N

N

PMHBM2 Q#mbi SH +2K2Mi Q7 a2 pB+2 *?
i *2Mi2° hQTQHQ:B2b
:?/ JQm HH - h?B2 "vhm H2iiB-. KB2M a m-

hQ +Bi2 i?Bb p2 ' bBQM,
2/ JQm HH - h?B2 v hm " H2iiB- . KB2M a m+2xX PMHBM2 Q#mbi St
G ;2.1 *2Mi2 hQTQHQ;B2bX A111 ++2bb- AMT 2bb- TTXRjX RYXRF
ykRddO3j

> G A/, ? H@ykRdd93]
2iiTh,ff? HXBM B X7 f? H@ykRdd93j
am#KBii2/ QM N CmH kyRN

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal.inria.fr/hal-02177483
https://hal.archives-ouvertes.fr

Online Robust Placement of Service Chains for Large Data Center Topologies

Ghada Moualla, Thierry Turletti, Damien Saucez
Universie Cote d'Azur, Inria, France

Abstract—The trend today is to deploy applications and
more generally Service Function Chains (SFCs) in public
clouds. However, before being deployed in the cloud, chains
were deployed on dedicated infrastructures where software,
hardware, and network components were managed by the
same entity, making it straightforward to provide robustness
guarantees. By moving their services to the cloud, the users
lose their control on the infrastructure and hence on the
robustness. In this paper, we provide an online algorithm
for robust placement of service chains in data centers. Our
placement algorithm determines the required number of
replicas for each function of the chain and their placement
in the data center. Our simulations on large data-center
topologies with up to 30,528 nodes show that our algorithm
is fast enough such that one can consider robust chain
placements in real time even in a very large data center
and without the need of prior knowledge on the demand
distribution.

KeywordsOnline Placement algorithm, SFC, Robustness,
Cloud, Data Center.

I. INTRODUCTION

Digital services and applications are nowadays de-
ployed in public virtualized environments instead of ded-
icated infrastructures. This change of paradigm results in
reduced costs and increased exibility as the usage of the
hardware resources can be optimized in a dynamic way,
and allows one to build the so-calléskervice Function
Chains(SFCs) [1].

The problem Conceptually a “cloud” provides one
general-purpose infrastructure to support multiple inde-
pendent services in an elastic way. To that aim, cloud
operators deploy large-scale data centers built with com-
mercial off-the-shelf (COTS) hardware and make them
accessible to their customers. Compared to dedicated
infrastructures, this approach signi cantly reduces costs
for the operators and the customers. However, COTS
hardware is less reliable than speci c hardware [2] and
its integration with software cannot be extensively tested,
resulting in more reliability issues than in well-designed
dedicated infrastructures. This concern is accentuated in
public clouds where resources are shared between inde-
pendent tenants, imposing the use of complex isolation
mechanisms. As a resuthoving Service Function Chains
to data centers calls for a rethinking of the deployment
model to guarantee high robustness levels

The challengeln the context of exogenous independent
service chains requests in a very large data cem&),(

it is particularly complex for an operator to dynamically
place the different virtual functions constituting the chains
in their data center, while guaranteeing at the same time
robustness to their customers' services and maximization
of the number of services that can be deployed in their
infrastructure. The reason is that operators have no view
on the future requests they will receive and how long
services deployed at a given moment will last, as the
demand is elastic by naturdhe key challenge is to
design placement algorithms in large data centers given
the unknown nature of the future service chain requests
and the need to make the placement decisions on the y
The approach We provide an online optimization algo-
rithm that builds active-active chain replicas placements
such that in case of fail-stop errors breaking down some
function instances, the surviving replicas can be used to
support the traf ¢ normally carried by the failed functions.
Our algorithm computes the number of replicas needed to
be robust taR arbitrary fail-stop node failures and where
to place them in the underlying data center.

The contribution The salient contributions of this paper
are the following:

Fast approximation online algorithmxivV) We pro-
pose an online two-step approximation algorithm for
very large data centers that determines the optimal
number of service VNF instances and their place-
ment in DCs, based on the available network re-
sources and the resource requirements of the tenants
service requests, namely CPU and bandwidth.
Evaluation at very large scalexy) We provide a
comprehensive evaluation of the proposed algorithm
using three large DC topologie¢t) a 48-Fat-Tree
topology with 30,528 nodegji) a Spine-and-Leaf
topology with 24,648 nodes, arfdi ) a generic two-
layer topology with 27,729 nodes. To the best of our
knowledge we are the rst to demonstrate that robust
placement algorithms can be used in practice in very
large networks.

The paper is organized as follows. Sec. Il presents the

related work on robust placement. Sec. lll clearly states



the problem we address with this paper, our approach, failover mechanisms. Kulkarni et al. [12] present a re-
and our assumptions. Sec. IV details our algorithm to siliency framework to deal with all different kinds of
deploy SFC with robustness guarantees on DC topologiessoftware and hardware failures where they replicate state
and Sec. V assesses its performance on very large-scaléo standby NFs while enforcing NF state correctness.
networks with simulations. Finally, Sec. VI concludes the Robustness is considered by Machida et al. [13] and
paper. Bin et al. [14]. They both address the problem of mak-
ing virtual machines (VMs) resilient t& physical host
. , . failures. They de ne a high-availability property so that
The VNFs placement is a well-studied problem in it \5° are marked ask-resilient, they can be safely
the literature due to its importance. In [3], Moens e.t al. migrated to other hosts when there are less thdost
formulate the placement problem as an Integer Linear failures. In our work, we also use tlkeresilient property

Program (I!‘P.) with an quective of al_locat_in_g _th_e SFC but per SFC request instead of per VM and with a different
requests within NFV environments while minimizing the solving approach. In our work, we provide a solution

number of servers used. Mehra}ghdam et.al. .[4] also pased on a priori VNFs replication that avoids the outage
propose a VNF placement algorithm but with different of critical services upon failures

imization Is. Their roach constr VNF . .
Opt gto goals €Ir approacn co St. ucts a Wang et al. [15] consider the online placement to
forwarding graph to be mapped to the physical resourCes'determine the optimal number of VNF instances and
assuming limited network resources and functions with ) . P ) . S
their optimal placement in DCs, which minimizes the

speci ¢ requirements and possibly shared. . o
P d P y operational cost and resource utilization over the long run.

Bari et al. [5] study a similar problem and solve it Their algorithm tak lina decisions based on current
for determining the optimal number of VNFs required eIr aigo axes scaling decisions based on curre
traf c and assumes in nite inter-servers bandwidth. We

and their placement with the objective of minimizing the L . i
P ) 9 have similar assumptions for online SFC requests but

PEX he all ion h rvi rovider . . I
© caused by the allocation to the service provide they consider shared VNFs and do not consider resiliency

while guaranteeing the service delay bounds. They for- .
mulate the problem using an ILP and present a heuristic ISSUes. Mohammadkh_an et al. [16] also propose a MILP
formulation to determine the placement of online VNFs

that maps nodes for each request on a single physical host.

