarios, in which there is
a vast heterogeneity of sensors, some assumptions can not be
made. For instance, most of these solutions assume that time
series have similar length, or they are sampled at the same
constant rate. Furthermore, due to the high number of available
sensors, it is not scalable to perform direct comparisons on raw
data, making many strategies unsuitable for this scenario.

On the other hand, strategies based on extracting features
from the time series seem to be more appropriate to the
problem. These solutions are based on the analysis of a new
vector of features extracted from the time series [10], [12]. One
of the first advantages of this strategy is the dimensionality
reduction of the time series, which are expected to have a very
large length for in IoT. This reduction and equalization of sizes
was also the subject of many studies in the literature, via some
smoothing technique or symbolic approximation [13].

Another point to be concerned in feature extraction is related
to the decision of which features to compute. Since we are
interested in physical phenomena, this may lead to features that
can be dependent on the current instance of time series, not
representing the phenomena behind it. For instance, features
from different time series, even for a same given phenomenon,

may lead to completely different values, which may invalidate
any further analysis. For this cases, they may change as a
function of time and space, requiring another extraction for
new features, that could be computationally expensive [10].

Thus, it is reasonable to consider as features those metrics
that could represent the behavior of a phenomenon measured
by the sensor, independently of the current sample. In this
direction, metrics originated from information theory seem to
be appropriate to extract this knowledge from a phenomenon.
The use of information theory quantifiers has been applied
for characterizing time series in several studies. These metrics
proved to be effective in distinguishing different dynamic
behaviors of time series [14]-[16], being useful in the charac-
terization of real-world time series [17], [18].

In this work, we use information theory quantifiers to
characterize the behavior behind physical phenomena. Our
aim is better to identify time series by just comparing their
behaviors, not their data points. This allows avoiding the
comparisons for identification, between a large number of
time series, thus, solving the scalability problem in IoT. We
also base the extraction of the quantifiers in a transformation
from the time series, which is valid for the dimensionality
reduction of the data as well as to increase their robustness to
IoT problems, discussed in the following sections.

III. THE BANDT-POMPE TRANSFORMATION
AND INFORMATION THEORY QUANTIFIERS

Before extracting the information theory quantifiers from
physical phenomena, we have to first transform their data from
time domain to another more appropriate one. In this section
we present the Bandt-Pompe transformation and the process
of calculating those quantifiers from it. We also show that
this transformation meets our needs, since it better represents
the time series dynamic behavior, being fundamental for the
proper calculation of our metrics. We also present the CCEP,
which is a method that combine those metrics in a plane,
so different time series dynamics could be distinguished by
different placement regions on it.

A. The Bandt-Pompe Distribution

The Bandt-Pompe method [19] consists of transforming a
given time series onto a set of symbolic patterns, each of
size D, according to the ordinal relation between neighboring
data samples. From these patterns, it follows by assigning a
probability distribution to the time series, by counting the
frequency of each pattern [17], [20]. In the following we
present a more formal description for this process.

For a given time series X = {z1,...,zr} and an em-
bedding dimension D € N, the Bandt-Pompe transforma-
tion performs by generating partitions P, C X of size
D, such that, for each instant ¢ € {D,..., T}, P, =
{*+—(p=1),T+—(p—2), -, Tt—1,¢}. The ordinal relation for
each of these instants ¢ consists in the permutation m =
(ro,r1,-..,7p-1) of (0,1,...,D — 1) subject to z_r,, , <
Lt—rp_o <--- < Lt—ry < Ti—rq [14]



In other words, 7 represents the necessary permutation for
the elements of P, to be sorted in ascending order. For each
permutation 7 of all D! possible permutations of order D, let
P, = {t: D <t <T} be the set of all partitions that has the
permutation type 7, and |P,| € {0,...,7 — D + 1} be the
number of partitions of type 7, then the probability distribution
P = {p(m)} is defined by

[Pr|

P =7
satisfying the conditions p(7) >=0and ) _p(7) = 1.

The choice of D depends on the length 7' of the time
series, and the condition 7" >> D! must be satisfied in order
to obtain reliable statistics [20]. For practical purposes, Bandt
and Pompe [19] recommended D in the interval [3...7].

