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Abstract require maintaining complex and expensive data-structures,

compared to volumetric or mesh-based methods. As a re-
We present a novel rotation invariant architecture oper- sult, starting from the seminal works of PointNet [22] and
ating directly on point cloud data. We demonstrate how ro- PointNet++ [23], many point-based learning approaches
tation invariance can be injected into a recently proposed have been proposed, often achieving remarkable accu-
point-based PCNN architecture, on all layers of the net- racy in tasks such as shape classi cation and segmentation
work. This leads to invariance to both global shape trans- among many others. A key challenge when applying these
formations, and to local rotations on the level of patches methods in practice, however, is to ensumarianceto dif-
or parts, useful when dealing with non-rigid objects. We ferent kinds of transformations, and especially to rigid mo-
achieve this by employing a spherical harmonics-based ker-tions. Common strategies include either using spatial trans-
nel at different layers of the network, which is guaranteed to former blocks [11] as done in the original PointNet archi-
be invariant to rigid motions. We also introduce a more ef - tecture and its extensions, or applying extensiata aug-
cient pooling operation for PCNN using space-partitioning mentationduring training to learn invariance from the data.
data-structures. This results in a exible, simple and ef- Unfortunately, when applied to shape collections that are
cient architecture that achieves accurate results on chal- not pre-aligned, these solutions can be expensive, requiring
lenging shape analysis tasks, including classi cation and unnecessarily long training. Moreover, they can even be
segmentation, without requiring data-augmentation typi- incomplete wherdocal rotation invariance is required, e.g.
cally employed by non-invariant approaches for non-rigid shapes, undergoing articulated motion, which
is dif cult to model through data augmentation alone.
In this paper, we propose a different approach for dealing
1. Introduction with both global and local rotational invariance for point-

based 3D shape deep learning tasks. Instead of learning in-

Analyzing and processing 3D shapes using dgep I.eamm%/ariance from data, we propose to use a different kernel that
approaches has recently attracted a lot of attention, inspire . : ; . .
Is theoretically guaranteed to be invariant to rotations, while

in par h f h meth in computer vision S . . .
part by the success of such methods in computer visio remaining informative. To achieve this, we leverage the re-

and other elds. While e_arly approaches m_thls area relied cent PCNN by extension operators [2], which provides an
on methods developed in the image domain, e.g. by sam-

pling 2D views around the 3D object [24], or using volumet- ef cient framework for point-based convolutions. We ex-

. . ' : . tend this approach by introducing a rotationally invariant
ric convolutions [31], recent methods have tried to directly kernel and making several modi cations for improved ef -
exploit the 3D structure of the data. This notably includes ciency. We demonstrate on a range of dif cult experiments
both mesh-based approaches_that operate on the surface hat our method can achieve high accuracy directly, without
the shapes[17, 18, 21], and point-based techniques that Onl¥e|ying on data augmentation
rely on the 3D coordinates of the shapes without requiring '
any connectivity information [22, 23].

Point-based methods are particularly attractive, being
both very general and often more ef cient, as they do not A very wide variety of learning-based techniques have

1Code and data are provided on the project gattyes:/github. been proposed for 3D shape analysis and processing.. Below
com/adrienPoulenard/SPHnet . we review methods most closely related to ours, focusing on

2. Related work



https://github.com/adrienPoulenard/SPHnet
https://github.com/adrienPoulenard/SPHnet

point-based approaches, and various ways of incorporating Perhaps most closely related to ours are two very recent
rotational invariance and equivariance in learning. We refer unpublished methods, [33, 25], that also aim to introduce
the interested readers to several recent surveys, e.g. [32nvariance into point-based networks. Our approach is dif-
18], for an in-depth overview of geometric deep learning ferent from both, since unlike the PRIN method in [33]

methods. our convolution operates directly on the point clouds, thus

o ] ] avoiding the construction of spherical voxel space. As we
Learning in Point Clouds.Learning-based approaches, and gpo below, this gives our method greater invariance to ro-