However, the robustness problem is not considered in all :T?i(llijrfsi(\a,v;it:]]ktggn(:jk\),{/?g%vzn(g {r?sl:]ﬂrrl]gb(la?ti?iﬁebg Crg'rr;;
these works and they only consider of ine placement. 9 '

The same problem is solved in a DC topology by They propose a heuristic to solve the problem incremen-

Cohen et al. [6] to minimize the total system cost OPEX. tally but do not consider resiliency againﬁt failur'es.
However, the proposed LP-relaxation solution has the aw  Fan et al. [17] propose an approximation online algo-
of violating physical resource capacities as NFs are shared"ithm to map SFC requests with HA requirements with the
between the clients. objective to maximize the acceptance ratio while reducing
Marotta et al. [7] describe a robust placement algorithm the resources used. Like us, they assume that VNFs
to cope with variations on resources required for VNFs, &€ heterogeneous in terms of functional and resource
They leverage the Robust Optimization theory to reduce requirements but they 90n5|der seve'ral DCs and assume
energy consumption by minimizing the number of hosts the presence of protection schemes in the DC so that the
used. We have a different objective as we seek to be robustdePloyed VNFs always have 100% availability.
against node failures, which requires selecting different ~ Since solving the placement problem is shown to be
physical hosts when deploying VNFs. hard and many heuristics were proposed in the related
A number of studies showed that hardware and soft- works [18], [5], [19] and [20], algorithms like the Simple
ware failures are common [8], [9], [10] and with NFV- Greedy Approach GA and heuristics such as First
based environment, where low reliable commodity hard- Fit Decreasing KFD), have been widely studied and
ware is used, the chance of failures is even increased [11].proposed in the literature for the VM placement problem
The failure detection and recovery time depends on the to reduce the time needed to get a reasonable solution.
type of failure and may take seconds or more for hardware Many authors compared their own solutions to one of
failures such as link and node failures [8]. Thus, ensuring SGAs such as [21], [20] and [22]. In FFD, VNFs are
high availability (HA) to maintain critical NFV-based organized in a decreasing order of resource requirements
services is an important design feature that will help and each VNF is then placed into the rst physical server
the adoption of virtual network functions in production available with suf cient remaining resources. We com-
networks, as it is important for critical services to avoid pare the optimal solution results with this approximation
outages. Some works considered this problem and in- approach to understand the impact on the results.
troduced a solution for failure detection and consistent  Each of these contributions only addresses a single

Il. RELATED WORK



problem: either placement with some optimization goals Solution We develop a two-step approximation algorithm
(e.g., placement of VMs, VNFs or SFCs), or online/ofine that rst computes the optimal placement of functions on
placement or VMs placement considering resiliency. We the DC nodes regardless of the link constraints. It then
are the rst to propose an approach that considers the computes the routing table for the traf ¢ carried by the
online placement of SFCs requests in DC topologies while SFC, using a feasible shortest path between functions.
taking resiliency requirements into account. Moreover, )

unlike previous works, we evaluate our proposed solution A- Assumption

on very large topologies, considering real data center In the following of this section we detail the as-
topology sizes. In our previous work [23], we proposed a sumption we took to address the problem of robust SFC
stochastic approach for the case where SFCs are requesteglacement in large data centers.

by tenants unaware of the infrastructure of the data center 1) Environment: Data Center Topologies with Fault
network and that only provide the SFC they want to Domains: In this paper, we consider the common case
deploy along with the required availability level. This of multi-tier DC topologies [24] decomposable in fault
work was tailored for Fat-Tree data-center topologies. In domains such as Fat-Tree or Spine-and-Leaf topologies.
this paper, we propose a deterministic solution for deploy-  Fat Tree (see Figure 1) is a common bigraph based
ing SFCs in arbitrary multi-tier data center topologies, three-tier topology for data centers [25]. The elementary
where the requested SFCs are directly deployed by theplock in this topology is calleghod and is a collection of
DC owners that know in advance the minimum number access and aggregation switches connected in a complete
of replicas needed as they have a perfect knowledge ofpigraph. Each pod is connected to all core switches. Fat
the infrastructure and of the SLA they provide to their Trees are clos topologies relying on high redundancy of
tenants. links and switches.

[Il. PROBLEM STATEMENT Spine and Leaf [26] (see Figure 2) are common two-
tier topologies in data centers, where each lower-tier
switch, calledleaf switch, is connected to each of the
éop—tier switches, namedpine switches, in a full-mesh
topology. In Spine-and-Leaf networks groups of servers
are connected to the leaves.

This paper aims at providing a mechanism to deploy
Service Function Chains (SFCs) in large public cloud data
centers in a way that guarantees that the deployed SFC
cannot be interrupted upon node failures. In the context
of public cloud data centers, the infrastructure operator
does not control the workload and the placement must be
oblivious to the future workload as it is unknown. When a
tenant requests the placement of a chain in a data center
it provides its requirements in terms of VMs (e.g., VM
avor in OpensStack) and its desired availability SLA (see
Sec. IlI-A4).

Approach To address the so-calledbust SFC placement

in large data centerswe propose to develop an on-
line optimization algorithm that builds active-active chain Figure 1: Fat-tree Topology.
replicas placements. The placement must be such that up

to R arbitrary fail-stop errors no deployed service would

be interrupted or degraded. == =g
Obijective The target of our algorithm is to maximize the ’ ’
overall workload that a data center can accept such that

service requests are always very likely to be accepted, % o
even though they are unknown in advance. In other words,
we aim at optimizing the SFC request acceptance ratio. E E E
Constraints As our algorithm aims to be used in an online ]

- [ _— I — R — N —] [ = — =}

manner, its resolution time must be kept fast. Namely, the

resolution of an SFC placement must be done in a time Figure 2: Spine-and-Leaf Topology

no larger than the one required to instantiate the SFC

functions in the infrastructure (i.e., the order of a few tens ~ When network reliability and availability are consid-
of seconds) even for large data center topologies (moreered at the early network design phases, topologies are
than 30,000 physical nodes). built with multiple network fault domainsA fault domain

&RUH

S55q) $IIUHID)

(GJIH

6SL



ot | vz feooo-d Nen _, the used resources by various VMs deployed on that host.

As we do not consider the deployment phase of SFCs
and given that we consider Fat-Tree and Spine-and-Leaf
topologies in this paper, we can safely assume that the

network provides in nite bandwidth w.r.t. SFCs demands.

) ) ) ) ] 3) Online Placementiin some speci ¢ private cloud
is said to be a single point of failure. It represents a group deployments, one can control the workload and thus

of machines that share a common power source and agnniy ofine optimization techniques to decide on the

network switch and it is de ned based on the arrangement pjacement of virtual service chain functions in the data
of the hardware. A machine, rack or pod can be a center. However, in the general case of a public cloud,
fault domain. In tree-based, switch-centric DC network e \yorkioad and the management of the infrastructure

topology such as Fat Tree and Spine and Leaf [26], We 4r¢ handled by different independent entities (i.e., tenants
can de ne the fault domains easily. In Fat-Tree topologies, 544 the cloud provider). As a result, the placement of

each pod is considered as one fault domain. In Spine-and-gecs must be determined in an online manner that is
Leaf topologies, each leaf switch and the hosts connectedpjivious to future demands.

to it form a fault domain. 4) Robustness and Failure ModalVe target the place-

On the contrary, it is not possible to dene fault ent of SFCs with robustness guarantees, wherekthe

domains in server-centric DCs — such as Dcell and rqpsiness level stands for the ability of an SFC to remain
Bcube [27]. We therefore do not consider such topologies fully operational upon the failure ok entities of the