A variant of this method considers inserting an embedding
delay 7 € N [17], such that the elements of each partition be
separated by intervals of size 7, corresponding to a sample
by regular spaced intervals [20]. Thus, the partitions are
defined as Pt = {xtf(Dfl)T7 Tt—(D—=2)75 -+ Lt—7) l‘t}, and
the probability distribution as

[Pr|

P =T =D )

A detailed study on the impact of 7 in the complexity
measures is given by Zunino et al. [20]. It is clear that the
method originally proposed by Bandt and Pompe is equivalent
to the case where 7 = 1.

The Bandt-Pompe transformation allows the calculation
of measures from this distribution generated by the ordinal
permutations, with the advantages to be simple, fast to cal-
culate, robust in the presence of observational and dynamic
noise, and invariant with respect to nonlinear monotonous
transformations [14], [17]. With this method, some details of
the amplitude and variability of the original time series are lost,
however, it is very suitable for the analysis of experimental
data since it avoids amplitude threshold dependencies that
affect other methods based on range partitions [20].

(D

2)

B. Information theory quantifiers

Following the initial purpose of Bandt and Pompe, the
information quantifiers are calculated from the distribution
p(7), for all D! permutations 7 of order D. For our purposes
these will be the metrics used to express different time series
dynamics and, thus, making their distinction possible.

1) Permutation Entropy: Since the Bandt-Pompe distri-
bution is based on the permutations of neighboring values,
the authors proposed a variation from the classical entropy
of Shannon, which they called permutation entropy, and is
defined as

H[P] = - p(m)logp(m), 3)

where 0 < H[P] < log D!. The permutation entropy is equiv-
alent to the Shannon entropy and is a measure of uncertainty
associated to the process described by P [17]. Lower values of
H|[P] represent an increasing or decreasing sequence of values
in the permutation distribution, indicating that the original time

series is deterministic. On the other side, high values of H|[P)
indicate a completely random system [19].

2) Normalized Shannon Entropy: The maximum value for
H{[P] occurs when all D! possible permutations have the same
probability to occur, which is the case for the uniform distri-
bution P, of permutations. Thus, Hy.x = H[P,] = log D!,
where P, = {1/D!,...,1/D!}. [20].

Rosso et al. [14] defined the normalized Shannon entropy,
from the permutation entropy case, as

Hs[P] = 4)

where 0 < Hg[P] < 1.

3) Statistical Complexity: Another statistical measure that
can be computed from the permutation distribution is the
statistical complexity. Defined by Lamberti et al. [21], this
measure is another point of view concerning the knowledge
of some underlying process, based on the Jensen-Shannon
divergence JS between the associated probability distribution
P and the uniform distribution P,, i.e., the trivial case for
the minimum knowledge from the process. The statistical
complexity is given by

Cys|P] = Qs|P, P,|Hs[P], )

where P = {p(m)} is the Bandt-Pompe distribution, P, is the
uniform distribution, and Hg[P] is the normalized Shannon
entropy, as described above.

The disequilibrium @ ;s[P, P,] is given by

Qus|P, Pu] = QoJS[P, P, (6)
%{SVBRﬂ“HZ“E%v<ﬂ

where S is the Shannon entropy measure and @, given by

D! +1 -
Qo= -2 {( D—"— ) In(D!'+ 1) —2In(2D!) + ln(D!)} ,
®)
is a normalization constant equal to the inverse of the maxi-
mum value of JS[P, P,], so 0 < Qs <1 [16], [17].

C. Causality Complexity-Entropy Plane

Both normalized Shannon entropy and statistical complexity
measures are are very suitable quantifiers to extract knowledge
from the dynamic behavior of a given process and, thus, dis-
tinguishing them. Based on these measures, Rosso et al. [14]
proposed the CCEP, which is a 2-dimensional metric space
built by the statistical complexity (Cjs) as the y-axis and the
normalized Shannon entropy (Hg) as the z-axis.

An important characteristic of the CCEP is the placement
of time series with different dynamical behaviors at specific
regions in the plane. For instance, the plane allow us dis-
tinguishing deterministic, stochastic, and chaotic time series,
based on their placement on it [14]. Figure 4 illustrates
different planes for D = {4,...,7}. For different values of
Hg and order D, the statistical complexity measure ranges
between a minimum and maximum limits, as illustrated in the
figure (for more details, please see [14]).