especially thos_e based on deep Ie_arning, have recently beefhtions and higher accuracy. At the same time while the au-
proposed speci cally to handle point cloud data. The sem- ihqrs of [25] explore similar general ideas and describe re-
inal PointNet architecture [22] has inspired a large num- 5164 constructions, including the use of spherical harmon-
ber of extensions and follow-up works, notably including jcs kernels, they do not describe a detailed architecture, and
PointNet++ [23] and Dynamic Graph CNNs [26] for shape o1y show results with dozens of points (the released imple-
classi cation and segmentation. More rece_nt vv_orks include entation is also limited to toy examples), rendering both
PCPNet [8] for normal and curvature estimation, PU-Net e method and its exact practical utility unclear. Never-
[34] for point cloud upsampling, and PCN for shape com- heless, we stress that both [33] and [25] are very recent
pletion [35] among many others. unpublished methods and thus concurrent to our approach.
While the original PointNet approach is not based on a
convolutional architecture, instead using a series of classic
MLP fully connected layers, several methods have also tried 1. We develop an effective rotation invariant point-based

Contribution: Our key contributions are as follows:

to de ne and exploit meaningful notions of convolution on network. To the best of our knowledge, ours is the rst
point cloud data, inspired by their effectiveness in com- such method achieving higher accuracy than Point-
puter vision. Such approaches notably include: basic point- Net++ [23]with data augmentatioan a range of tasks.

wise convolution through nearest-neighbor binning and a
grid kernel [10]; Monte Carlo convolution, aimed at deal-
ing with non-uniformly sampled point sets [9]; learning an
X -transformation of the input point cloud, which allows the 3. We demonstrate the ef ciency and accuracy of our

2. We signi cantly improve the ef ciency of PCNN by
Extension Operators [2] using space partitioning.

application of standard convolution on the transformed rep- method on tasks such as shape classi cation, segmen-
resentation [16]; and using extension operators for applying tation and matching on standard benchmarks and intro-
point convolution [2]. These techniques primarily differ by duce a novel dataset for RNA molecule segmentation.

the notion of neighborhood and the construction of the ker-

nels used to de ne convolution on the point clouds. Most of 3- Background

them, howevef' she}re with th.e.PointI.\let archiFecture a lack In this section we rst introduce the main notation and
of s_upport for invarnance to rlg.|d motlons, mainly becaqse give a brief overview of the PCNN approach [2] that we use
Fhew.kernels are applied t'o po.lnt coortjma’;es, and de ning as a basis for our architecture.

invariance at the level of individual points is generally not

meaningful. 3.1. Notation

Invariance to transformations. Addressing invariance to We use the notatioln IfrOJmL[2']vi In particular, we use
various transformation classes has been considered in man§eNnsor noggtiona 2 R and the sum of ten-
areas of Machine Learning, and Geometric Deep LearningSOrSC = j; &iom bj is de ned by the free indices:

in particular. Most closely related to ours are approachesC = Gom. C(R®;RX) represent the collections of volu-
based on designingteerable Iters which can learn rep-  metric functions : R®! RX.
resentations that are equivariant to the rotation of the in-
put data [28, 27, 1, 30]. A particularly comprehensive 3.2. The PCNN framework
overview of the key ideas and results in this area is pre- The PCNN framework consists of three simple steps.
sented in [15]. In closely related works, Cohen and col- First a signal is extended from a point cloudRd using
leagues have proposed group equivariant networks [5] andan extension operatdgx . Then standard convolution on
rotation-equivariant spherical CNNs [6]. While the theo- volumetric functiongO is applied. Finally, the output is re-
retical foundations of these approaches are well-studied instricted to the original point cloud with a restriction operator
the context of 3D shapes, they have primarily been appliedR x . The nal convolution on point clouds is de ned as:
to either volumetric [27] or spherical (e.g. by projecting O = R O E

. : / x = Rx X @
shapes onto an enclosing sphere via ray casting) [6] repre-
sentations. Instead, we apply these constructions directly in  In the original work [2], the extension operators and ker-
an ef cient and powerfupoint-based architecture. nel functions are chosen so that the composition of the three



operations above, using Euclidean convolutioR#can be
computed in closed form.