Figure 3: SFC Request Topology.

in our study. infrastructure and without having to re-deploy or migrate

2) Service Function Chains independence and work- y;jrtal machines upon failures in order to guarantee zero
load: Public cloud DCs share the same physical infras- yowntime.

tructure with heterogeneous services operated by multiple  \yhen a tenant requests the placement of a service
tenants. In this paper, we consider the case of tenantsgynciion, it provides the service function graph with
willing to deploy SFCs in the DC. An SFC is a group s required resources — the VM avor for each chain

of virtual functions ordered in sequences to provide a fynction — and the SLA commitment for the chain (e.g.,
service to an end user. Each function uses the output of yg pines).

the previous one in thg chain as an input [1]. An SFC can Assuming a strictfail-stop failure model[29] with

be represented as a directed graph. Each node representsghcorrelated events and given the knowledge of its infras-
virtual function annotated with its resource requirements . cture (MTBF and MTTR of the physical equipment),
(e.9., CPU, memory, etc.) while each edge represents athe SFC graph and subscribed duration, and the requested
virtual link vLink annotated with its requirements (e.9., LA commitment [23], the data center operator can deter-

traf ¢ between two functions where the destination node fajlyres that the chain may encounter during its lifetime.

(i.e., function) consumes the traf c generated by the origin
node (i.e., function). If no trafc is directly exchanged IV. SFC RLACEMENT WITH ROBUSTNESS
between two functions, no vLink is de ned. While in the In this section, we propose a two-phase algorithm
general case SFCs can be arbitrary directed graphs, weto place SFCs in a DC such that whenever a chain
restrict our work to the common case of directed acyclic is deployed, it offers robustness guarantees. To avoid
graphs [28]. downtime upon failures in the physical infrastructure, we
In this work, each function is dedicated to only one cannot rely on a reactive approach that would redeploy
SFC, and an SFC is under the sole control of a single functions after failure detection [7]. Instead, we propose to
tenant. This assumption holds in case of public clouds, account in advance for the potential fail-stop node failures
where tenants are independent actors and the DC operatothat the chains may encounter during their life cycle.
considers functions as opaque virtual machines. If a To that aim, our algorithnreplicates multiple times
function is implemented by using multiple instances of the chain andscales downeach replica such that each
the same VM (e.g., because of processing limitations replica has an equal fraction of the total load of the
of a single host), we assume that the load is equally initial chain. In the remaining of this paper, we refer to
and instantaneously balanced between all the functionsuch scaled down replicas with the teswvaled replica
instances, e.g., through LBaa$S in OpenStack. Our algorithm is called each time a request to install an
To preserve performance while sharing the same phys-SFC is received. Speci cally, for obustness leveR, the
ical hosts between many tenants, the total amount of thealgorithm determines how many scaled replicas to create
physical host resources is always larger than the sum offor that SFC and where to deploy them within the data



Figure 4 and Figure 5 illustrate the behavior of the
algorithm with the deployment of a chain composed of
two functions: the rst function requires 4 cores, while the
second one requires 2 cores and the ow between these
two functions requires 30 Mbps to properly work, with the
target of being robust to one node failure. Figure 4 shows
the placement of the chain in a Fat-Tree data center where
each node in the DC has 3 cores. Each replica receives
50% of the expected load, shown in red. After checking
the robustness, the algorithm decides to split the chain

Figure 4: Initial placement. Link capacity: 20 Mbps, Core per Sinceé the rst placement does not meet the robustness

hosts:3 requirements because the worst-case commitment is not
respected, as one failure would result in the need of
4 cores on the remaining hosts. Moreover, the physical
network links cannot support more than 20 Mbps while
in the worst-case the link requirement is 30 Mbps. The
placement in Figure 5, depicted in green, meets the
robustness level as when a node fails, one of the scaled
replicas will fail but the other replicas will be able to
temporarily support the whole load of the failed one as
in the worst case each link needs to hold 5 Mbps more.

In order to nd such a placement, we propose a two-

Figure 5: Final placement. Link capacity: 20 Mbps, Core per step algorithm, listed in Algorithm 1. In the rst step,
hosts:3 SolveCPU( G, C, R, M) solves the problem of
placing the service function chafd on the DC topology
center such that the chain will be robust to at leRst G taking into account the required robustness lé¥eind
simultaneous fail-stop node failures without impairing the the functions CPU requirements (see Sec. IV-A). If the so-
robustness guarantees of the chains already deployed. Inution is empty, this means that no function placement can
other words, even iR nodes fail, every chain deployed in  pe found and the SFC request will be rejected. Otherwise,
the data center will keep working at its nominal regime. the result of this step corresponds to the set of mappings
To guarantee the isolation between scaled replicas of associating replica functions and the compute nodes on
a chain, each replica of a chain is deployed in a different which they have to be deployed. In the second step, the
fault domain [30]. Also, as we assume a fail-stop failure obtained solution will be used as an input of Algorithm
model, at leasR + 1 scaled replicas are needed to be SolveBW( G, C, CPU-Placement) in which each
robust toR failures. At rst, the algorithm createR + 1 vLink is mapped to one or more physical link(s), called
scaled replicdsand tries to ndR + 1 fault domains path(s) according to the bandwidth requirements, see
able to host the scaled replicas. If no solution exists, the Sec. IV-C. If all vLinks can be mapped, the service
algorithm is repeated foR +2, R +3,..., max iteration will be accepted and deployed on the DC network. Else,
replicas until a solution is found. If a solution is found, the service request will be rejected as the bandwidth
the scaled replicas can effectively be deployed in the datarequirements cannot be satis ed.
center.
To determine whether or not a placement is possible A. Node placement
{he normal committed resoures6, the minimum re. " the function plaement step (see Algorhm 2),
sources (e.g., cores, memory) tha.t'a compute node mustthe solve_placement( S, G, n) function consid-
dedicate tc; éuarantée proper functioning under normal ers two grgphs: the DC topology grapB and the
conditions (i.e., no failures) and tlveorst-case committed scaled r_epllca grapf where the scale__down( C, .
resourcesi e. .t,he minimum number of resources required n) function computes the SC.’“"ed replica scheme, €.,
o o an annotated graph representing the scaled down chain,
on compute nodes to guarantee proper functioning pon

simultaneous compute node failures impacting the chain for a chainC 1f it is equally distributed ovemn scaled
P P 9 "replicas (see Sec. IV-B). The goal of the function

solve_placement( S, G, n) is to projectn func-
1Each scaled replica is in charge g chain load. tion replicas of the scaled replica grafion the topology



Algorithm 1: Robust placement algorithm

Input: Physical network GraphG
C 2 Chains
Robustness leveR
Maximum number of replicas: makterations

M = max iterations
CPU _Placement=SolveCPU( G, C, R, M
if CPU_Placement= then
| Error( Impossible to place the chain NFs
else
BW_Placement=SolveBW( G, C, CPU Placement
if BW_Placement= then
| Error( Impossible to place the chain vLinks

else
| deploy( G, CPU Placement, BWPlacement

Algorithm 2: SolveCPUalgorithm

Input: Physical network GraphG
C 2 Chains
Scaled chain replica grap&
Robustness leveR
Maximum number of replicadyl

n=R+1

CPU _Placement =

while CPU_Placement = andM > 0 do
S =scale_down( C, n)
CPU_Placement =solve_placement(

n)

n=n+1
M=M-1

return(  CPU_Placement

S, G,

Algorithm 3: SolveBWalgorithm

Input: Physical network GraphG
C 2 Chains
CPU _Placement: Placement of SFCs nodes

BW_Placement =
foreach replica_placemen2 CPU_Placemenido
foreach vLink do
paths =all_shortest_paths(
path =valid_path(  pathg
if path6 then
| BW_Placemeni path
else

BW_Placement =
L break

G,S, D

r(;turn( BW_Placement

graph G with respect to the physical and chain node
constraints.

