
�>���G �A�/�, �?���H�@�y�k�R�d�d�9�3�j

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�k�R�d�d�9�3�j

�a�m�#�K�B�i�i�2�/ �Q�M �N �C�m�H �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�P�M�H�B�M�2 �_�Q�#�m�b�i �S�H���+�2�K�2�M�i �Q�7 �a�2�`�p�B�+�2 �*�?���B�M�b �7�Q�` �G���`�;�2
�.���i�� �*�2�M�i�2�` �h�Q�T�Q�H�Q�;�B�2�b

�:�?���/�� �J�Q�m���H�H���- �h�?�B�2�`�`�v �h�m�`�H�2�i�i�B�- �.���K�B�2�M �a���m�+�2�x

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�:�?���/�� �J�Q�m���H�H���- �h�?�B�2�`�`�v �h�m�`�H�2�i�i�B�- �.���K�B�2�M �a���m�+�2�x�X �P�M�H�B�M�2 �_�Q�#�m�b�i �S�H���+�2�K�2�M�i �Q�7 �a�2�`�p�B�+�2 �*�?���B�M�b �7�Q�`
�G���`�;�2 �.���i�� �*�2�M�i�2�` �h�Q�T�Q�H�Q�;�B�2�b�X �A�1�1�1 ���+�+�2�b�b�- �A�M �T�`�2�b�b�- �T�T�X�R�j�X ���R�y�X�R�R�y�N�f���*�*�1�a�a�X�k�y�R�N�X�k�N�R�9�e�j�8���X ���?���H�@
�y�k�R�d�d�9�3�j��

https://hal.inria.fr/hal-02177483
https://hal.archives-ouvertes.fr


Online Robust Placement of Service Chains for Large Data Center Topologies

Ghada Moualla, Thierry Turletti, Damien Saucez
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Abstract—The trend today is to deploy applications and
more generally Service Function Chains (SFCs) in public
clouds. However, before being deployed in the cloud, chains
were deployed on dedicated infrastructures where software,
hardware, and network components were managed by the
same entity, making it straightforward to provide robustness
guarantees. By moving their services to the cloud, the users
lose their control on the infrastructure and hence on the
robustness. In this paper, we provide an online algorithm
for robust placement of service chains in data centers. Our
placement algorithm determines the required number of
replicas for each function of the chain and their placement
in the data center. Our simulations on large data-center
topologies with up to 30,528 nodes show that our algorithm
is fast enough such that one can consider robust chain
placements in real time even in a very large data center
and without the need of prior knowledge on the demand
distribution.

Keywords-Online Placement algorithm, SFC, Robustness,
Cloud, Data Center.

I. I NTRODUCTION

Digital services and applications are nowadays de-
ployed in public virtualized environments instead of ded-
icated infrastructures. This change of paradigm results in
reduced costs and increased �exibility as the usage of the
hardware resources can be optimized in a dynamic way,
and allows one to build the so-calledService Function
Chains(SFCs) [1].
The problem Conceptually a “cloud” provides one
general-purpose infrastructure to support multiple inde-
pendent services in an elastic way. To that aim, cloud
operators deploy large-scale data centers built with com-
mercial off-the-shelf (COTS) hardware and make them
accessible to their customers. Compared to dedicated
infrastructures, this approach signi�cantly reduces costs
for the operators and the customers. However, COTS
hardware is less reliable than speci�c hardware [2] and
its integration with software cannot be extensively tested,
resulting in more reliability issues than in well-designed
dedicated infrastructures. This concern is accentuated in
public clouds where resources are shared between inde-
pendent tenants, imposing the use of complex isolation
mechanisms. As a result,moving Service Function Chains
to data centers calls for a rethinking of the deployment
model to guarantee high robustness levels.