Extension operator. Given an input signal represented as
J real-valued functions 2 R' 7 de ned on a point cloud,
it can be extended tB3 via a set of volumetric basis func-
tionsl; 2 C(R3;R) using the values df at each poinf;.
The extension operat@k : R' 7! C(R%;R’) isthen:

X

(BE[fDix)= fili(x) &)

The authors of [2] use Gaussian basis functions centered af ;- qed fun

Figure 1. SPHNet framework. A signal on point cloud is rst ex-
tended toR® (left). Our convolution operator is applied to the
ction (center). The signal is restrained to the original

the points of the point cloud so that the number of basis pqint cloud (right).

functions equals the number of points.
Convolution operator. Given a Kkernel 2
C(R3;R? M), the convolution operatdd : C(R%;R’) !
C(R3;RM) applied to a volumetric signal 2 C(R3; R’)
is de ned as: 7

O Dm()=C  Im(x)= i) jm (xy)dy

®)

j
The kernel can be represented in an RBF basis:

X
jm (Z) =

Kim (jz wi); 4)

|
wherekjn are learnable parameters of the networkis
the Gaussian kernel angt., represent translation vectors
in R3
3 3 3grid.

Restriction operator. The restriction operatoiRy
C(R%R’) ! R' Jisdened as simply as the restriction
of the volumetric signal to the point cloud:

Rx[ Dy = (i) 5)
Architecture  With these de nitions in hand, the authors
of [2] propose to stack a series of convolutions with non-
linear activation and pooling steps into a robust and exible

. For instance, they can be chosen to cover a standard Spherical harmonics are rotation equivariant.

4.1. Spherical harmonics kernel

In this work, we propose to use spherical harmonics-
based kernels to design a point-based rotation-invariant net-
work. In [27], the authors de ne spherical harmonics ker-
nels with emphasis on rotation equivariance, applied to vol-
umetric data. We adopt these constructions to our setting to
de ne rotation-invariant convolutions.

Spherical harmonics is a family of real-valued functions
on the unit sphere which can be de ned, in particular, as
the eigenfunctions of the spherical Laplacian. Namely, the
*th spherical harmonic space has dimens®n+ 1 and
is spanned by spherical harmoni€¥.m )> o :m2 -,
where’ is the degree. Thus, ea¥hy, is areal-valued func-
tion on the spher®.,, : S;! R:

For any
rotationR 2 SO(3) we have:

«
Ym (RX) = D (R) Y- (X): (6)

n=

WhereD (R) is the so-called Wigner matrix of siz&+1

2" +1,[29]. Importantly, Wigner matrices amethonormal

for all * making the norm of every spherical harmonic space
invariant to rotation. This classical fact has been exploited,
for example in [13] to de ne global rotation-invariant shape

deep neural network architecture showing high accuracy ondescriptors. More generally the idea of using bases of func-

a range of tasks.

4. Our approach

Overview Our main goal is to extend the PCNN approach
to develop a rotation invariant convolutional neural network
on point clouds. We call our network SPHNet due to the key
role that the spherical harmonics kernels play in it. Figure 1
gives an overview. Following PCNN we rst extend a func-
tion on point clouds to a volumetric function by the operator
Ex . Secondly, we apply the convolution operator SPHConv
to the volumetric signal. Finally, the signal is restricted by
Ryx to the original point cloud.

tions having a predictable behaviour under rotation to de-
ne invariant or equivariant lters or descriptors is closely
related to the classical concept of steerable lters [7].