For each fault domairsolve_placement( S, G,
n) tries to nd a solution for the linear problem de ned
in Sec. IV-A1, which aims at nding a placement for the
scale replica graph in the fault domain while respecting
VNFs requirements. If there are at leastault domains
with a solution to the problem, then amyof them is a
solution to our robust placement problem. Otherwise, no
solution is found and an empty set is returned.

Parameter Description
G G = (V, E) Undirected graph that represents the physical
network
\% Set of physical nodes V= $§ H, where S represents the
switch nodes for routing and H stands for the nodes with
computational resources used to host service functions
E Set of physical links with available bandwidth resources
C = (\/O;EO) Directed graph that represents the SKC
requested by tenants
VO Set of nodes representing virtual functions with computa-
tional resources requirements
E0 Set of virtual links with bandwidth requirements
H Set of compute hosts
F Set of virtual functiong of the SFC to place
A Set of start/end points for SFC requests
CPU (h) Number of available CPU cores on the physical host ngde
h2 H:CPU(h)60
CPU (f) Number of CPU cores required by the chain function
f 2F:CPU(f)60,while8a2 A :CPU (a)=0
CPUR (h) Number of remaining CPU cores on the host nddafter
placement
u(h) Binary variable for physical host node assignment:
8h 2 H;u (h)=1 if hosth is used and u(h) = O otherwis¢
Mtn Binary variable for chain functioh to host nodén mapping
8h 2 H; 8f 2 F;m¢y =1 if function f mapped toh
andm¢n, =0 otherwise.
Tia Mean inter-arrival time of chain placement requests
S Mean service time in which chain remains in the system
R Required robustness level (i.e., maximal number of simulta-

neous physical failures allowed in the system)

Table I: Notations used in the paper

1) ILP Approach:

The online robust placement problem can be formulated

as an Integer Linear Programminid.P).
Given the physical network undirected gragh =

(V;E) and the service function chain directed graph
C= (VO; EO), Table | summarizes all the variables that
de ne the problem and other variables used in our model
formulation to place one particular service chain.

To solve the placement problem, we introduce two
binary decision variables of different types:

(1) Bin used variablesu(h) indicates whether physical

hosth is used.



(2) Item assignment variablesn;y, indicates whether Thescale_down( C, n) function computes an an-
functionf is mapped to physical host notated graph representing the same graph hat where

2) ILP Formulation: the resources associated to each node and link have been

o scaled down by a factam. It is worth noting that some
Objective: . resources are discrete or cannot go below some threshold,
max min (CP U (h)) 1) meaning that the function may not be linear. For example,
. if the unit of core reservation is 1 core, then scaling down
Subject to: 3 times a resource that requires 2 cores will result in
Assignment constraints: requiring 1 core on each replica.
8f 2 F; X My =1 ) C. vLink placement
h2H The BW_problem (see algorithm 3) represents the
, last step in our placement process. Its objective is to
8h2 H; u(h)=1 if M 1 ®3) map virtual links to actual network paths, based on the
f2F placement of virtual network functions obtained from the

Capacity constraints8h 2 H, CPU_placementstep.

X For each virtual link between two functions in each

men CPU((F)  CPU(N) 4) service scaled replica, it retrieves all the shortest paths

f2F between the source and the destination physical servers
X that host these two functions (i.e., the traf ¢ traversing
CPUs(h) = CPU(h) men :CPU(F)  (5) a vLink may cross spveral physical links). Among these

shortest paths, thealid_path(  paths) function tests

the shortest paths randomly in order to nd one path
that can hold the required traf c. Thus, for each vLink

3) ILP Explanation: it tries to nd one valid shortest path. If none exists, it
Normally, to implement their policies, operators must returns an empty set, which means that the placement
de ne their objective function; for example, service will be rejected. Else, this accepted path will be ap-
providers may want to reduce the placement cost or the pended to the list of accepted paths. The set of vLinks
energy consumption by minimizing the number of used placement BW_Placementis returned so that the chain
hosts involved in the placement. can ultimately be deployed by using th2eploy(G,

For our model, the optimization objective presented in CPU_Placement, BW_Placement) function (i.e.,
Equation 1 aims at maximizing the minimum remaining virtual functions are instantiated and network routes are
CPU resources on each physical host in the network. Thisinstalled in the switches).
objective corresponds to spreading the load over all the
hosts in the DC.

Constraint (2) guarantees that each virtual function is  De ning the optimal of an online problem is always a
assigned only once while Constraint (3) accounts for the challenge as it potentially requires solving at any tirve
used hosts. Constraints (4) and (5) ensure that hosts ar@roblem whose optimal depends on titfe> t for which
not over-committed and account for their usage, where the knowledge is incomplete or absent.

f2F

D. Discussion

CPU(h) is the amount of available CPU cores of the  In this paper we aim at nding, in an online manner,
physical host If) and CPU(f) is the number of CPU  placements for SFCs in large data centers that guarantee
cores required by functiorf §. robustness and with the objective of maximizing the SFC
o request acceptance ratio. Our problem is a variation of
B. Replication Model the online job shop scheduling problem with multiple

When a new SC request is received, in order to ful ll operations (i.e., functions) per job (i.e., SFCs) for a
its required robustness level, the chain is replicated in number of resources 2 (i.e., servers and links), with
additional chains; each one is calledsaaled replica penalties and unknown jobs arrival and duration. This
The idea behind replication is to exactly replicate the particular problem is reputed to be NP-complete [31],
functionality of a chain such that the load can be balanced [32], [33]. To the best of our knowledge, no bounded
equally among all replicas. Each replica requires only a heuristic is known for this problem.
fraction of the initial required resources. More precisely, We approximate this problem with a two-step algo-
each scaled replica requirﬁsof the resources of the main  rithm to be executed at each SFC request arrival. The rst
chain if the chain has been replicatedimes. step nds an optimal feasible placement for the different



