
HAL Id: hal-02172288
https://inria.hal.science/hal-02172288

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YOLO: Speeding up VM and Docker Boot Time by
reducing I/O operations

Thuy Linh Nguyen, Ramon Nou, Adrien Lebre

To cite this version:
Thuy Linh Nguyen, Ramon Nou, Adrien Lebre. YOLO: Speeding up VM and Docker Boot Time by
reducing I/O operations. EURO-PAR 2019 - European Conference on Parallel Processing, Aug 2019,
Göttingen, Germany. pp.273-287, �10.1007/978-3-030-29400-7_20�. �hal-02172288�

https://inria.hal.science/hal-02172288
https://hal.archives-ouvertes.fr


YOLO: Speeding up VM and Docker Boot Time
by reducing I/O operations

Thuy Linh Nguyen1, Ramon Nou2, and Adrien Lebre1

1 IMT Atlantique, Inria, LS2N, France
{thuy-linh.nguyen,adrien.lebre}@inria.fr

2 Barcelona Supercomputing Center (BSC), ramon.nou@bsc.es

Abstract. Although this comes as a surprise, the time to boot a Docker-
based container can last as long as a virtual machine in high consolidated
cloud scenarios. Because this time is critical as boot duration defines
how an application can react w.r.t. demands’ fluctuations (horizontal
elasticity), we present in this paper the YOLO mechanism (You Only
Load Once). YOLO reduces the number of I/O operations generated
during a boot process by relying on a boot image abstraction, a subset of
the VM/container image that contains data blocks necessary to complete
the boot operation. Whenever a VM or a container is booted, YOLO
intercepts all read accesses and serves them directly from the boot image,
which has been locally stored on fast access storage devices (e.g., memory,
SSD, etc.). In addition to YOLO , we show that another mechanism
is required to ensure that files related to VM/container management
systems remain in the cache of the host OS. Our results show that the
use of these two technics can speed up the boot duration 2-13 times for
VMs and 2 times for containers. The benefit on containers is limited due
to internal choices of the docker design. We underline that our proposal
can be easily applied to other types of virtualization (e.g., Xen) and
containerization because it does not require intrusive modifications on
the virtualization/container management system nor the base image
structure.

Keywords: virtualization, containerization, boot duration

1 Introduction

The promise of the elasticity of cloud computing brings the benefits for clients
of adding and removing new VMs in a manner of seconds. However, in reality,
users may have to wait several minutes to get a new environment in public
IaaS clouds [10] such as Amazon EC2, Microsoft Azure or RackSpace. Such
long startup duration has a strong negative impact on services deployed in a
cloud system. For instance, when an application (e.g., a web service) faces peak
demands, it is important to provide additional resources as fast as possible to
prevent loss of revenue for this service. DevOps expects that the use of container
technologies such as Docker [11] would tackle such issues. However as discussed
in this article, provisioning a container can last as long as a VM under high



2 Thuy Linh Nguyen et al.

consolidated scenarios. Therefore, the startup time of VMs or containers plays
an essential role in provisioning resources in a cloud infrastructure.

Two parts should be considered for the startup: (i) the time to transfer the
VM/container image from the repository to the selected compute node and (ii) the
time to perform the boot process. While a lot of efforts focused on mitigating the
penalty of the image transferring time for VMs [7,16,17] as well as Docker [6,12],
only a few works addressed the boot duration challenge for VMs [8,18,23] and
to the best of our knowledge, none for containers. The process to boot a VM (or
a container) leads to I/O and CPU operations that should be handled by the
compute node. As a consequence, the duration of the boot process depends on the
effective system load, in particular, the interference on the I/O path [13,14,21].

To deal with the aforementioned limitation, we investigated in this article the
use of cache strategies that allow us to mitigate the number of I/O operations and
thus to reduce the boot time. Concretely, we consolidated previous observations
which have shown that only a small portion of the image is required to complete
the VM boot process [15,17,23]. More precisely, we analyzed the I/O operations
that occur during a boot process of a VM and a container. This analysis enabled
us to conclude that (i) like VMs, containers only require to access a small part
of the image to complete the boot process and (ii) unlike VMs, the amount
of manipulated data for a container is much smaller in comparison to the I/O
operations performed by the container management system itself.