The spherical harmonic kernel basis introduced in [27]

is de ned as:
0

kaz
rm (X) = exp E@

2

X .
kx k2 '
@)

where, is a positive scale parameteiy is the number of
radial samples and = Note that the kernel depends

_r
ng 1 &
2 Yim

ng 1°



on a radial component, indexed lby2 0::ng 1, and We observe that a rotation of the point cloud induces a
de ned by Gaussian shells of radiUﬁR—, and an angular  rotation in feature space. In order to ensure rotation in-

component indexed by m with * 2 0::n landm 2 variance we recall that the Wigner matrides are all or-
*::i7, de ned by values of the spherical harmonics. thonormal. Thus, by taking the norm of the convolution
This kernel inherits the behaviour of spherical harmonics with respect to the degree of the spherical harmonic ker-
under rotation, that is: nels, we can gain independence fr&n To see this, note
X that thanks to Eq. (12) only thea-indexed dimension of
m (RX) = D}nn (R) rn (X) ®) (Bx [f] rm )j (X) is affected by the rotation. There-

fore, we de ne our rotation-invariant convolution operator
lq[X;f]:C(R%RY)! C(R%;R’) as:

(I DXGFD )= k(B [F] e )j(OKZ (13)

where for a tensofm; we use the notatiokTkS' to de-
Below, we describe our SPHNet method. To de ne it we note a tensofl obta[?ed by taking th&, norm along the
need to adapt the convolution and extension operators useg, dimension:T,; = T2

in PCNN [2], while the restriction operators are kept exactly Importantly, unlike th:: orrlimgjin.al PCNN approach [2]
the same. ' '

we cannot apply learnable weights directly @B [f ]
] . . ] rm )j (X) as the result would not be rotation invariant. In-
Extension. PCNN uses Gaussian basis functions to ex- stead, we take a linear combination(bf [X; f ]), obtained

tend functions td&R3. However, convolution of the spherical  gfter taking the reduction along the dimension above, us-
harmonics kernel with Gaussians does not admit a closedng |earnable weights/ 2 RS ' "= . whereG is the

form expression. Therefore, we “extend” a sighale ned number of output channels. This leads to:
on a point cloud via a weighted combination of Dirac mea- 0 1
sures. Namelfgx :R' 71 C(R3RY)is:

whereR 2 SO(3).

4.2. Convolution layer

X
X Olf D)= @  Wger (InXF Dj(x)+ byA (14)
(BIfDy = fitixs ) ir

i Finally, we de ne the convolution operatoDyx
C(R%R’) I C(R3 R®) by restricting the result to the

=) . 2
where we use the weights; = 1=( ; exp( X31)).
gnts; ( jexp( "2p77)) point cloud as in Eq. (5):
0

The Dirac measure has the following property:
z

X
§ f(y) x(y)dy = f(x) (10) ((Ox )qlf i = @. Wgir (In DX F 10xi) + bgA (15)

ir

1

Convolution.  We rst introduce a non-linear rotation-  4.3. Pooling and upsampling
invariant convolution operator: SPHConv. Using Eq. (10),
fchel %onvolut_lorllbetwse?n .an ext?’e.ndJed |5|gnal %'?d ghe_ SPNeT4ion into the PCNN framework, we also propose several im-
Ica :Errr.]onlc emeB[f] : C(R%R) ! C(R%RY) is provements, primarily for computational ef ciency.

given by X The original PCNN work [2] used Euclidean farthest
SIFT): (x) = f ) (X) = Fol o (xi X point sampling and pooling in Voronoi cells. Both of these
(SIFD; 00 = (Bf] - rm ) () ifirm (X x) steps can be computationally inef cient, especially when
(11) handling large datasets and with data augmentation. In-
Using Eg. (8), we can express the convolution opera- stead, we propose to use a space-partitioning data-structure

tor when a rotatiorR is applied to the point clouX asa  for both steps using constructions similar to those in [14].
function of the kernel functions: For this, we start by building a kd-tree for each point cloud,

X which we then use as follows.
(R(EXIF]  rm ))j(X) = fi i rm (R(Xi X))

i Pooling. For a given point cloudP, our pooling layer of
depthk reducesP from size2" to 2" ¥ by applying max

In addition to introducing a rotation-invariant convolu-

= Dmn (R)  fili e (X X) pooling to the features of each subtree. The coordinates of
n= " i the points of the subtree are averaged. The resulting reduced
( . point cloud kd-tree structure and indexing can be immedi-
= Dmn (RExIf]  rn )i (X) (12)  ately computed from the one computed Ror This gives us

n= - a family Ty, 1., of kd-trees of varying depths.