constituting functions of the service function chain within uniformly between 2 and 5, based on typical use cases
one fault domain. A feasible placement is a placement of networks chains [34], and the requirements of each
for which there is no over-commitment of CPU cores function in terms of cores is 1, 2, 4, or 8 inspired by the
on the server (i.e., a function never shares a core with most common Amazon EC2 instance types [35]. Each
another function and the number of consumed cores onvLink consumes 250 Mbps.
a server does not exceed the number of cores of the Simulations are performed on the three following
server) and an optimal placement is a placement for which topologies: (i)48-Fat-Tree topologywith 48 pods, each
each server maximizes its number of available cores for of them having 576 hosts for a total of 27,648 hosts;
future potential function placements. Even though this is (ii) Spine-and-Leaf topologya network with 48 leaf
a variation of the Knapsack problem, which optimization switches directly connected to 512 hosts for a total of
is NP-hard, in practice as chains are small and as fault 24,576 hosts, andeneric topology which is built from
domains do not face high contention situations, nding the 54 switches connected to each other and each one of them
optimal is feasible in short time (see Sec. V for practical is connected to 512 host nodes. Each switch represents
examples on very large data centers). Once the placementne fault domain with a total number of 27,648 hosts
of functions is decided at the rst step, regardless of the in this topology. The three topologies are representative
network situation, a feasible path is decided in the second of today's data centers and are directly comparable (they
step of the algorithm in polynomial time using shortest have either the same number of fault domains, or the same
path computation exploration. number of hosts and cores). Resources are homogeneous
It is worth it to mention that our approximation al- in the topologies: all hosts have the same number of
gorithm does not guarantee to maximize the acceptancecores (4 cores per host); all links between aggregation
ratio of SFC requests. However, it approximates it by and core switches in the Fat Tree and between leaf and
ensuring that after each placement, each server will of- spine switches are 10 Gbps links; and hosts are connected
fer the maximum number of free CPU cores. In tight to their ToR/leaf switch through a 1 Gbps link.
scenarios with high contention, this would be far from To ensure that we are not studying transient results
optimal. However, in practical cases with limited resource with the workload, we veri ed that the whole system
contention, this approach offers both good acceptanceis in steady state before running a workload of 1,000
ratios and acceptable computation times, as demonstratecgervice requests. We xed;an to the value0:01 such
in Sec. V. that in the ideal case, thEat-Tree topology would be
loaded at about 90%. Because of space limitations, we

V. EVALUATION T
. xed R to be equal for each chain in a run, however
In the following we evaluate the robust SFC placement the algorithm allows using a different value & for

algorithm introduced in Sec. IV. each chain. Our simulations have been performed in

A. Simulation Environment Grid'50002 In addition, all the following experiments
were repeated 10 times using ten different workloads with

We have implemented a discrete event simulator in
the same parameters.

Python? In the evaluation, requests to deploy a chain
are independent and follow an exponential distribution
of meanT,s , whereT,5 is the mean inter-arrival time . ) ) )
of chain placement requests (measured in arbitrary time [N this section we study the impact of required
unit). Service function chains have a service timeSof ~ robustness levelR on the ability to satisfy SFCs
time units, i.e., the time the chain remains in the system Placement requests. To that aim, we use dheeptance
is randomly selected following an exponential distribution ratio de ned as the number of accepted requests over the
of meanS. An SFC that cannot be deployed in the total number of requests.
topology is lost, i.e., there is no further request for the
rejected chain. In total, our synthetic workload for the ~ Figure 6 shows the evolution of the acceptance ratio
simulations contains 1,000 service request arrivals madeWith the 3 different large data-center topologies described
of 20 arbitrary chains. above (i.e., Fat Tree, Spine and Leaf, and Generic) w.r.t.
In the simulations, every SFC forms a linear chain the robustness level. The particular choice of topologies
of functions put in sequence. Each chain has one singlePermits to evaluate the impact of the number of fault do-
starting point and one single destination point. The num- Mains and the number of core resources on the acceptance

ber of functions between the two endpoints is selected ratio. Here we distinguish between two con gurations for

B. Acceptance Ratio

2All the data and scripts used in this paper are available on 3We ran the experiments on the site located in Rennes,
https:/team.inria.fr/diana/IEEEAccess/. https://www.grid5000.fr/.



0.9

Acceptance Ratio

Figure 6: Comparing acceptance ratio of the Optimal solution and Greedy FFD for 3 different topologies with 3 robustness levels.

1.0

Figure 7: The ECDF for the number of created replicas with 3 robustness levels with 3 different topologies for the optimal algorithm.

1.0

0.8

ECDF

0.4

0.2

0.0

Figure 8: ECDF of the number of created replicas with 3 robustness levels with 3 different topologies for the FFD algorithm.

N =+ Optimal, relax-R
b =} Optimal, strict-R
+ FFD, relax-R

~ .
----- -\\\ —¢- FFD, strict-R

1 2 3
Robustness Level

(a) 48-Fat-Tree Topology

m o n
w N P O

2 4 6 8
Number of scaled replicas

(a) 48-Fat-T ree Topology

2 4 6 8
Number of scaled replicas

(a) 48-Fat-T ree Topology

° ° o o
> 3 Y ©

Acceptance Ratio

1.0

0.8

ECDF

0.4

0.2

0.0

1.0

0.8

ECDF

0.4

0.2

0.0

AN —+- Optimal, relax-R

\\ =¥+ Optimal, strict-R
\\ -k FFD, relax-R
..___é‘..\ —¢- FFD, strict-R
SoN
N
Oy
N
S
o
<
#\\\\\ &4
\\\\\*

1 2 3
Robustness Level

(b) Spine-and-Leaf Topology

2 6 8
Number of scaled replicas

(b) Spine-and-Leaf Topology

2 4 6 8
Number of scaled replicas

(b) Spine-and-Leaf Topology

° ° ° °
s 2 & e

Acceptance Ratio

°
@

1.0

1.0

N -+ Optimal, relax-R
AN =%+ Optimal, strict-R
AN -+j++ FFD, relax-R
_____ }K‘ —¢ FFD, strict-R
RN
\
\\\s
o
\ N~
A SR
AN 4
AN
INTS
R

1 2 3
Robustness Level

(c) Generic Topology

2 6 8
Number of scaled replicas

(c) Generic Topology

L

B — —

2
Number of scaled replicas

(c) Generic Topology




1.0 [ e ol 1.0 10 4 [ o Yo it S
09 \+\ \\\‘\ 09 0.9 1 h\ N4 ¥ N
\ \
208 \‘L\‘:*“ 208 o \\‘\‘*‘
[ o7 i 3 o7 g 07+
8 8 8
8 06 9 06 2 06 4
Qo os o os QO os
[ [] (o]
8 04 8 04 g 04 4
© -4~ relax-R=1 © -%- relax-R=1 o -4~ relax-R=1
+= 03 += 03 += 034
Q relax-R= 2 Q. relax-R= 2 % relax-R= 2
8 02 -4~ relax-R=3 8 021 -4 relaxr=3 g 021 -4~ relaxR=3
Q - Q " - -
4%~ strict-R=1 ~%=- strictR=1 —%- strictR=1

L o1 4 dricer-2 L1y 140 Griere2 < 014 -~ strictR=2

004 —t- strictR=3 00 ] —+- strictR=3 004 —t- strictR=3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 o 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Number of requested CPU cores Number of requested CPU cores Number of requested CPU cores
(a) 48-Fat-T ree Topology (b) Spine-and-Leaf Topology (c) Generic Topology

Figure 9: Probability of service chain being accepted based on the number of requested CPU cores for different robustness levels with
3 different topologies using the Optimal algorithm.