Leveraging these results, we designed YOLO (You Only Load Once) as
an agnostic mechanism to cache the data of a VM/container image that are
mandatory to complete the boot operation: For each VM/container image, we
construct a boot image, i.e., a subset of the image that contains the mandatory
data needed for booting the environment, and store it on a fast access storage
device (memory, SSD, etc.) on each compute node. When a VM/container boot
process starts, YOLO transparently loads the corresponding boot image into the
memory and serves all I/O requests directly. In terms of storage requirements,
the size of a boot image is in the average of 50 MB and 350 MB for respectively
Linux and Windows VMs (storing boot images for the 900+ VM images from
the Google Cloud platform would represent 40 GB, which is acceptable to be
locally stored on each compute node). Regarding container technologies, the size
of a boot image is much smaller with an average of 5 MB. For the I/O operations
that are related to the VM/container management system, we simply use the
vmtouch [4] program that enables to lock specific pages in the Linux system. We
underline that using vmtouch for boot images is not relevant as it will be not
acceptable to populate the cache with all possible boot images.

By mitigating the I/O operations that are mandatory to boot a VM or a
container, YOLO can reduce the boot duration 2-10 times for VM and 2 times
for containers according to the system load conditions.

The rest of this paper is organized as follows. Section 2 gives background
elements regarding VM/container boot operations. Section 3 introduces YOLO .
Section 4 describes the setup for all of our experiments. Section 5 and 6 discuss



YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 3

the results we obtained. Section 7 deals with related works. Finally, Section 8
concludes the article and highlights future works.

2 Background

In this section, we give the background about QEMU-KVM and Docker that we
used to perform our analysis, we choose these two virtualization solutions because
of their wide used. For each technique, we first describe the boot process so that
readers can understand clearly different steps of the boot operation. Second, we
discuss the types of virtual disks that can be used in a QEMU/KVM-based or
a Docker environment. Finally, we give details regarding access patterns and
amount of manipulated data that a VM or a container performed during a boot
operation.

2.1 QEMU-KVM Virtual Machine

Boot process The boot operation of a VM is managed by the QEMU-KVM
hypervisor that is in charge of creating the virtual abstraction of the machine
(e.g., CPU, memory, disks, etc.) and launching the boot process. The boot process
follows the usual workflow: first, the BIOS of the VM checks all devices and tests
the system, then it loads the boot loader into memory and gives it the control.
The boot loader (GRUB, LILO, etc.) is responsible for loading the guest kernel.
Finally, the guest kernel invokes the init script that starts major services such
as SSH. A QEMU-KVM VM can rely on two different VM Disk as discussed in
the following.

Hypervisor

VM

VM

Read/Write

Read/Write

Write

Write

Read

Read

Backing file

QCOW file

QCOW file

Hypervisor

VM

VM

Read/Write

Read/Write

Write

Write

Read

Read

Base Image

VM disk

VM disk

Clone

Clone

(a) shared image (b) no shared image

(base image)

Fig. 1: Two types of VM disk

VM images QEMU offers two strategies to create a VM disk image from the
VMI (a.k.a. the VM base image). For the sake of simplicity, we call them shared
image and no shared image strategies. Figure 1 illustrates these two strategies. In
the shared image strategy, the VM disk is built on top of two files: the backing



4 Thuy Linh Nguyen et al.

and the QCOW (QEMU Copy-On-Write) files. The backing file is the base image
that can be shared between several VMs while the QCOW file is related to a
single VM and contains all write operations that have been previously performed.
When a VM performs read requests, the hypervisor first tries to retrieve the
requested data from the QCOW and if not it forwards the access to the backing
file. In the no shared image strategy, the VM disk image is cloned fully from
the base image and all read/writes operations executed from the VM will be
performed on this standalone disk.

Amount of manipulated data To identify the amount of data that is manipu-
lated during VM boot operations, we performed a first experiment that consisted
in booting up to 16 VMs simultaneously on the same compute node. We used
QEMU/KVM (QEMU-2.1.2) as the hypervisor, VMs are created from the 1.2 GB
Debian image (Debian 7, Linux-3.2) with writethrough cache mode (i.e., each
write operation is reported as completed only when the data has been committed
to the storage device).

