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Abstract

In this study, we investigate how to learn labial coarticula-
tion to generate a sparse representation of the face from speech.
To do so, we experiment a sequential deep learning model, bidi-
rectional gated recurrent networks, which have reached nice
result in addressing the articulatory inversion problem and so
should be able to handle coarticulation effects. As acquiring
audiovisual corpora is expensive and time-consuming, we de-
signed our solution to counteract the lack of data. Firstly, we
have used phonetic information (phoneme label and respective
duration) as input to ensure speaker independence, and in sec-
ond hand, we have experimented around pretraining strategies
to reach acceptable performances. We demonstrate how a care-
ful initialization of the last layers of the network can greatly
ease the training and help to handle coarticulation effect. This
initialization relies on dimensionality reduction strategies, al-
lowing injecting knowledge of useful latent representation of
the visual data into the network. We focused on two data-driven
tools (PCA and autoencoder) and one hand-crafted latent space
coming from animation community, blendshapes decomposi-
tion. We have trained and evaluated the model with a corpus
consisting of 4 hours of French speech, and we have gotten an
average RMSE close to 1.3mm.

Index Terms: coarticulation modeling, visual speech synthesis,
recurrent neural network, pretraining strategy

1. Introduction

Research in audiovisual speech intelligibility has shown the
importance of the information provided by the face especially
when audio is degraded [1, 2, 3]. Hence, a body of studies has
worked on audiovisual speech synthesis, i.e. the ability to ani-
mate the mouth of a virtual character synchronously with acous-
tic speech (see for instance [4] for a comprehensive literature
review).

Intelligible virtual avatar with accurate lip motion could
have a great impact on second language acquisition, on assis-
tance for the hard-of-hearing population, on video-games and
film industries, or more generally for intuitive and natural hu-
man/machine interfaces. However, humans are very sensitive to
any incoherence between audio and visual animation, such as
an asynchrony between audio and visual channels [5] or small
phonetic distortion [6, 7, 8]. The mismatch between audio and
visual information can even lead to important effect on percep-
tion, as assessed by the McGurk effect [9].

While humans do not tolerate incongruity between audio
and visual channels, generating these visual trajectories is in-
credibly complicated by the coarticulation effects. Coarticula-
tion generally refers to the influence of the phonetic context on
the realization of a phone [10]. This influence can be carryover
due to the mass and inertia of each articulator (e.g. tongue, lips,
jaw), or anticipatory due to an underlying high-level planning of

speech production. Recurrent neural networks have been shown
to properly deal with tongue and jaw coarticulation [11, 12, 13].
Thus, we assume they could also handle labial coarticulation
present in visual data.

In a traditional two-step audiovisual synthesis, a text-to-
speech system is used to generate both the acoustic signal
and the phonetic sequences (the label and duration of each
phoneme), then this phonetic information is used to generate the
visual speech. This approach has the great advantages to bene-
fit from the latest progress in acoustic speech synthesis, but may
introduce some asynchrony between audio and visual channels.

In this paper, we address audiovisual speech synthesis with
a new modular approach. We try to generate a sparse repre-
sentation of the face from a phonetic sequence, and also benefit
from the last progress in retargeting system [14, 15, 16, 17].
Nonetheless, audiovisual corpora are typically small for a deep
learning approach. Even though one hour of speech was suf-
ficient to learn articulatory coarticulation, the number of out-
put point is far greater for our visual corpora (6 or 7 2D points
for classic articulatory corpus like MNGUO [18] or MOCHA-
TIMIT [19], versus 44 3D points for our in-house corpus).
Thus, we investigate pretraining strategy based on dimensional-
ity reduction to ease the training and to improve the network’s
performance. We have compared two data-driven methods,
principal component analysis and autoencoders, and a hand-
crafted method, i.e., Blendshape’s decomposition.

2. Data Acquisition

A motion-capture system based on eight Optitrack™ Flex-13
cameras have been used to record a professional female actress
at 120 fps. Since conducting audiovisual acquisition and pre-
processing them are greatly time-consuming, we carefully se-
lected 2000 French sentences, about 4 hours of speech, that is

Figure 1: Sensors location of our audiovisual corpus.



linguistically rich. Then, sixty-three sensors have been glued on
the actress face (fig. 1). In this work, we have used, however,
only 44 sensors corresponding to the lower part of the face, and
discarded information related to eyelids, forehead or eyebrows
movements. Head movements have been removed using 9mm
sensors glued on a beanie. Finally, forced alignment has been
conducted using Kaldi and a DNN-based acoustic model trained
on about 250 hours of French speech from TV and Radio (ES-
TER [20], EPAC [21] and ETAPE [22]).