1.0 [ 4 et Sl st 1.0 og*(\:::\ 10 *\}.\i:’,.,,,:,t,,.,
F* N ¥ N 0.9 + N K 09 ‘.* NN * \
09 NN \ ~+ W Y \
\ \ \
o8 AN o8 3 \\*\\ o8 ‘h\‘;{\
= \ = S =
Qo7 3, 807 ~ Qo7 A
© ‘#’4\ © “ / ] \
-g 06 -@ 06 \ g 06 4
Q os Q os Q os
3 3 8
e 04 Qo4 8 o]
© -%- relax-R=1 © ~%- relax-R=1 [ -4~ relax-R=1
+= 03 += 03 += 034
Q. relax-R= 2 Q. relax-R= 2 Q. relax-R= 2
8 021 -+~ relax-R=3 8 021 =%~ relax-R=3 8 024 -%- relax-R=3
Q (5] Q
-4~ strict-R=1 ~%- strict-R=1 -4~ strict-R=1

Lo -9~ strict-R=2 <o ~#- strict-R=2 < o1y ~#- strict-R=2

00 —#- stictR=3 00 —t- stictR=3 00 —t- stictR=3

0 2 4 6 8§ 1 12 14 1 18 20 22 2 2 0 2 4 6 8§ 10 1 14 1 18 20 2 24 2 0 2 4 6 8 10 L 14 1 18 20 2 24 2
Number of requested CPU cores Number of requested CPU cores Number of requested CPU cores
(a) 48-Fat-T ree Topology (b) Spine-and-Leaf Topology (c) Generic Topology

Figure 10: Probability of service chain being accepted based on the number of requested CPU cores for different robustness levels
with 3 different topologies using the FFD algorithm.

our placement algorithm: istrict we impose the number  one hand being strict reduces the amount of resources

of scaled replicas to be exactlR + 1 while in relax used for each deployed function and should thus give
the number of scaled replicas can be any integer valuemore space for other functions. On the other hand, not
betweenR +1 and(R+1) 2. being strict allows splitting chains further such that the

replicas can be “squeezed” in servers with less available
resources. This duality is clearly visible in Figure 6. For
R =0 we observe that by being strict, only around 81%
well-known First-Fit Decreasing (FFD) greedy heuris- of the requests can be satis ed Whi_le allowing more than
tic [19], [20]. R + 1 scaled replicas allows to sa_t|sfy all demandg. The
difference between the two scenarios can be explained by

In general we can expect that the acceptance ratiothe fact that we intentionally made the workload such
decreases when the robustness level increases as increaghat in 19% of the demands at least one function in
ing robustness means dedicating more resource to eachhe chain requires 8 cores. As the servers only have 4
function. This trend is con rmed by Figure 6. One can cores, it is then impossible to install them unless we allow
also expect to have better acceptance ratio Wifiiimal using multiple replicas (which is the case f@lax with
than with FFD but even if it is true, in practice the R =0 case but not fostrict with R =0 case). This rst
difference is negligible as shown in Figure 6. While the observation con rms that allowing more scaled replicas
impact of R and the impact of using FFD instead of gives more exibility in nding a placement solution.
the optimal are evident to forecast, it is much harder to This trend is clearly visible, except fdR = 1 where
speculate on the impact of being strict in the number of we can see that in th&pine-and-Leaftopology (see
scaled replicas or not (i.estrict versusrelax). On the

Moreover, we consider two different function place-
ment algorithms:(i) Optimal solves the optimization
problem speci ed in Sec. IV-Al andii) FFD uses the



AN
[7X K ) ) )
R X XT?P%I(O% Fat-Tree |Spine&Leaf Generic replicas of other chains. Moreover, if we take a careful
look at the number of scaled replicas fer= 0, about
0 0.808 0.808 0.808 o : . . L
80% of services are placed with only 1 replica which is
1 0.638 0.797 0.836 the same value of the acceptance ratio Ror= 0 with
2 0.649 0.615 0.647 the strict con guration in Figure 6 — and about 20%
3 0.570 0.542 0.578 with two scaled replicas. This extra replica leads to an

increase in the acceptance ratio where the acceptance

Table II: Similarity Index between thstrict and relax con gu- ratio reaches 1 when we relax the replication (in Figure 6).

ration for the three different topologies

If we study the probability of a chain to be accepted as
a function of its requested number of cores (see Figure 9
and Figure 10), we see that our algorithm favors the
installation of small chains over large ones, particularly
for large values oR.*

Figure 6(b))strict outperformsrelax. The reason of this
difference lays in the fact that in therict case it is still
impossible to install the 19% of requests with at least
one function requiring 8 cores. Indeed, in case of failure
the only remaining replica would still require 8 cores,
while under normal operations each of the two replicas C. Acceptance ratio in case of network congestion
only needs 4 cores. As these chains are not installed, |4 gec. V-B when a request is rejected, the reason
they leave enough room for the others to be installed. On jg always that the placement algorithm was not able to
the contrary, with therelax case, these requests can be q hosts with enough free cores, and never because
satis ed but consume a substantial amount of resources; ot the network capacity. This is because each host is
they need at least 3 scaled replicas to be deployed, which.qnected to the network with a 1 Gbps link and has
prevents other chains to be installed, hence reducing thes -ores. As our algorithm cannot overcommit hosts we
overall acceptance ratio. know that a host will never run more than 4 functions
It is worth mentioning that if the acceptance ratios gimultaneously. Therefore, as each vLink requests 250
for R = 1 seem to be identical for both cases in the \pps, the traf ¢ to or from a host never exceeds 1 Gbps,
Fat-Tree and the Generic topologies, they are actually  whijch is not enough to overload the host links and as we

slightly different and the similitude is only an artifact yse clos topologies, it means that the backbone network
of the workloads and topologies that we used. Indeed, ziso cannot be overloaded.

even though the acceptance ratios are very close, the |n thjs section, we aim at stressing the network as well
placements are largely different as shown by the Jaccardas the hosts. To that aim we keep the same workload as
similarity coef cient [36] of only 0:84 (see Table Il). In 5 Sec. V-B but vLinks request 500 Mbps instead of 250
general, the dissimilarity of placements increases With Mbps, which may result in network congestion.
For example, the Jaccard S|m||a.r|ty Coef Cient iS as |OW Figure 11 ShOWS the acceptance ratio for th|s new
as0:54 in the Spine-and-Leatopology whenR = 3. scenario (labeledv/ congestiopnand compares it to pre-
Keeping in mind that theFat-Tree topology has the  vious results (labeled aw/o congestion For R = 0,
same number of fault domains as ti&pine-and-Leaf  the acceptance ratio drops by 50% or more because the
topology but has more cores in total, and that@eneric  network cannot handle the load. Even though the drop
topology has the same amount of cores asRaeTree is important in both cases, as thelax option allows to
topology but with more fault domains, the comparison create multiple replicas, it outperforms tis#ict option.
between the 3 topologies leads us to conclude that asHowever, as soon a8 1, we obtain the same results
long as the number of fault domains is larger than thanin Sec. V-B as we fall back in a case with no network
max iterations the number of cores is what inuences congestion because when every function uses at least 2
the most the acceptance ratio. scaled replicas, the network demand for a host will not
exceed 1 Gbps.
To complement the acceptance ratio study, Figure 7 i

and Figure 8 provide the empirical cumulative distribution D. SFC Request Placement Time
functions of the number of scaled replicas created when To be acceptable, the time spent on nding a placement
placing SFCs while guaranteeing different robustness must be at most of the same order of magnitude as the
levels for the three different topologies with thelax deployment of the VMs themselves in order not to impact
con guration. As we consider highly loaded topologies, the deployment time of a service.
most of the timeR +1 or R + 2 replicas are enough to g _ -

e can explain that the gures do not show smooth decreasing lines
ensure robustness level & and we seldom reach the by the fact that we only used 20 different chain types, which is not
(R +1) 2 limit, as most resources are consumed by enough to cover all potential cases.