0

200

400

600

800

1 4 7 10 13 16

Number of VMs

I/
O

 u
s

a
g

e
 (

M
B

)

Read Write

(a) shared image disk

0

200

400

600

800

1 4 7 10 13 16

Number of VMs

I/
O

 u
s

a
g

e
 (

M
B

)

Read Write

(b) no shared image disk

Fig. 2: The amount of manipulated data during boot operations (reads/writes)

Figure 2 reveals the amount of read/write data. Although the VMs have been
created from a VMI of 1.2 GB, booting 1 VM only needs to read around 50 MB
from kernel files in both cases of shared image and no shared image. In addition
to confirming previous studies regarding the small amount of mandatory data
w.r.t. the size of the VMI [17], this experiment shows that booting simultaneously
several instances of the same VM leads to the different amount of manipulated
data according to the disk strategy. When the VMs share the same backing
file (Fig. 2a), the different boot process benefit from the cache and the total
amount of read data stays approximately around 50 MB whatever the number of
VMs started (the mandatory data has to be loaded only once and stays into the
cache for later accesses). When the VMs rely on different VM disks (Fig. 2b),
the amount of read data grows linearly since each VM has to load 50 MB data
for its own boot process. Regarding write accesses, both curves follow the same
increasing trend. However, the amount of manipulated data differs: the shared



YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 5

image strategy writes 10 MB data when booting one VM and 160 MB for booting
16 VMs while the no shared image strategy slightly rises from 2 MB to 32 MB.
The reason why the shared image strategy writes 5 times more data is due to
the ”copy-on-write” mechanism: when a VM writes less than cluster size of the
QCOW file (generally 64 kB), the missing blocks should be read from the backing
file, modified with the new data and written into that QCOW file [5].

In addition to reading from the base image, the QEMU-KVM process (i.e.,
the daemon in charge of handling the boot request) has to load into the memory a
total of 23 MB. This amount of data correspond to host libraries and the QEMU
binary file. The write operations performed by the QEMU-KVM process are
negligible (a few KBytes).

2.2 Docker Container

Boot process Although we use the words Docker boot process in comparison with
the virtualization system terminology, it is noteworthy that a Docker container
does not technically boot, but rather start. Booting a docker starts when the
dockerd daemon receives the container starting request from the client. After
verifying that the associated image is available, dockerd prepares the container
layer structure, initializes the network settings, performs several tasks related to
the specification of the container and finally gives the control to the containerd
daemon. containerd is in charge of starting the container and managing its life
cycle.

Docker images From the storage viewpoint a docker container is composed
of two layers: the image layer and the container layer (a.k.a. the lowerdir and
uppperdir files). These two layers can be seen as the backing and COW files
in the VM terminology. The image layer is a read-only file that can be shared
between multiple containers. The container layer contains differences w.r.t. the
base image for each container. The unified view of the two directories is exposed
as the merged union mount that is mounted into the container thanks to the
overlayfs file system. This file system implements the copy-on-write strategy.

Amount of manipulated data Although the order of magnitude differs, the
amount of manipulated data when booting several times the same container
follows the same trend of VMs sharing the same backing file: thanks to the
cache, the amount of read data is constant. However, at the opposite of VMs, we
observed that the significant part of read accesses when booting one container
is related to the host directories and not the docker image. In other words,
loading the docker binaries (docker, docker-containerd-shim and docker-runc),
their associated libraries and configuration files represent much more Bytes than
the I/O accesses that are performed on the docker image. Table 1 gives the
details for different kinds of containers. Regarding the write operations, they are
related to the creation of the container layer and the union mount. Although this
amount is not significant w.r.t read operations, we noticed that the creation of



6 Thuy Linh Nguyen et al.

the merge union mount point is a synchronous process: the docker daemon has
to wait the completion of this action before progressing in the boot process. This
is an important point as the more competition we will have on the I/O path, the
longer will be the time to start the container.