Upsampling. The upsampling layer is computed simply ensure full invariance we apply our rotation invariant con-
by repeating the features of each point of a point cloud at volution at every layer.
layer k using the kd-tree of structurg,. The upsampled The number of input channels is deduced from the hum-
point cloud follows the structure Gfy.; . ber of channels of the preceding layer. We used 64 points
per patch in the classi cation case and 48 in the segmen-
Comparison to PCNN. In PCNN pooling is performed tation case. We xech, = 4 andng = 2 throughout all
through farthest point sampling. The maximum over the of our experiments. The scale factocan be de ned only
corresponding Voronoi cell is then assigned to each point offor the rst layer and deduced for the other ones as will be

the sampled set. This method has a complexit@GPj?) explained bellow.
while ours has a complexity @(jPjlog?jPj), leading to o
noticeable improvement in practice. 5.1. Classi cation

We remark that kd-tree based pooling breaks full rotation 4 ¢1assi cation architecture is made of 3 convolutional

myane:nce gf our arphlt(re]cture, Idue toche constructlonhof blocks with 64, 256, 1024 output channels respectively: the
{Mi—algnel sgplaratlnk? errp anes. _lgwirver’ as We SNOW ot two are followed by a max pooling layer of ratid,
In the results below, this has a very mild effect in practice 54 yhe |ast one if followed by a global max pooling layer.

and our approach has very similar performance regardiesgj, |y we have a fully connected block over channels com-

of thehrotgtion of thlg gata-set. dA pﬁssllzle way 10 CIrCUM- <o of two layers with 512 and 256 units, each followed
vent this issue would be to modify the kd-tree construction y, o gropout layer of rate 0.5 and a nal softmax layer for

by splitting the space along local PCA directions. the classi cation as shown in Figure 2.

5. Architecture and implementation details

nut @1 Conv @64 Conv @ 256 Fces12 FC @ 256
We adapted the classi cation and segmentation architec- | ; Conv @ 1024 Softmax
tures from [2]. Using these as generic models we derive | | RN

three general networks: our main rotation-invariant archi- li

tectureSPHnet , which stands for Spherical Harmonic Net [ %%m
and uses the rotation invariant convolution we described. Poolx4 GlobatPoo!
We also compare it to two baselineSPHBase is iden- Figure 2. Our classi cation architecture. Conv indicates a

tical to SPHnet , except that we do not take the norm of conv layer withk output channels, Poolk is a pooling of factor

each spherical harmonic component and apply the weightsk @nd FC stands for fully connected layer.

directly instead. We use this as the closest non-invariant

baseline. We also compare to PCNN (mod), which is also  We use = 0:1 for the rst layer and2 , 4 for the

non rotation-invariant. It uses the Gaussian kernels from Se€cond and third layers. We illustrate the importance of the

the original PCNN, but employs the same architecture andScale parameter by sh_owmg Its impact on classi cation

pooling as we use iBPHnet andSPHBase . accuracy (see Appendix 4). The classi cation architecture
The original architectures in [2] consist of arrangements We Use expects a point cloud of 1024 points as input and de-

of convolution blocks, pooling and up-sampling layers that Nes the convolution Iayers.on it according to our _method.

we replaced by our own. We kept the basic structure de-We use the constant function equal to 1 as the input fea-

scribed bellow. In all cases, we construct the convolutional ture to the rst layer. Note that, since our goal is to ensure

block using one convolutional layer followed by a batch rotation invariance, we cannot use coordinate functions as

normalization layer and a ReLU non linearity. Our con- NPUt.

volution layer depends on the following parameters: 5.2. Segmentation

Number of input and output channels Our segmentation network takes as input a point cloud

Numbern, of spherical harmonics spaces in our ker- with 2048 points and, similarly to the classi cation case,

nel basis we use the constant function equal to 1 as the input feature
Numberng of spherical shells in our kernel basis to the rst layer. Our segmentation architecture is shown in
Figure 3.