To understand the intuition behind the CCEDP, it is important
to understand the particularities of each of their measures.
With the normalized Shannon entropy it is possible to measure
the amount of uncertainty one may have from the process,
ranging from the certain prediction of the possible values
(H = 0) to the maximum uncertainty (uniform distribution)
(H = 1) [21]. On the other hand, the statistical complexity
measure is able to measure the levels in which these dynamics
affect the time series. A higher statistical complexity means
that both regular and random behaviors are present in a given
time series at the same level, i.e., in a equilibrium. Otherwise,
it measures if these behaviors are present but one having more
influence than the other, where a zero value means only one
of them is present. Those measures, when combined, reveal
some details of the dynamics of the time series, which can
be used for effectively discerning among different behaviors,
such as deterministic, randomness, and chaotic behaviors [14].

IV. CHARACTERIZATION OF PHYSICAL PHENOMENA

Focusing on the provision of a better understanding of real-
world data, this section presents a characterization of physical
phenomena (e.g., temperature, atm. pressure, humidity, and
wind speed), when applying the previous discussed metrics.
As previously discussed, the Bandt-Pompe approach has some
properties that make it well suited for its application to real
data. Furthermore, using the normalized Shannon entropy
(Hg) and the statistical complexity (Cjg) as information
quantifiers along with the CCEP, allow us distinguishing the
different time series behaviors.

a) Dataset selection: When dealing with IoT sensors,
there are some uncertainty and unreliability that must be con-
sidered before dealing with their data. For instance, for sensors
available in IoT platforms, such as the case of ThingSpeak,
the data and resources usually are not described or, when it
does, have a very poor description. Even if the descriptions
were given, since there is no validation, there is no guarantee
that it is correct. Generally, they are described by a simple
set of tags and textual information, freely assigned by their
owners and/or users, which makes the search for a keyword
or expression prone to errors and misunderstandings [8].

Table I summarizes the lack of descriptions for the IoT
sensors available in the ThingSpeak platform, collected at
three distinct periods: October 31, 2015, and July 28, 2016,
and April 14, 2017. As noted, the number of available sen-
sors, as the time series per monitored phenomenon increased
throughout the years, but also their problems.

For those sensors where some description was provided,
Fig. 1 illustrates some of the most frequent words used to
describe them, for April, 2017. While it can be noticed that
most descriptions are, indeed, related to environmental and
physical phenomena, they are still really poor, mainly if
compared to more complex scenarios, such as semantic and
ontology solutions [22]-[24]. The top-5 most frequent words
for the three years are: temperature, humidity, temp, field, and
sensor. These last three are generic descriptors, which add no
valuable information to the monitored phenomena.

TABLE I
SUMMARY OF PROBLEMS IN THE DESCRIPTIONS OF IOT SENSORS, FROM
THE THINGSPEAK PLATFORM, FOR THE PERIODS: OCTOBER 31, 2015,
JuLY 28,2016, AND APRIL 14, 2017. * T/S: TIME SERIES PER SENSOR.

Issue

2015

2016

2017

# of sensors

# of time series
No description
No location

No tags

No desc. & tags

7064
15170 (3.7 t/s)
1655 (40.7%)
3208 (78.9%)
3233 (79.5%)
1564 (38.5%)

7427

28966 (3.9 t/s)
3681 (49.6%)

6046 (81.4%)

6179 (83.2%)

3499 (47.1%)

13013
51185 (3.9 t/s)
6632 (50.9%)
10856 (83.4%)
11045 (84.9%)
6318 (48.5%)

8000+

6000-

Frequency
B
S
3
o

n
=3
S
=3
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pressure
raspberry
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Fig. 1. Most frequent words used to describe IoT sensors, from descriptions
of sensors available in the ThingSpeak platform, collected at April of 2017.

Thus, given this uncertainty and unreliability of sensors, in
order to correctly evaluate our hypothesis, we decided not to
apply the proposed strategy directly to the IoT data. Instead,
we looked at similar data but from more reliable sources.
Thus, to investigate the feasibility of using CCEP to study
physical phenomena, we considered time series data measured
by international airport stations from 60 different airports from
all regions of the USA territory. Table II presents the list of
these places. Data are measures from the historical weather
conditions of temperature, relative humidity, atmospheric pres-
sure, and wind speed, in the period from 2000 to 2015. All
data were collected from the Weather Underground' platform.

b) Dataset characterization: The dataset was randomly
split in half, where the time series from 30 places was used
to the characterization step and the other 30 to validate the
classification of the phenomena. To illustrate the behavior of
the data we are dealing with, Fig. 2 gives an example of
time series for 2015, measured at the Logan International
Airport, Boston, MA. For each phenomenon, it is also showed
a Lowess smoothing of the data with smoother span f = 0.1.