Table 1: The amount of read data during a docker boot process

Host OS Docker image

debian 62.9 MB 3.7 MB
ubuntu 62.6 MB 4.1 MB
redis 61.8 MB 8.2 MB
postgres 60.1 MB 24.4 MB

3 YOLO Overview

Booting a VM or a container leads to a significant number of I/O operations.
Because these operations can interfere with each other, in particular, in high
consolidated scenarios, it is critical to mitigate them as much as possible. For
such a purpose, we implement YOLO as a first mechanism to limit the impact of
I/O operations related to the VM or container image on the boot duration. In
the following, we give an overview of YOLO foundations and its implementation.
First, we explain how boot images are created. Second, we introduce how yolofs,
our custom file system, intercepts I/O requests to speed up a boot process.

3.1 YOLO Boot Image

YOLO relies on the boot image abstraction, i.e., a subset of the VM (or container)
image that corresponds to the data mandatory to complete the boot operation.
To create a boot image, we capture all read requests generated when we boot
completely a VM (or respectively a container). Each read request has: (i) a
file descriptor with file path and file name, (ii) an offset which is the beginning
logical address to read from, and (iii) a length that is the total length of the data
to read. For each read request, we calculate the list of all block id to be read by
using the offset and length information and we record the block id along with the
data of that block. In the end, a boot image contains a dictionary of key-value
pairs in which the key is the pair (file name, block id) and the value is the content
of that block. Therefore, with every read request on the VM (or container) image,
we can use the pair (file name, block id) to retrieve the corresponding data of
that block.

To avoid generating I/O contention with other operations, boot images should
be stored on dedicated devices for yolofs , which can be either local storage devices
(preferably SSD), remote attached volumes or even memory. To give an order of
magnitude, we created the boot images for 900+ available VMIs from Google



YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 7

Cloud and the result depicts that the space needed to store all these boot images
is around 40 GB, which is less than 3% of the original size of all VMIs (1.34 TB).
Storing such an amount on each compute node looks to us an acceptable tradeoff.

3.2 yolofs

To serve all the read requests from the boot image instead of the VM or container
image, we developed a new FUSE file system, entitled yolofs. In addition to not
being intrusive, recent analysis [19] confirmed that the small overhead of FUSE
for read requests is acceptable.

dedicated 
storage device 

U
se
r 
Sp
ac
e

K
er
ne
l S
pa
ce

VM/
Dockers

VFS
page cache

ext4    overlayfs    ... 

FUSE

yolofs

block devices

read
write

H
ar
dw

ar
e

1

2

3

4

5

6

7

 /storage/
 ├ CoW file

 /fuse/
 ├ base image

Fig. 3: yolofs read/write data flow

Figure 3 depicts the workflow of yolofs along with the read/write data flow
for a QEMU-KVM VM or a Docker container. yolofs is executed as a daemon on
each compute node (that is before any boot operation). When a VM/container
issues read operations on its base image, which is linked to our mounted yolofs
file system, the VFS routes the operation to the FUSE’s kernel module, and
yolofs will process it (i.e., Step 1, 2, 3 of the read flow). yolofs then returns the
data directly from the boot image (Step 4). If the boot image is not already into
the memory, yolofs will load it from its dedicated storage device to the memory.
Whenever the VM/docker wants to access data that is not available in the boot
image, yolofs redirects the request to the kernel-based file system to read the
data from the disk (Step 5, 6, and 7 of the read flow). Regarding write operations,
they are not handled by yolofs and are forwarded normally to the corresponding
COW file (the write flow in Figure 3).



8 Thuy Linh Nguyen et al.

4 Experimental Protocol

In this section, we discuss our experiment setup and scenarios. The code of
YOLO as well as the set of scripts we used to conduct the experiments are
available on public git repositories 1. We underline that all experiments have
been made in a software-defined manner so that it is possible to reproduce them
on other testbeds (with slight adaptations in order to remove the dependency to
Grid’5000). We have two sets of experiments for both VMs and containers. The
first set is aimed to evaluate how YOLO behaves compared to the traditional
boot process when the VM/container disks are locally stored (HDD and SSD).
The second set investigates the impact of collocated I/O intensive workloads on
the boot duration.