The kernel scale> 0 . . - .
The architecture is U-shaped consisting of an encoding

For the sake of ef ciency we also restrict the computation and a decoding block, each having 3 convolutional blocks.
of convolution to a xed number of points usingnearest =~ The encoding convolutional blocks have 64, 128, 256 out-
neighbor patches. Note that unlike other works, e.g. [26] we put channels respectively. The rsttwo are followed by max
do not learn an embedding for the intermediate features, agooling layers of ratiegt and the third by a pooling layer of

they are always de ned on the original point cloud. Thus, to ratio8. These are followed by a decoding block where each



| Method O/O| A/O | O/A | A/A | time
It @ 1 Conv @ 64 m!m caw@mlcw4lcm@sc«max PCNN 92:3 | 859 | 119 | 851 | 264s
e amém  comem¥ T PointNet++ | 91.4 | 84.0 | 10.7 | 83.4 | 78s
J F—L N / PCNN (mod) | 91.1 | 834 | 94 | 845 | 2265
J = B =1 J Ll SPHBaseNet| 90.7 | 82.8 | 10.1 | 84.8 | 2555
Do e e ] SPHNet (ours)| 87.7 | 87:1 | 86:6 | 87:6 | 2555
PRIN 715 | 078 | 43.1 | 0.78 | 811s
Figure 3. Segmentation architecture. Convk@ndicates a conv ~ Table 1. Classi cation accuracy on the modelnet40 dataset. A
layer withk output channels, Poolk is a pooling of factok and stands for data augmented by random rotations and O for original
Up Kk is an upsampling by a facté: data. E.g., the model A/O was trained with augmented and tested

on the original data. Timings per epoch are given when training

. . on a NVIDIA RTX 2080 Ti card.
conv block is preceded by an up-sampling layer to match

the corresponding encoding block, which is then concate- 09|
nated with it. The nal conv-layer with softmax activation is
then applied to predict pointwise labels. The two last conv-
blocks of the decode part are followed by dropout of rate 07
0.5. We chose a scale factor of= 0:08 for the rst con-
volutional layer, the two next layers in the encoding block
having respective scale facta?2s and4 . The scale fac-
tors for the decode block are the same in reverse order. The

val accuracy

. 0.4 4 —— SPHNet
scale factor for the nal conv layer is. SPHBase
0.3 4 —— pcnn(mod)
—— pointnet++
6. Results 02l | | | e
o 50 100 150 200 250

epoch

6.1. Classi cation

Figure 4. Validation accuracy for ModelNet40 classi cation with
We teSted our methOd on the Standard MOdeINet4O rotat|on augmentat|0n at tra|n|ng

benchmark [31]. This dataset consists of 9843 training and
2468 test shapes in 40 different classes, such as guitar, cone,
laptop etc. We use the same version as in [2] with point training set setting. For PRIN evaluation, we used the ar-
clouds consisting of 2048 points centered and normalizedchitecture for classi cation described in [33] trained for 40
so that the maximal distance of any point to the origin is epochs as suggested in the paper. In all our experiments we
1. We randomly sub-sample the point clouds to 1024 pointstrain the PRIN model with the default parameters except for
before sending them to the network. The dataset is alignedthe bandwidth, which we set to 16 in order to t within the
so that all point clouds are in canonical position. 24GB of memory available in Titan RTX. As demonstrated
We compare the classi cation accuracy of our approach in [33] this parameter choice produces slightly lower results
SPHNet with different methods for learning on point clouds but they are still comparable. In our experiments, we ob-
in Table 1. In addition to the original PCNN architecture Served that PRIN achieves poor performance when trained
and our modi ed versions of it, we compare to PointNet++ With rotation augmented data.