We can see that the behavior of the data for each different
phenomenon is quite different. From a more seasonal behavior
for temperature to a more “random” behavior for the wind
speed. Fig. 3 shows the Bandt-Pompe distributions for the
dataset in the period between 2000 and 2015, considering
an embedding dimension D = 4. We can see that, for each
phenomenon, the ordering patterns have different probabilities.
This is the behavior that is captured by the aforementioned in-
formation quantifiers Hg and C'j5. To better understand these
behaviors, Fig. 4 presents the CCEP for the whole time series,
considering different embedding dimensions D = {4,...,7}.

!Weather Underground — http://wunderground.com.



TABLE II
LIST OF PLACES IN USA, ORDERED BY STATE, USED FOR THE
CHARACTERIZATION AND CLASSIFICATION PHASES.

ID Place ID Place Type
1 Anchorage 31 Detroit

2 Phoenix 32 Minneapolis

3 Los Angeles 33 Charlotte

4 Oakland 34 Raleigh

5 Ontario 35 Omaha

6  Sacramento 36 Newark

7 San Diego 37 Albuquerque

8 San Francisco 38 Las Vegas

9  San Jose 39 Buffalo

10 Santa Ana 40 New York (Central Park)
11 Denver 41 New York (JFK)

12 Hartford 42 New York (LaGuardia)

Cleveland
44 Columbus
45 Cincinnati

13 Fort Myers
14 Fort Lauderdale
15 Jacksonville

16 Miami 46 Portland

17 Orlando 47 Philadelphia

18 Tampa 48 Pittsburgh

19 West Palm Beach 49 Nashville

20 Atlanta 50 Austin

21 Honolulu 51 Dallas

22 Kahului 52 Dallas (Fort Worth)

23 Chicago (Midway)
24 Chicago (O’Hare)
25 Indianapolis

26 New Orleans

27 Boston

53 Houston (Bush)
54 Houston (Hobby)
55 San Antonio
56 Salt Lake City
57 Washington (Reagan)
28 Baltimore 58 Washington (Dulles)
29 Kansas City 59 Seattle
30 St. Louis C 60 Milwaukee
Legend: C - Used for Characterization / F - Used for Classification
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Fig. 2. Historical data of 2015 from the Logan International Airport, Boston,
MA. Phenomena (a) temperature, (b) relative humidity, (c) atmospheric
pressure, and (d) wind speed, along with a Lowess smoothing (f = 0.1).

The rightmost region of CCEP (near Hg = 1 and C;5 = 0)
represents a totally random behavior such as a white noise. On
the other hand, the time series that present strong regularity
and more correlation between neighboring values tend to lie
in the leftmost part of CCEP (near Hg = 0 and C;g = 0).
The region of high Cjg, i.e., the upper-center region of the
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Fig. 3. Bandt-Pompe distributions of Boston’s weather historical data in the
period between years 2000 and 2015. All plots considered D = 4.

plane represents time series with chaotic behavior [14].
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Fig. 4. CCEP of Boston’s weather historical data between years 2000 and
2015, for D = {4,...,7}.

Fig. 4 shows that, for all values of D, phenomena lie in the
region of medium-high entropy values (0.6 < Hg < 1), which
are similar to the region that characterizes “colored” random
noises, representing different correlation values in the time
series structures [14]. Also, as D increases, the regularities
of the phenomena are better captured by the information
quantifiers. This can be expressed by the increasing of Cjg,
the decreasing of Hg, and the more clear separation between
the points for each phenomenon in the plane.

Following our analysis, in order to verify the feasibility of



this method in characterizing the physical phenomena per se,
Fig. 5 presents the CCEP representation for all phenomena
studied herein, from the 30 places used for the characterization
phase, with an embedding dimension D = 6. The reason for
choosing D = 6 is due to a trade-off between a concise capture
of the regularities of the phenomena and the small value of
D!, which impacts on the required length of the time series.