4.1 Experimental Conditions

Experiments have been performed on top of the Grid’5000 Nantes cluster [1]. Each
physical node has 2 Intel Xeon E5-2660 CPUs (8 physical cores each) running at
2.2 GHz; 64 GB of memory, a 10 Gbit Ethernet network card and one of two kinds
of storage devices: (i) HDD with 10 000 rpm Seagate Savvio 200 GB (150 MB/s
throughput) and (ii) SSD with Toshiba PX02SS 186 GB (346 MB/s throughput).
Regarding the VMs’ configuration, we used the QEMU-KVM hypervisor (Qemu-
2.1.2 and Linux-3.2) with virtio enabled (network and disk device drivers). VMs
have been created with 1 vCPU and 1 GB of memory and a disk using QCOW2
format with the writethrough cache mode. For container, we used Docker (18.06.3-
ce) with overlay2 storage driver. Each VM/container has been assigned to a
single core to avoid CPU contention and prevent non-controlled side effects. The
I/O scheduler of VMs and the host is CFQ. We underline that all experiments
have been repeated at least ten times to get statistically significant results.

VM boot time: we assumed that a VM is ready to be used when it is possible
to log into it using SSH. This information can be retrieved by reading the system
log, and it is measured in milliseconds. To avoid side effect due to the starting of
other applications, SSH has been configured as the first service to be started.

Docker container boot time: the main idea behind a container is running
applications in isolation from each other. For this reason, docker boot duration
is measured as the time to get a service runs inside a docker.

4.2 Boot Time methodologies

We considered three boot policies as depicted as follow:

– all at once: using a normal boot process we boot all VMs/dockers at the same
time (the time we report is the maximum boot time among all VMs/dockers).

– YOLO : All VMs/dockers have been started at the same time, and when
a VM/docker needs to access the boot data, YOLO will serve them. We
underline that boot images have been preloaded into the YOLO memory

1https://github.com/ntlinh16/vm5k

https://github.com/ntlinh16/vm5k


YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 9

before starting a boot process. This way enables us to emulate a non volatile
device. While we agree that there might be a small overhead to copy from
the non-volatile device to the YOLO memory, we believe that doing so is
acceptable as (i) the amount of manipulated boot images in our experiments
is just 50 MB for a VM or 5 MB for a container and (ii) the overhead to load
simultaneously 16 boot images from a dedicated SSD is less than 1%, as
depicted in Figure 4.

– YOLO + vmtouch: we use vmtouch to enforce QEMU and Docker daemon
data to stay in the cache before we boot VMs/dockers by using YOLO .

0

2

4

6

8

1 4 7 10 13 16

Number of VMs

B
o

o
t 

T
im

e
 (

s
)

boot images on memory

boot images on SSD

Fig. 4: Overhead of serving boot’s I/O requests from the memory vs. a dedicated SSD

5 VM Boot Time analysis

5.1 Booting multiple VMs simultaneously

For the first experiment, we investigated the time to boot up to 16 VMs in
parallel using three boot policies mentioned above. With all at once policy, we
used two different VM disk strategies: shared image and no shared image (see
Section 2). There is no different between these VM disk strategies for YOLO
because all necessary data for the boot process is already served by YOLO . Our
goal was to observe multiple VMs deployment scenarios from the boot operation
viewpoint.

Figure 5 shows the time to boot up to 16 VMs on a cold environment (i.e.,
there is no other VMs running on the compute node). On HDD (Figure 5a), the
all at once boot policy with no shared image disk has the longest boot duration
because VMs perform read and write I/O operations at the same time for their
boot processes on different VM disks. This behavior leads to I/O contentions:
the more VMs started simultaneously, the less I/O throughput can be allocated
to each VM. Because read operations of boot process access the same backing file
for VMs with shared image disks, the boot duration is noticeably faster than the
VMs with no shared image disks. Using YOLO speeds up the boot time (from