[23]. We also include the results of the recent rotation- ~ We also remark that even when training with data aug-
invariant framework PRIN [33]. mentation, our method converges signi cantly faster and to

We train all different models in two settings: we rst higher accuracies since it does not need to learn invariance
train with the original (denoted by “O'") dataset and also to rotations. We show the evolution of the validation accu-

with the dataset augmented by random rotations (denoted?acy curves for different methods in Figure 4.
by "A). We then test with either the original testset or the
testset augmented by rotations, again denoted by "O' an
“A respectively. We also applied our approach to tackle the challenging

We observe that while other methods have a signi cant task of segmenting molecular surfaces into functionally-
drop in accuracy when trained with rotation augmentation, homologous regions within RNA molecules. We consid-
our method remains stable, and in particular outperformsered a family of 640 structures of 5s ribosomal RNAs (5s
all methods trained and tested with data augmentation (A/ArRNAs), downloaded from the PDB database [3]. A surface,
column), implying that the orientation of different shapes is or molecular envelope, was computed for each RNA model
not an important factor in the learning process. Moreover, by sweeping the volume around the atomic positions with a
our method achieves the best accuracy in this augmentegmall ball of xed radius. This task was performed using the

d6.2. Segmentation



scripting interface of the Chimera structure-modelling envi- Method O/0O | AIO | O/A | AIA | time
ronment [20]. Individual RNA sequences were then glob- PCNN 76.7 | 780 | 35.1| 77.8| 655
ally aligned, using an implementation of the Needleman- PointNet++ | 72.3 | 74.4 | 46.1 | 74.2 | 18s
Wunsch algorithm [19], onto the RFAM [12] reference PCNN (mod) | 742 | 74.3| 309 | 73.7 | 9.7s
alignment RF00001 (5s rRNAs). Since columns in mul- SPHBaseNet| 748 | 74.7 | 28.3 | 748 | 17s
tiple sequence alignments are meant to capture functional| SPHNet (ours) 80:8 | 80:1 | 79:5 | 80:4 | 18s
homology, we treated each column index as a label, which PRIN 66.9 | 6.84 | 53.7 | 6.57 | 10s
we assigned to individual nucleotides, and their correspond-Table 2. Segmentation accuracy on the RNA molecules dataset.
ing atoms, within each RNA. Labels were nally projected Timings per epoch are given for an NVIDIA RTX 2080 Ti card.
onto individual vertices of the surface by assigning to a ver-
tex the label of its closest atom. This results in each shape
represented as a triangle mesh consisting of approximately
10k vertices, and its segmentation into approximately 120
regions, typically represented as connected components.

Shapes in this dataset are not pre-aligned and can have
fairly signi cant geometric variability arising both from dif-
ferent conformations as well as from the molecule acquisi-
tion and reconstruction process (see Fig. 5 for an example).

Figure 6. RNA segmentation results.

cially dif cult problem since in addition taglobalrigid mo-
tion, the shapes can undergo non-rigid deformations, such
as articulated motion of humans.

In this setting, we trained and tested different methods
on point clouds sampled from the D-FAUST dataset [4].
This dataset contains scans of 10 different subjects complet-
ing various sequences of motions given as meshes with the
same structure and indexing. We prepared a test set con-
, , sisting of 10 subject, motion sequence pairs and the com-

Given a surface mesh, we rst downsample it t0 4096 ,jementary pairs de ning our training set. Furthermore we
points with fart_hest point samp!lng and then randomly sam- sampled the motion sequences every 10 time-steps we se-
ple to 2048 points before sending the data to the network. |¢ted 4068 shapes in total with a 3787/281 train/test split.