Statistical Complexity

0.6 0.7 0.8 0.9 1.0
Normalized Shannon Entropy
® Temperature + Atm. Pressure

= Relative Humidity A Wind Speed

Fig. 5. CCEP of historical weather data in the period between years 2000
and 2015 of all the places used for characterization, with D = 6.

Fig. 5 also shows that, with exception for the atmospheric
pressure, all the phenomena lie at a specific region in the
plane and has an “expected behavior”, described by the shape
in which the points are scattered. The time series for the
atmospheric pressure present different behaviors in different
places, and are more spread over the plane.

Fig. 6 illustrates the two most extreme time series, i.e.,
the ones which are farther from their cluster regions when
considering temperature and atmospheric pressure. We can see
that, while there is a small variation between the temperatures
of Denver and Phoenix, for the atmospheric pressure, this
difference is more apparent, and the time series of Denver
seems to be more noisy than that for Honolulu. This difference
on behavior results in different values of the information
quantifiers and, thus, different placements in CCEP. This may
lead to the need of a study about the geographical influence
on these measures, which we will conduct as a future work.

V. CLASSIFICATION OF PHYSICAL PHENOMENA

In this section, we present our strategy for the classification
of physical phenomena from the IoT sensors. The first step
is to learn the expected behaviors from different phenomena
and, hence, identify their placement regions in the CCEP by
clustering their placements. Thus, we will be able to verify if a
given time series are similar to an already known phenomenon,
by comparing the distance of its placement in the plane to the
previous learned placements.

A. Identifying regions on CCEP

To define the expected placement region in the CCEP for
a given phenomenon, we have to consider their concentration
of points in the plane and estimate a centroid to represent it.

(a) 2 - Phoenix (b) 11 - Denver
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Fig. 6. Examples of historical data for 2015 of the most divergent places
in the CCEP. For the temperature of (a) Phoenix and (b) Denver, and
the atmospheric pressure for (c) Honolulu and (d) Denver, with a Lowess
smoothing (f = 0.1).

Fig. 7 presents a heat map, built with a kernel density
estimation from the points showed in Fig. 5, illustrating the
concentration of points in CCEP for the phenomena under
analysis. We can see that, for the temperature, relative humid-
ity and wind speed, there is a regularity in the concentration
of points around a particular natural centroid. Furthermore,
they form three different grouped clusters. For the case of
atmospheric pressure, the points are more spread and two
centroids are highlighted, resembling a bimodal data.

Issues related to mixture models to fit bimodal data will not
be covered in the present work and will be the subject of a
future study. For our current purposes, it is sufficient to identify
the centroids in which the points are surrounding and accept
the fact that the atmospheric pressure can be characterized by
two different regions on the plane.

Another point we must also be concerned when discovering
the regions in the plane is about the effects of noise and
imprecision in the information quantifiers. Thus, before ob-
taining the centroids, we first apply the Skinny-dip clustering
algorithm [25] on the points for each phenomenon. Skinny-dip
is a noise-robust clustering algorithm based on the Hartigan’s
dip test of modality and is able to reasonably detect the more
distinguishing concentration of points in a given region, even
under a rate of 80% of noise [25].

Fig. 8 depicts the resulting clusters after the Skinny-dip
processing for the points of each phenomenon. Gray points
are those considered noisier by the algorithm. We can see
that, for the atmospheric pressure points, there are clearly
two formed clusters. After discovering the most significant
points, we performed a kernel density estimation (KDE) to
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Fig. 7. Heat map illustrating the concentration of points from information
quantifiers related to the characterization of the temperature, relative humidity,
atmospheric pressure, and wind speed phenomena, with D = 6.

each cluster and interpolate between their points to compute
the centroids. Table III illustrates the values of the centroids
computed for each discovered cluster.
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Fig. 8. Most relevant points discovered by Skinny-dip clustering algorithm
for the physical phenomena, with D = 6.

B. Classification of time series in the CCEP

The next step towards the classification of a given time
series is to place it in the CCEP and verify if it lies close
to some know phenomenon placement. A point to consider
here is that the notion of distance in this plane is still an

TABLE III
CENTROIDS OF CCEP REGIONS FOR EACH PHENOMENON, FROM A
KERNEL DENSITY ESTIMATION ON THE MOST RELEVANT POINTS.