10 Thuy Linh Nguyen et al.

0

20

40

60

80

100

1 4 7 10 13 16

Number of VMs

B
o

o
t 

T
im

e
 (

s
)

no shared disk shared disk

YOLO YOLO + vmtouch

(a) HDD

0

1

2

3

4

5

1 4 7 10 13 16

Number of VMs

B
o

o
t 

T
im

e
 (

s
)

no shared disk shared disk

YOLO YOLO + vmtouch

(b) SSD

Fig. 5: Time to boot multiple VMs with shared and no shared disks

4-13 times) since VMs always get benefit from the cache for reading mandatory
data. YOLO + vmtouch has basically the same performance as YOLO alone
because time to load the additional read data for qemu beside boot data from
VMI is not significant. On SSD (Figure 5b), the boot time of several VMs is
mostly constant for all boot policies. The I/O contention generated during the
boot process on SSD is not significant enough to observe performance penalties
(the I/O throughput of the SSD is much higher than HDD).

5.2 Booting one VM under I/O contention

This experiment aims to understand the effect of booting a VM in a high-
consolidated environment. We defined two kinds of VMs :

– eVM (experimenting VM), which is used to measure the boot time;
– coVM (collocated VM), which is collocated on the same compute node to

run competitive workloads.

We measured the boot time of one eVM while the n coVMs (n ∈ [0, 15]) are
running the I/O workloads by using the command stress1. Each coVM utilises
a separate physical core to avoid CPU contention with the eVM while running
the Stress benchmark. The I/O capacity is gradually used up when we increase
the number of coVMs. There is no difference between VMs with no shared image
and shared image disks because we measure the boot time of only one eVM.
Hence, we simply started one eVM with the normal boot process.

Figure 6 shows the boot time of one eVM under an I/O-intensive scenario.
YOLO delivers significant improvements in all cases. On HDD, booting only one
eVM lasts up to 2 minutes by using the normal boot policy. Obviously, YOLO
speeds up boot duration much more than the normal one because the data is
loaded into the cache in a more efficient way. YOLO + vmtouch can further
improves the boot time by preloading the data for the VM management system.

1http://people.seas.harvard.edu/apw/stress/



YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 11

0

30

60

90

120

0 3 6 9 12 15

Number of coVMs

B
o

o
t 

T
im

e
 (

s
)

normal boot YOLO

YOLO + vmtouch

(a) HDD

0

6

12

18

24

0 3 6 9 12 15

Number of coVMs

B
o

o
t 

T
im

e
 (

s
)

normal boot YOLO

YOLO + vmtouch

(b) SSD

Fig. 6: Boot time of 1 VM (with shared image disk, write through cache mode) under
I/O contention environment

The same trend can be found on SSD in Figure 6b where the time to boot the
eVM increased from 3 to 20 seconds for the normal strategy, and from 3 to 4
seconds for YOLO . YOLO is up to 4 times faster than all at once policy under
I/O contention of 15 coVMs.

6 Docker Container Boot Time Analysis

6.1 Booting multiple distinct containers simultaneously

Similarly to VMs, we discuss in this paragraph the time to boot several different
containers simultaneously. Figure 7 presents the results. Although YOLO reduces
the time to boot containers, the time increases more significantly in comparison to
VMs. This is due to the write operations that need to be completed as explained
in Section 2.2. Understanding how such writes can be handled more efficiently is
let as future works. Overall, YOLO enables the improvement of the boot time by
a factor 2 in case of HDD (Figure 7a). The trend for SSD is similar to the VM
one: there is not enough competition on the I/O path to see an improvement.

0

20

40

60

0 4 8 12 16 20 24 28 32

Number of containers

B
o

o
t 

T
im

e
 (

s
)

normal YOLO

YOLO + vmtouch

(a) HDD

0

4

8

12

0 4 8 12 16 20 24 28 32

Number of containers

B
o

o
t 

T
im

e
 (

s
)

normal YOLO

YOLO + vmtouch

(b) SSD

Fig. 7: Boot time of different docker containers on different storage devices



12 Thuy Linh Nguyen et al.

6.2 Booting one docker container under I/O contention

In this paragraph, we discuss the time to boot a container under I/O contention.
Figure 8 depicts the results: the boot time is increasing until it becomes quite
stable. When a container is started, Docker needs to generate the container
layer with all the directories structure for that container. As mentioned, this
action generates write operations on the host disk, which suffer from the I/O
competition. Although YOLO and YOLO + vmtouch help mitigate the read
operations, Docker still waits for the finalization of the container layer to continue
its boot process. Therefore, the gain of YOLO is much smaller than for VMs.