We report the segmentation accuracy in Table 2. As in e sampled.0k points uniformly on the rst selected mesh
the classi cation case we observed that PRIN [33] degradesgng then subsampled 2048 points from them using farthest
severely when augmenting the training set by random ro- 5qint sampling. We then transferred these points to all other
tations. Overall, we observe that our method achieves thémeshes using their barycentric coordinates in the triangles
best accuracy in all settings. Furthermore, similarly to the ¢ the rst mesh to have a consistent point indexing on all

classi cation task, the accuracy of our method is stable in point clouds. We produce labels by partitioning the rst
different settings (with and without data augmentation) for shane in 256 Voronoi cells associated to 256 farthest point
this dataset. samples. We then associate a label to each cell. Our goal

We also show a qualitative comparison to PCNN in Fig- then s to predict these labels and thus infer correspondences
ure 6. We note that when trained on the original dataset anchetween shape pairs. Since this experiment is a particu-

tested on an augmented dataset, we achieve signi cantly|ar instance of segmentation, we evaluate it with two met-
better performance than PCNN. This demonstrates that UNtics, rst we measure the standard segmentation accuracy.

like PCNN, the performance of our method does not depend|, addition, to each celt we associate a cdll(a) by taking

on the orientation of the shapes. the most represented cell among the predictions ad
6.3. Matching measure the average Euclidean distance b_etween the respec-
tive centroids of (a) and the ground truth image af Ta-
We also apply our method on the problem of nding cor- ble 3 shows quantitative performance of different methods.
respondences between non-rigid shapes. This is an espeNote that the accuracy of PointNet++ and PCNN decreases

Figure 5. Labeled RNA molecules.



Method O/O | A/O | O/A | A/IA | disterr
PCNN 99.6| 799 | 57 | 77.1| 7:7e 3
PointNet++ | 97.1| 85.0| 10.4| 84.5| 1.8e 3
PCNN (mod) | 60.4 | 55.2| 2.5 | 54.7 0.01
SPHNet (ours)| 98.0| 97.2| 91.5| 97.1| 3:5e 5
PRIN 86.7| 3.24 | 11.3| 3.63 0.59
Table 3. Part label prediction accuracy on our D-FAUST dataset
and average Euclidean distance error of the inferred correspon-
dences between Voronoi cell centroids in the A/A case.

Figure 7. Fraction of correspondences on the D-FAUST dataset
within a certain Euclidean error in the A/A case.

drastically when trained on the original dataset and tested onifggi%'agiiltitaﬂve comparison of correspondences on the D-
rotated (augmented) data sets. Our SPHNet performs well '
in all training and test settings. Moreover, SPHNet strongly

outperforms existing methods with data augmentation ap-yyqork outperforms existing approaches on non pre-aligned
plied both during training and testing, which more closely gatasets even with data augmentation. In the future, we plan
re ects a scenario of non pre-aligned training/test data. to extend our method to a more general framework combin-
In Figure 7, we show that the correspondences computedng non-invariant, equivariant and fully invariant features
by SHPNet when trained on both original and augmented at different levels of the network, and to devise ways for
data are highly accurate. For qualitative evaluation we as-aytomaticallydeciding the optimal layers at which invari-
sociate a color to each Voronoi cell using theoordinate  ance must be ensured. Another direction would be to apply
of its barycenter and transfer this color using computed cor- rotationally equivariant features across different shape seg-
respondences. Figure 8 shows a qualitative comparison ofyents independently. This can be especially relevant for

different methods. We note that PCNN and PointNet++ articulated motions where different segments undergo dif-
correspondences present visually more artefacts includingterent but all approximately rigid motions.

symmetry issues, while our SPHNet results in more smooth
and accurate maps across all training and test settings.
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Appendix

Table 4 shows the effect of the scale parameter on the
accuracy of the classi cation task on ModelNet40. Per-
formances decrease whergets too low or too high. We



O/O| A/IO|O/A | AIA
0.2 85.7 | 849 | 85.0 | 86.3
0.15 | 86.8 | 85.6 | 86.0 | 86.7
0.1 877 | 87:1 | 86:6 | 87:6

0.075| 86.1 | 85.7 | 85.6 | 86.5
0.05 | 856 | 845 | 83.2 | 854

Table 4. Impact of the scale parametamn classi cation accuracy

of SPHNet on ModelNet40.

choose the parameter that produces the best accuracy in our
experiments.