3. Neural Architectures
3.1. Motivations

‘We have designed our neural networks according to three main
considerations. First, we aim to design a speaker independent
system. In speech recognition, this is generally achieved by
collecting speech from a lot of different speakers. However,
audiovisual corpora are expensive and time-consuming, pre-
venting us from recording hundreds of speakers. Hence, we
have explored the use of phonetic information (phoneme label
and respective duration) which has already been successfully
used in speech animation [23, 24] or articulatory inversion [13].
These high-level features properly represent speech while be-
ing totally speaker-independent. Secondly, there is absolutely
no consensus on the maximum duration of anticipatory and re-
tentive coarticulation effects. Although one can argue that its
influence is limited in time, we would prefer avoiding the use of
a temporal window to ensure the model take into account long-
range coarticulation effect. Thus, we have used a well-known
sequential model : the recurrent neural networks. Moreover,
coarticulation should not exhibit very long-range correlation ei-
ther, as RNNs usually do not perform very well. Finally, RNNs
are effective at producing smooth trajectories, and they should
alleviate the need for post-processing. This final filtering step
is usually mandatory when using feed-forward neural networks
for articulatory inversion or visual speech synthesis, as they tend
to produce jagged trajectories.

3.2. Bidirectional Gated RNN

While feedforward neural networks are universal approximators
(see for instance [25]), RNNs have been shown to be Turing
complete, and thus should be able to approximate any dynamic
system [26]. RNNs are able to summarize the input sequence
into an internal state using cyclical connection, giving them the
ability to learn temporal relationship and correlation between
data points. However, these recurrent networks are limited to
the use of past information, although knowledge of future infor-
mation could improve the prediction. This is particularly true
when dealing with speech production, for which it is well es-
tablished that future phonemes influence on the production of
the current phoneme and even the previous ones (anticipatory
coarticulation effect). Bidirectional RNNs (BRNNs) [27] over-
come this limitation using two layers simultaneously trained in
positive and negative time direction.

Classic equations for BRNN is:

< < <
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Yt = Woutput-[ h ty h t] + boutput

where h; is the network internal state, x+ the network input and
y; the corresponding output at time ¢. Wou¢pu: is the internal-
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Figure 2: Neural Architectures - From left to right: baseline
model, injecting PCA eigenvectors, injecting blendshape knowl-
edge and using autoencoder’s decoder.

to-output weight connection, and boutput the associated bias
vector. H is the recurrent hidden layer transfer function pa-
rameterized by the 6 set. < denotes elements related to the
backward layer and — to the forward layer, finally [...] de-
notes concatenation.

Despite its theoretical abilities, training vanilla RNN to
learn long-range dependencies using a gradient descent algo-
rithm is still a difficult task due to the vanishing/exploding
gradient issue [28]. Long Short Term Memory (LSTM) net-
work [29] gets around this issue by computing increments to
the internal state and so encouraging information to stay for
much longer, and by adding to each neural unit three gates
which act as weight adjusters in function of inputs and hidden
states. Among several variants of LSTM, the Gated Recurrent
Unit (GRU) proposed by [30] has become quite popular and
successful. GRU reduces the complexity of LSTM, by remov-
ing one gate and the cell memory and so decreasing the number
of parameters, which should simplify the training.

3.3. Transfer learning

For a deep learning approach, 4 hours of speech is quite a small
dataset, and may not be sufficient for a basic end-to-end train-
ing. To counteract this lack of data, we explore in this study the
use of transfer learning. When working with neural networks,
transfer learning generally refers to the pretraining of a network
on related tasks, discard the last layer, and exploit the features
learned for the main task. Here, we actually exploit the pre-
trained last layers, so one can argue our method is actually just
a pretraining strategy and not really transfer learning.

We exploit dimensionality reduction tools able to compress
the visual data into a latent space to initialize specific part of
our networks. Features learned for this compression task are
then used to learn a mapping between phonetic and articulation.
The main idea is to force the network to use an previously com-
puted latent representation of the sparse representation of the
face, while still being trained from the raw spatial trajectories.
To do so, we simply append the latent decoder at the top of the
recurrent layers.