1.0
AN —+ relax-R, wio congestion 109 % — relax-R, wio congestion 10 —+ relax-R, /o congestion
00 AN —§- strict-R, w/o congestion N —4- strict-R, wio congestion —4- strict-R, wio congestion
\\\ ~s+ relax-R, w/ congestion 09 AN «+h+ relax-R, w/ congestion 09 S «+h+ relax-R, w/ congestion
o -— Sa —#- strict-R, w/ congestion ° S —#- strict-R, w/ congestion ° \\\ —#- strict-R, w/ congestion
S sy T TN = — . S op ] @=mmm——-
b1 v} + 08 += 08
EAAN A = AN
D / B
& < N g s\ 14 SRS
07 R oo RN .t N
) / ~, © o7 7SN © o7 ’ NS
o AN Q 4 N 3] ! .
c / Noba c o \\ c / Skl
/ ~ N
& os / \\ S~o S os ) ANTS 8 os / \\\\\\
& /! S~ ) / R ] / ~ T
O os / ~ o + / ~ ~~ o ~a
=} / ~ O 05 / ~ 3 05 <
< / < / ~a <
/
04 *, 041 )/ 04
03 03 03

0 1 3

P
Robustness Level

(a) 48-Fat-T ree Topology

0 1 3

P
Robustness Level

(b) Spine-and-Leaf Topology

3 4

T P
Robustness Level

(c) Generic Topology

Figure 11: Comparing acceptance ratio of the Optimal solution for the different topologies with 3 robustness levels for the two
workloads.

~ © IS « 3 ~

Computation time [s]

°

-

B Opiimal
| EER FFD

0
&

T

I

R=

0

R=1 R=2
Robustness Level

(a) All Services (b) Accepted Services (c) Rejected Services

Figure 12: Algorithm computation time with different robustness levels for the Fat-Tree topology with relax con guration.

Figure 12 shows the whisker plot of all computation by R.
times of Algorithm 1 for the harder instance of the
problem, namely theFat-Tree topology with therelax Furthermore, for both gures, the computation time
scheme for both the optimal and FFD. The simulations is longer when requests are rejected than when they are
were performed in Grid5000 [37] on the Rennes site in accepted as the rejection of a service request can only
fall 2018. be decided after having tested all the allowed number of
We make the distinction between the time elapsed replicas (i.e.max iterationg. Note that all demands are
when requests result in an effective placemeéktacepted  accepted for theelax case wherR = 0 which explains
Service}in Figure 12(b) and when they do ndRéjected the absence of observations fer= 0 in Figure 12(c).
Service}in Figure 12(c), while Figure 12(apl Service$
aggregates computation time for all requests, regardless of Regarding accepted services, (e.g., RF 1 in Fig-
the outcome. ure 12(b), the spread between median and upper quatrtile is
The computation time increases rather linearly with the smaller than the spread between median and lower quartile
robustness level and never exceeds a few seconds, whicts most of placements requiRR+ 1 or R + 2 replicas
is negligible compared to the typical time necessary to only. However, in some scenarios, the algorithm is iterated
deploy and boot virtual functions in data centers [38]. until the maximum allowed iterations in order to nd this
This rather linear increase is because an increask of Valid placement, which explains having the outliers in the
incurs a proportional increase of the number of iterations Figure 12.
(max iterationg and the number of required fault domains
(n in solve_placement( S, G, n)) but does not Interestingly, even though the execution time is shorter
change the size of thevlve_placement  problem (see  when FFD is used, it remains of the same order of
Sec. V) as the size of the fault domain is not impacted magnitude as when the optimal placement is used instead.



VI. CONCLUSION

In this paper we proposed a solution to deploy SFCs in

(3]

public cloud data centers with guarantees that chains are

robust tok independent fail-stop node failures. The idea
is to replicate the chain in multiple independent locations

(4]

in the data center and to balance the load between these

replicas based on their availability in order to prevent
downtime upon failures in the physical infrastructure.

To that aim, we proposed an online two-phase algo-
rithm that determines the number of replicas and where
to place them to guarantee some robustness level based o
an ILP solution or its approximation. We extensively eval-
uated this algorithm on very large data center networks —
up to 30,528 nodes — to assess the feasibility of our
proposition in very large-scale data centers. We showed
that approximating the solution with the widely used
FFD technique was not mandatory as optimal placement

(5]

n

H. Moens and F. D. Turck, “Vnf-p: A model for ef cient
placement of virtualized network functions,” i0th Inter-
national Conference on Network and Service Management
(CNSM) and WorkshgiNov 2014, pp. 418-423.

S. Mehraghdam, M. Keller, and H. Karl, “Specifying
and placing chains of virtual network functions,” 2014
IEEE 3rd International Conference on Cloud Networking
(CLOUDNET) Oct 2014, pp. 7-13.

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba,
“On orchestrating virtual network functions,” 2015 11th
International Conference on Network and Service Manage-
ment (CNSM)Nov 2015, pp. 50-56.

] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near

optimal placement of virtual network functions,” IEEE
Conference on Computer Communications (INFOCOM)
April 2015, pp. 1346-1354.

of independent replicas was feasible in acceptable time, [7] A. Marotta and A. Kassler, “A power ef cient and robust

which allows placement decisions to be made on-demand
and without prior knowledge on the DC workload. We
studied the impact of the choice of the topology and the

expected robustness level on the acceptance ratio and ON[g)

the placement computation time. It shows that when the
data center is sufciently provisioned, our algorithm is
able to provide a robust placement for all the chains. On
the contrary, when the DC lacks resources, the algorithm
tends to favor shorter chains as they consume less re-
sources, giving them more placement options.

We are currently working on de ning a generic
stochastic model to automatically translate SLA require-
ments expressed in maximum downtime into robustness
levels. In parallel, we are exploring how to integrate our
mechanism in OpenStack.

ACKNOWLEDGMENT

This work is funded by the French ANR through the
Investments for the Future Program under grant ANR-
11-LABX-0031-01. Experiments presented in this paper
were carried out using the Grid'5000 testbed, supported
by a scienti ¢ interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as
other organizations (see https://www.grid5000.fr).

REFERENCES

[1] J. M. Halpern and C. Pignataro, “Service Function
Chaining (SFC) Architecture,” RFC 7665, Oct. 2015.
[Online]. Available: https://rfc-editor.org/rfc/rfc7665.txt

[2] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: State-
of-the-art and research challengd§EE Communications
Surveys Tutorialsvol. 18, no. 1, pp. 236—262, Firstquarter
2016.

9]

(10]

(11]

(12]

virtual network functions placement problem,” 2016
28th International Teletraf ¢ Congress (ITC 28yol. 01,
Sep. 2016, pp. 331-339.