The challengeIn the context of exogenous independent
service chains requests in a very large data center (DC),
it is particularly complex for an operator to dynamically
place the different virtual functions constituting the chains
in their data center, while guaranteeing at the same time
robustness to their customers' services and maximization
of the number of services that can be deployed in their
infrastructure. The reason is that operators have no view
on the future requests they will receive and how long
services deployed at a given moment will last, as the
demand is elastic by nature.The key challenge is to
design placement algorithms in large data centers given
the unknown nature of the future service chain requests
and the need to make the placement decisions on the �y.
The approach We provide an online optimization algo-
rithm that builds active-active chain replicas placements
such that in case of fail-stop errors breaking down some
function instances, the surviving replicas can be used to
support the traf�c normally carried by the failed functions.
Our algorithm computes the number of replicas needed to
be robust toR arbitrary fail-stop node failures and where
to place them in the underlying data center.
The contribution The salient contributions of this paper
are the following:

� Fast approximation online algorithm (xIV) We pro-
pose an online two-step approximation algorithm for
very large data centers that determines the optimal
number of service VNF instances and their place-
ment in DCs, based on the available network re-
sources and the resource requirements of the tenants
service requests, namely CPU and bandwidth.

� Evaluation at very large scale (xV) We provide a
comprehensive evaluation of the proposed algorithm
using three large DC topologies:(i ) a 48-Fat-Tree
topology with 30,528 nodes,(ii ) a Spine-and-Leaf
topology with 24,648 nodes, and(iii ) a generic two-
layer topology with 27,729 nodes. To the best of our
knowledge we are the �rst to demonstrate that robust
placement algorithms can be used in practice in very
large networks.

The paper is organized as follows. Sec. II presents the
related work on robust placement. Sec. III clearly states



the problem we address with this paper, our approach,
and our assumptions. Sec. IV details our algorithm to
deploy SFC with robustness guarantees on DC topologies
and Sec. V assesses its performance on very large-scale
networks with simulations. Finally, Sec. VI concludes the
paper.

II. RELATED WORK

The VNFs placement is a well-studied problem in
the literature due to its importance. In [3], Moens et al.
formulate the placement problem as an Integer Linear
Program (ILP) with an objective of allocating the SFC
requests within NFV environments while minimizing the
number of servers used. Mehraghdam et al. [4] also
propose a VNF placement algorithm but with different
optimization goals. Their approach constructs a VNF
forwarding graph to be mapped to the physical resources,
assuming limited network resources and functions with
speci�c requirements and possibly shared.

Bari et al. [5] study a similar problem and solve it
for determining the optimal number of VNFs required
and their placement with the objective of minimizing the
OPEX caused by the allocation to the service provider
while guaranteeing the service delay bounds. They for-
mulate the problem using an ILP and present a heuristic
that maps nodes for each request on a single physical host.
However, the robustness problem is not considered in all
these works and they only consider of�ine placement.

The same problem is solved in a DC topology by
Cohen et al. [6] to minimize the total system cost OPEX.
However, the proposed LP-relaxation solution has the �aw
of violating physical resource capacities as NFs are shared
between the clients.

Marotta et al. [7] describe a robust placement algorithm
to cope with variations on resources required for VNFs.
They leverage the Robust Optimization theory to reduce
energy consumption by minimizing the number of hosts
used. We have a different objective as we seek to be robust
against node failures, which requires selecting different
physical hosts when deploying VNFs.

A number of studies showed that hardware and soft-
ware failures are common [8], [9], [10] and with NFV-
based environment, where low reliable commodity hard-
ware is used, the chance of failures is even increased [11].
The failure detection and recovery time depends on the
type of failure and may take seconds or more for hardware
failures such as link and node failures [8]. Thus, ensuring
high availability (HA) to maintain critical NFV-based
services is an important design feature that will help
the adoption of virtual network functions in production
networks, as it is important for critical services to avoid
outages. Some works considered this problem and in-
troduced a solution for failure detection and consistent

failover mechanisms. Kulkarni et al. [12] present a re-
siliency framework to deal with all different kinds of
software and hardware failures where they replicate state
to standby NFs while enforcing NF state correctness.