Phenomenon Hs Cjg
Temperature 0.711 0.334
Relative Humidity 0.755 0.290
Atmospheric Pressure 1  0.739 0.286
Atmospheric Pressure 2 0.658 0.324
Wind Speed 0.930 0.131

open research question. For instance, although the values for
Hg ranges from O to 1, the values for C;g are bounded
by their limits, impacting on direct distance metrics. This
occur because Cjs behavior is governed by patterns in the
probability distribution space that gives, for the same entropy,
different levels of statistical complexity.

However, to illustrate the feasibility of the method for the
classification of physical phenomena, we used the Euclidean
distance, despite not being the most appropriate, to compute
the nearest centroid for the time series of the places present
in our dataset. We show the classification results in terms of
Accuracy (A), true positive rate per class (¢p) and false positive
rate per class (fp), where A = %, where tn is the
true negative rate and fn is the false negative rate.

Table IV summarizes the results for the classification pro-
cess using the CCEP method with the Euclidean distance
(CCEPg) to discover the type of the time series. To perform
this identification, we compute the Euclidean distance between
the position of a given time series in the plane to the already
known centroids, showed in Table III. We use a simple
classification technique that assigns a given time series to the
same type of the closest centroid.

TABLE IV
RESULTS OF THE NUMBER OF TRUE POSITIVE AND FALSE POSITIVE
IDENTIFICATIONS FOR THE PHYSICAL PHENOMENA TIME SERIES WITH
THE CCEP METHOD FOR THE EUCLIDEAN DISTANCE (CCEPg).

Metric Value
Accuracy (A) 0.75 (90/120)
Accuracy (without Atm. Pressure) 0.93 (84/90)
Temperature (¢p) 0.83 (25/30)
Humidity (¢p) 0.67 (20/30)
Pressure (¢p) 0.53 (16/30)
Wind Speed (tp) 0.97 (29/30)
Temperature (fp) 0.10 (9/90)
Humidity (fp) 0.10 (9/90)
Pressure (fp) 0.12 (11/90)
Wind Speed (fp) 0.01 (1/90)

For the two general configurations we consider the cases
where the atmospheric pressure time series, as their centroids,
were present in the experiment and not. We can see that, since
the atmospheric pressure phenomenon was the most difficult to
estimate its behavior, when it is included in the experiment the
number of correct identifications is about 75%, which means
specifically a number of 90 out of 120 in total. The total of 120
series is from the 30 places used for classification, such that
each place has four time series for their phenomena. Without
the pressure being considered, this number increases to 93%,



84 out of the 90 total time series were correctly classified.

For each individual phenomenon class, we can see a rea-
sonable total of true positives, with the wind speed being the
most correctly identified, with a total of 97%. The atmospheric
pressure has the lowest true positive rate, only 53%. This
result is indeed expected, since the behavior of the pressure
phenomenon was the hardest to be characterized. On the other
hand, as the most stable phenomena in the characterization, the
wind speed was the one with the best results.

Another important aspect for this classification is regarding
the false positive values. In fact, according to the application
that will be using an IoT sensor, maybe worse than not finding
a sensor to be used is to find a wrong sensor. For this sort
of problems, the method also seems to be reasonable with
the highest rate of wrong identification being 12% for the
atmospheric pressure phenomenon. Furthermore, as mentioned
before, even with this promising results, the Euclidean distance
is not the most appropriate for the current method. It is
expected that, with a proper distance metric to this plane, these
results will be improved.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we proposed the application of information
theory quantifiers, namely the normalized Shannon entropy
and statistical complexity, to extract knowledge regarding the
expected behavior of physical phenomena in the context of
IoT. We showed that the Bandt-Pompe approach and the CCEP
plane provide robust quantifiers to face the challenges related
to this particular scenario.

In order to perform the classification of the physical phe-
nomena, we proposed a definition of regions within the plane.
Those placement regions were defined by the application of a
noise-robust strategy for finding their centroids, which resulted
in significant quality for the process. All these contributions
clearly advance the state of the art in the characterization and
classification of physical phenomena in the Internet of Things.

As future work, we open a number of questions related to
the advances in the definition of distance metrics in the CCEP
space, the need for studying the geographical influence on this
information measures, and novel approaches to minimize the
effect of IoT related problems in the correct characterization
and identification of physical phenomena.
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