We compare in this paper three dimensionality reduction
tools: blendshape decomposition, principal component analy-
sis and autoencoder. Blendshape decomposition is a animation
technique allowing a mesh to deform from a base shape to nu-
merous pre-defined shape (keyshapes) through linear morphing.
At any time, the targeted mesh b can be defined as a set of coef-



Method PCA Blendshape Autoencoder
RMSE (mm) | 0.33 0.95 0.32
Table 1: PCA, Blendshape and Autoencoder errors when com-
pressing and reconstructing the test set.

ficients x;, one for each keyshape b;.
b= B.x+ by 2

where bg is a vector representing mesh coordinate of the base
shape, B is a matrix containing all keyshapes vector b; — by and
z is the keyshape weights vector. This equation clearly exhibits
how easy it is to transfer this knowledge of useful keyshape into
a neural network, by carefully initializing a dense layer with bg
as bias and B as weight’s matrix. The same trick can be applied
for PCA, where a dense layer will be initialized with the com-
puted eigenvectors as weight’s matrix. The PCA approach has
already been successfully used for audiovisual speech synthesis
[31], and we carefully selected 13 blendshapes greatly inspired
by the work of Benot and Govokhina [32, 33].
Extending equation 1 for our pretraining strategy gives

— < —
hy= %(Im ht+1; 9)

e T
ht = H(CCt, ht71; 9)

— —
2t = Woutput~[ h ty h t] + boutput

Yt = fdecoder (Zt)
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where z; is the precomputed latent space and fgecoder the asso-
ciated decoding function. Note that our procedure is compatible
with any dimensionality reduction tools, as long as ficcoder €X-
ists and is differentiable.

4. Experiments
4.1. Methodology

We compare in this study four architectures, illustrated in fig-
ure 2. The first one is a simple baseline model trying to predict
the sensor positions directly from two layers of bidirectional
GRU. The three following architectures correspond to different
latent space representations and their associated decoders, from
left to right we respectively have PCA eigenvalues and eigen-
vectors, blendshape weights and keyshapes, and finally autoen-
coder latent space and its decoder. To ensure that the perfor-
mance differences between baseline and the other models come
from the initialization and not from the architecture differences,
each of these three architectures has been evaluated twice, once
using the pretraining procedure and once with a random initial-
ization. We also pay attention to a fair comparison between
latent spaces, so they all have a size of 13, which correspond
to both the number of keyshapes and the number of principal
components covering slightly more than 98% of the variance.
As training is stochastic, each network has been independently
initialized and trained 10 times. Each GRU layer has 128 neu-
rons in each direction. The autoencoder are composed of two
networks, an encoder with two hidden layers of 64 units with
ReLU activation, and a symmetric decoder. The latent space is
bounded between zero and one with sigmoid, and each layer is
normalized using layer normalization [34]. The upper part of
the right most figure in 2 illustrates the decoder architecture.

o
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Figure 3: Average loss per epoch - Black lines are the training
losses and red lines are validation losses. Dashed lines repre-
sent average location of minimal validation loss.

4.2. Training Procedure

We trained our networks in a framewise regression scheme
where inputs and outputs are synchronized, a procedure suc-
cessfully used for articulatory inversion [13]. The target output
is a sequence of n-dimensional vectors representing the stacked
spatial coordinates of each sensor, while the input is a sequence
of one-hot vector representing the articulated phoneme at each
time step.

As in typical regression task, we used the mean squared
error as loss function, and defined the error as the Euclidean
distance between prediction and target vector. The partial
derivatives according to the BRNN parameters were computed
with Backpropagation Through Time (BPTT) [35], and the net-
work was fully unfolded for each training sequence. We used
Adam [36] and its recommended parameters to finally update
the network’s parameters. Each GRU layer has 128 neurons
in each direction, and we kept very small minibatches of size
2. The corpus split is a traditional 80/10/10, where 80% of the
data go to the training set (about 200’), 10% to the validation
set, and 10% to the testing set (about 20’ each).

Baseline has been trained for 150 epoches, architectures
initialized with PCA and Blendshape 50 epoches, and archi-
tectures initialized with Autoencoder 100 epoches.