P. Gill, N. Jain, and N. Nagappan, “Understanding
network failures in data centers: Measurement, analysis,
and implications,” inProceedings of the ACM SIGCOMM
2011 Conference New York, NY, USA: ACM, 2011, pp.
350-361. [Online]. Available: http://doi.acm.org/10.1145/
2018436.2018477

H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-
anake, T. Do, J. Adityatama, K. J. Eliazar, A. Laksono,
J. F. Lukman, V. Martin, and A. D. Satria, “What
bugs live in the cloud? a study of 3000+ issues in
cloud systems,” inProceedings of the ACM Symposium
on Cloud Computing (SOCC) New York, NY, USA:
ACM, 2014, pp. 7:1-7:14. [Online]. Available: http:
//doi.acm.org/10.1145/2670979.2670986

R. Potharaju and N. Jain, “Demystifying the dark side
of the middle: A eld study of middlebox failures in
datacenters,” inProceedings of the 2013 Conference
on Internet Measurement Conferenceer. IMC '13.
New York, NY, USA: ACM, 2013, pp. 9-22. [Online].
Available: http://doi.acm.org/10.1145/2504730.2504737

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network
function virtualization: Challenges and opportunities for
innovations,” IEEE Communications Magazineol. 53,
no. 2, pp. 90-97, Feb 2015.

S. G. Kulkarni, G. Liu, K. K. Ramakrishnan,
M. Arumaithurai, T. Wood, and X. Fu, “Reinforce:
Achieving ef cient failure resiliency for network function
virtualization based services,” irProceedings of the
14th International Conference on Emerging Networking
EXperiments and Technologies (CONEXTNew York,
NY, USA: ACM, 2018, pp. 41-53. [Online]. Available:
http://doi.acm.org/10.1145/3281411.3281441



[13] F. Machida, , and Y. Maeno, “Redundant virtual machine [25] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

placement for fault-tolerant consolidated server clusters,”
in 2010 IEEE Network Operations and Management Sym-

commodity data center network architectur8flGCOMM
Comput. Commun. Rev. (CGRyol. 38, no. 4, pp.

posium (NOMS)April 2010, pp. 32-39. 63—-74, Aug. 2008. [Online]. Available: http://doi.acm.org/

10.1145/1402946.1402967

E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner,

Y. Moatti, and D. H. Lorenz, “Guaranteeing high avail- [26] E. Banks, “Data center network design moves
ability goals for virtual machine placement,” i2011 from tree to leaf” SearchDataCenter, TechTar-
31st International Conference on Distributed Computing get, Packet Pushers Interactive 2016. [Online].

Systems (ICDCS)Yune 2011, pp. 700-709. Available: https://searchdatacenter.techtarget.com/feature/

Data-center-network-design-moves-from-tree-to-leaf

X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau,

“Online VNF scaling in datacenters,” i8016 IEEE 9th [27] C. Wu and R. Buyya,"Cloud Data Centers and Cost

International Conference on Cloud Computing (CLOUD) Modeling: A Complete Guide To Planning, Designing and

June 2016, pp. 140-147. Building a Cloud Data Center’1st ed. Morgan Kauf-
mann Publishers Inc., 2015, ISBN-13: 978-0128014134.

A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K. o ]

Ramakrishnan, and T. Wood, “Virtual function placement [28] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos,

and L. P. Gaspary, “Piecing together the NFV provisioning
puzzle: Ef cient placement and chaining of virtual network
functions,” in2015 IFIP/IEEE International Symposium on

Integrated Network Management (IMylay 2015, pp. 98—

and traf c steering in exible and dynamic software de-
ned networks,” in The 21st IEEE International Workshop
on Local and Metropolitan Area Networks (LANMAN)
April 2015, pp. 1-6.

106.
J. Fan, C. Guan, K. Ren, and C. Qiao, “Guaranteeing ) . _ )
availability for network function virtualization with geo-  [29] F.  B.  Schneider, “Byzantine generals in action:
graphic redundancy deployment,” University of Buffalo, Implementing fail-stop processorsfCM Trans. Comp_ut.
Tech. Rep., 2015. Syst, vol. 2, no. 2, pp. 145-154, May 1984. [Online].
Available: http://doi.acm.org/10.1145/190.357399
K. Li, H. Zheng, and J. Wu, “Migration-based virtual . . . . .
machine placement in cloud systems,”2013 IEEE 2nd [30] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li,
International Conference on Cloud Networking (CIOUD- G. Wilfong, Y. R. Yang, and C. Guo, "Pace: Policy-aware
NET), Nov 2013, pp. 83-90. application cloud e_mbt_eddlng, inEEE Co_nference on
Computer Communications (INFOCOM)pril 2013, pp.
Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and 638-646.
T. Wang, "Joint optimization of chain placement and [31] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity

request scheduling for network function virtualization,” in
2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDGS)une 2017, pp. 731-741.

of owshop and jobshop scheduling,Mathematics of
operations researchvol. 1, no. 2, pp. 117-129, 1976.

R. M. Karp, “On the computational complexity of com-
binatorial problems, Networks vol. 5, no. 1, pp. 45-68,
1975.

D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and (32]
H. A. Chan, “Optimal virtual network function placement
in multi-cloud service function chaining architecture,”

Computer Communicationsol. 102, pp. 1 — 16, 2017.  [33] R. J. M. Vaessens, “Generalized job shop scheduling: com-
[Online]. Available: http://www.sciencedirect.com/science/ plexity and local search,” Technische Universiteit Eind-
article/pii/S0140366417301901 hoven, PhD Thesis, 1995.

C. Lin, P. Liu, and J. Wu, “Energy-ef cient virtual machine  [34] w. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann,

provision algorithms for cloud systems,” @011 Fourth
IEEE International Conference on Utility and Cloud Com-
puting (UCC) Dec 2011, pp. 81-88.

Z. Cao, Q. Sun, and C. Pham, “Service function chaining
(sfc) general use casesfork in progress, IETF Secre-
tariat, Internet-Draft draft-liu-sfc-use-cases-08014.

K. Su, L. Xu, C. Chen, W. Chen, and Z. Wang, “Af nity
and con ict-aware placement of virtual machines in het-
erogeneous data centers,” 2015 IEEE Twelfth Interna-
tional Symposium on Autonomous Decentralized Systems[36]
(ISADS) March 2015, pp. 289—-294.

[35] “Amazon ec2 instance types.” [Online]. Available: https:
/laws.amazon.com/ec2/instance-types/

P. Jaccard, “Distribution de la ore alpine dans le bassin
des Dranses et dans quelquegions voisines,Bulletin de

la Sockte Vaudoise des Sciences Natureltesl. 37, pp.

G. Moualla, T. Turletti, and D. Saucez, “An availability- 241 — 272, 1901.
aware sfc placement algorithm for fat-tree data centers,”
in 2018 IEEE 7th International Conference on Cloud

Networking (CLOUDNET,)Oct 2018, pp. 1-4.

[37] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou,
P. Primet, E. Jeannot, S. Lanteri, J. Leduc, N. Melab,
G. Mornet, R. Namyst, B. Quetier, and O. Richard,
“Grid'5000: a large scale and highly recon gurable grid
experimental testbed,” ihe 6th IEEE/ACM International

Workshop on Grid Computing (GRID)ov 2005, p. 8 pp.

A. Headquarters, “Cisco data center infrastructure 2.5 de-
sign guide,” inCisco Validated Design.| Cisco Systems,
Inc, 2007.



[38] M. Mao and M. Humphrey, “A performance study on
the VM startup time in the cloud,” iR012 IEEE Fifth
International Conference on Cloud Computing (CLOUD)
June 2012, pp. 423-430.