0

10

20

30

0 4 8 12 16 20 24 28 32

Number of co−containers

B
o

o
t 

T
im

e
 (

s
)

normal boot YOLO

YOLO + vmtouch

(a) HDD

0

3

6

9

0 4 8 12 16 20 24 28 32

Number of co−containers

B
o

o
t 

T
im

e
 (

s
)

normal boot YOLO

YOLO + vmtouch

(b) SSD

Fig. 8: Boot time of one debian docker container under I/O contention

7 Related Work

To improve Docker startup time, most works only tackle the image pulling
challenge of Docker because they assume that the container boot time is negligible.
However, improving the docker image pulling is out of scope of this article. To
the extent of our knowledge, our work is the first one to take into account the
boot duration of a Docker container. Meanwhile, there are some solutions that
improved the VM boot time, which utilize two main methods: cloning techniques
or suspend/resume capabilities of VMs.

Kaleidoscope [2], SnowFlock [9] and Potemkin [20] are similar systems that
can start stateful VMs by cloning them from a parent VM. While Potemkin
marks a parent VM memory pages as copy-on-write and shares these states to
all child VMs, SnowFlock utilises lazy state replication to fork child VMs and
Kaleidoscope has introduced a novel VM state replication technique that can
speed up VM cloning process by identifying semantically related regions of states.
These systems clone new VMs from a live VM so that they have to keep many
VMs alive for the cloning process. Another downside is that the cloned VMs have
to be reconfigured because they are the exact replica of the original VM so they
have the same configuration parameters like MAC address as the original one.



YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations 13

Other works [3,8,22] attempt to speed up VM boot time by suspending the
entire state of a VM and resuming when necessary, which leads to a storage
challenge. VMThunder+ [23] boots a VM then hibernates it to generate the
persistent storage of VM memory data and then use this to quickly resume a
VM to the running state. The authors use hot plug technique to re-assign the
resource of VM. However, they have to keep the hibernate file in the SSD devices
to accelerate the resume process. Razavi et al. [18] introduce prebaked µVMs,
a solution based on lazy resuming technique to start a VM efficiently. To boot
a new VM, they restore a snapshot of a booted VM with minimal resources
configuration and use their hot-plugging service to add more resources for VMs
based on client requirements. However, The authors only evaluated their solution
by booting one VM with µVMs on a SSD device.

8 Conclusion

Starting a new VM or container in a cloud infrastructure depends on the time to
transfer the base image to the compute node and the time to perform the boot
process itself. According to the consolidation rate on the compute node, the time
to boot a VM (or a container) can reach up to one minute and more. In this work,
we investigate how the duration of a boot process can be reduced. Preliminary
studies showed that booting a VM (or container) generates a large amount of I/O
operations. To mitigate the overhead of these operations, we proposed YOLO .
YOLO relies on the boot image abstraction which contains all the necessary
data from a base image to boot a VM/container. Boot images are stored on a
dedicated fast efficient storage device and a dedicated FUSE-based file system is
used to load them into memory to serve boot I/O read requests. We discussed
several evaluations that show the benefit of YOLO in most cases. In particular,
we showed that booting a VM with YOLO is at least 2 times and in the best
case 13 times faster than booting a VM in the normal way. Regarding containers,
YOLO improvements are limited to 2 times in the best case. Although such a
gain is interesting, we claim that there is space for more improvements. More
precisely, we are investigating how the creation of the container layer can be
performed in a more efficient manner in order to mitigate the dependencies of
the write requests with respect to the storage layer.

Acknowledgment

All experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr). This work is also a part of the BigStorage project,
H2020-MSCA-ITN-2014-642963, funded by the European Commission within the
Marie Skodowska-Curie Actions framework. This work was partially supported
by the Spanish Ministry of Science and Innovation under the TIN2015–65316
grant, the Generalitat de Catalunya undercontract 2014–SGR–1051.