4.3. Training Time

Figure 3 presents the average loss per epoch, for both the train-
ing set and the validation set. It clearly exhibits two major
points, firstly the baseline method seems to encounter two local
minimums or saddle points, located around a loss of 750 and
550. Resulting in uneven training time needed to reach mini-
mal value on validation set. Then, all injections of precomputed
latent space help the network to go through these training diffi-
culties, and so greatly speed up the average number of epochs
needed to reach the minimal value on the validation set. Au-
toencoder seems not to be as efficient as PCA and Blendshape’s
decomposition to speed up the training, but this difference may
be explained by the depth of the architecture.

4.4. Performances Evaluation

Figure 4 presents average RMSE (in mm) and correlation for
the four architectures and different initialization strategies.

A first insight that this figure provides is similar perfor-
mances PCA, Blendshapes and Autoencoder architectures get
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Figure 4: Violin plot of performances per architecture - Blue
corresponds to a random initialization without normalization,
green to a random initialization with normalization and or-
ange to an architecture with parameters injection. Upper plots
present the RMSE in mm and lower plots the Pearson’s corre-
lation.

Figure 5: Sample trajectories for the sensors located at the cen-
ter of the upper lips.

when randomly initialized, they actually are all stuck into the
plateau presented in section 4.3. When looking at the generated
trajectories of architectures stuck with a loss function around
750, with near O correlation and 2mm RMSE, it appears that
they are all mainly stationary, so the network has only learned
to reconstruct a face and completely fails to learn the labial coar-
ticulation. This explains the poor correlation with relatively low
RMSE. We suspect that these randomly initialized architectures
could perform as well as the baseline with a longer training
time, as this seems to be the case with Autoencoder.

A second insight is that all parameters injection actually
helps the network to reach new levels of performance, even
for hand-crafted features like keyshapes. Moreover, better di-
mensionality reduction tools (PCA and autoencoder in this pa-
per, see table 1) seems to yield slightly to better overall perfor-
mances.

Finally, even without parameters injection, the presence of
layer normalization greatly helps the training. This clearly in-
dicates that working on the training procedure could also im-
prove overall performances. For example, further investigation
of applying this normalization directly to RNN layers should be
considered.

5. Conclusion

‘We have presented in this paper two main ideas to work around
the small size of audiovisual database. First, we ensure that
phonetic sequences, a high-level spearker-independent feature,
is actually rich enough to properly infer the labial movements,
while taking into account coarticulation, using bidirectional
gated networks. Second, we demonstrate how a simple initial-
ization strategy can greatly help such networks to learn coar-
ticulation. Indeed, mapping a phonetic sequence to its corre-
sponding labial articulation is not trivial. Without parameters
injection, the network’s loss function during training is quickly
confronted to a plateau requiring a long training time.

The pretraining procedure consists of injecting precom-
puted latent space into the network, so the neural architecture
already has an internal representation of the visual data to work
with at the beginning of the training. From a certain point of
view, we actually inject knowledge about the articulation into
the network, as we provide a latent space able to represent
the many different shapes of the lower part of the face during
speech. This knowledge injection seems to greatly help the net-
work to deal with labial coarticulation. Actually, this strategy
improves both the training time and the performances of the net-
work. The number of epochs needed to reach the best validation
loss is divided by about seven (about 70 epoches for the base-
line, about 10 for PCA, Blendshape and Autoencoder), there is
up to a 35% relative RMSE improvements with the same train-
ing time between networks using our initialization and the same
architecture with random initialization. Moreover there is far
less variability in the network final performances. Surprisingly,
performances using hand-crafted latent space (blendshape) are
really close to performances using latent space computed with
data-driven methods (PCA and Autoencoder).

In a similar way, it could be now really interesting to in-
ject knowledge about the phonetic sequences. To do so, our
future work will take inspiration from the NLP community by
conducting language modeling at the phoneme level. These fea-
tures at word-level have been shown to be really robust and use-
ful for a lot of NLP tasks (e.g. ELMo [37] or BERT [38]),
and we hope that the pre-trained contextualized features of
phonemes could bring useful information to learn labial coartic-
ulation. Moreover, such an approach could allow us to benefit
from the great amount of data already available in classic speech
datasets, as we only need phonetic sequences without visual
data. Finally, these labial articulations are actually a sparse rep-
resentation of the human face acquired with a motion-capture
system, and so could benefit from any retargeting method to an-
imate the face of an arbitrary 3D characters. In addition, we are
planning to conduct a perceptual study to assess the perceptual
quality of our coarticulation model.
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