14 Thuy Linh Nguyen et al.

References

1. Balouek, Daniel et al.: Adding Virtualization Capabilities to the Grid’5000 Testbed.
In: Cloud Computing and Services Science, Communications in Computer and
Information Science, vol. 367, pp. 3–20. Springer International Publishing (2013)

2. Bryant, Roy et al.: Kaleidoscope: cloud micro-elasticity via VM state coloring. In:
EuroSys 2011. pp. 273–286. ACM (2011)

3. De, P., Gupta, M., Soni, M., Thatte, A.: Caching VM instances for fast VM
provisioning: a comparative evaluation. In: Euro-Par 2012. pp. 325–336. Springer

4. Doug, H.: vmtouch: the Virtual Memory Toucher, https://hoytech.com/vmtouch/
5. Garcia, A.: Improving the performance of the qcow2 format.

https://events.static.linuxfound.org/sites/events/files/slides/kvm-forum-2017-
slides.pdf

6. Harter, Tyler et al.: Slacker: Fast distribution with lazy docker containers. In: FAST
2016. pp. 181–195 (2016)

7. Jeswani, D., Gupta, M., De, P., Malani, A., Bellur, U.: Minimizing Latency in
Serving Requests through Differential Template Caching in a Cloud. In: IEEE
CLOUD’2012. pp. 269–276. IEEE (2012)

8. Knauth, T., Fetzer, C.: DreamServer: Truly on-demand cloud services. In: ACM
SYSTOR’2014. ACM (2014)

9. Lagar-Cavilla, Horacio Andrés et al.: SnowFlock: rapid virtual machine cloning for
cloud computing. In: EuroSys 2009. pp. 1–12. ACM (2009)

10. Mao, M., Humphrey, M.: A performance study on the VM startup time in the
cloud. In: IEEE CLOUD 2012. pp. 423–430. IEEE (2012)

11. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux Journal (239), 2 (2014)

12. Nathan, S., Ghosh, R., Mukherjee, T., Narayanan, K.: Comicon: A co-operative
management system for docker container images. In: IEEE IC2E 2017. pp. 116–126

13. Nguyen, T.L., Lèbre, A.: Virtual Machine Boot Time Model. In: IEEE PDP 2017.
pp. 430–437. IEEE (2017)

14. Nguyen, T.L., Lèbre, A.: Conducting thousands of experiments to analyze vms,
dockers and nested dockers boot time. Tech. rep. (2018)

15. Nicolae, B., Cappello, F., Antoniu, G.: Optimizing multi-deployment on clouds by
means of self-adaptive prefetching. In: Euro-Par 2011. pp. 503–513. Springer (2011)

16. Nicolae, B., Rafique, M.M.: Leveraging collaborative content exchange for on-
demand vm multi-deployments in iaas clouds. In: Euro-Par 2013. pp. 305–316

17. Razavi, K., Kielmann, T.: Scalable virtual machine deployment using VM image
caches. In: SC13. p. 65. ACM (2013)

18. Razavi, K., Van Der Kolk, G., Kielmann, T.: Prebaked µvms: Scalable, instant VM
startup for IAAS clouds. In: IEEE ICDCS’2015. pp. 245–255. IEEE (2015)

19. Vangoor, B.K.R., Tarasov, V., Zadok, E.: To FUSE or Not to FUSE: Performance
of User-Space File Systems. In: FAST 2017. pp. 59–72 (2017)

20. Vrable, Ma et al.: Scalability, fidelity, and containment in the potemkin virtual
honeyfarm. In: ACM SOSP’2005. vol. 39, pp. 148–162. ACM (2005)

21. Wu, Ren et al.: A reference model for virtual machine launching overhead. IEEE
Transactions on Cloud Computing 4(3), 250–264 (2016)

22. Zhang, I., Denniston, T., Baskakov, Y., Garthwaite, A.: Optimizing VM Check-
pointing for Restore Performance in VMware ESXi. In: USENIX Annual Technical
Conference. pp. 1–12 (2013)

23. Zhang, Z., Li, D., Wu, K.: Large-scale virtual machines provisioning in clouds:
challenges and approaches. Frontiers of Computer Science 10(1), 2–18 (2016)

https://hoytech.com/vmtouch/

	YOLO: Speeding up VM and Docker Boot Time by reducing I/O operations