Robustness is considered by Machida et al. [13] and
Bin et al. [14]. They both address the problem of mak-
ing virtual machines (VMs) resilient tok physical host
failures. They de�ne a high-availability property so that
if VMs are marked ask-resilient, they can be safely
migrated to other hosts when there are less thank host
failures. In our work, we also use thek-resilient property
but per SFC request instead of per VM and with a different
solving approach. In our work, we provide a solution
based on a priori VNFs replication that avoids the outage
of critical services upon failures.

Wang et al. [15] consider the online placement to
determine the optimal number of VNF instances and
their optimal placement in DCs, which minimizes the
operational cost and resource utilization over the long run.
Their algorithm takes scaling decisions based on current
traf�c and assumes in�nite inter-servers bandwidth. We
have similar assumptions for online SFC requests but
they consider shared VNFs and do not consider resiliency
issues. Mohammadkhan et al. [16] also propose a MILP
formulation to determine the placement of online VNFs
requests with the objective of reducing latency by mini-
mizing the link bandwidth and the number of used cores.
They propose a heuristic to solve the problem incremen-
tally but do not consider resiliency against failures.

Fan et al. [17] propose an approximation online algo-
rithm to map SFC requests with HA requirements with the
objective to maximize the acceptance ratio while reducing
the resources used. Like us, they assume that VNFs
are heterogeneous in terms of functional and resource
requirements but they consider several DCs and assume
the presence of protection schemes in the DC so that the
deployed VNFs always have 100% availability.

Since solving the placement problem is shown to be
hard and many heuristics were proposed in the related
works [18], [5], [19] and [20], algorithms like the Simple
Greedy Approach (SGA) and heuristics such as First
Fit Decreasing (FFD), have been widely studied and
proposed in the literature for the VM placement problem
to reduce the time needed to get a reasonable solution.
Many authors compared their own solutions to one of
SGAs such as [21], [20] and [22]. In FFD, VNFs are
organized in a decreasing order of resource requirements
and each VNF is then placed into the �rst physical server
available with suf�cient remaining resources. We com-
pare the optimal solution results with this approximation
approach to understand the impact on the results.

Each of these contributions only addresses a single



problem: either placement with some optimization goals
(e.g., placement of VMs, VNFs or SFCs), or online/of�ine
placement or VMs placement considering resiliency. We
are the �rst to propose an approach that considers the
online placement of SFCs requests in DC topologies while
taking resiliency requirements into account. Moreover,
unlike previous works, we evaluate our proposed solution
on very large topologies, considering real data center
topology sizes. In our previous work [23], we proposed a
stochastic approach for the case where SFCs are requested
by tenants unaware of the infrastructure of the data center
network and that only provide the SFC they want to
deploy along with the required availability level. This
work was tailored for Fat-Tree data-center topologies. In
this paper, we propose a deterministic solution for deploy-
ing SFCs in arbitrary multi-tier data center topologies,
where the requested SFCs are directly deployed by the
DC owners that know in advance the minimum number
of replicas needed as they have a perfect knowledge of
the infrastructure and of the SLA they provide to their
tenants.

III. PROBLEM STATEMENT

This paper aims at providing a mechanism to deploy
Service Function Chains (SFCs) in large public cloud data
centers in a way that guarantees that the deployed SFCs
cannot be interrupted upon node failures. In the context
of public cloud data centers, the infrastructure operator
does not control the workload and the placement must be
oblivious to the future workload as it is unknown. When a
tenant requests the placement of a chain in a data center,
it provides its requirements in terms of VMs (e.g., VM
�avor in OpenStack) and its desired availability SLA (see
Sec. III-A4).
Approach To address the so-calledrobust SFC placement
in large data centers, we propose to develop an on-
line optimization algorithm that builds active-active chain
replicas placements. The placement must be such that up
to R arbitrary fail-stop errors no deployed service would
be interrupted or degraded.
Objective The target of our algorithm is to maximize the
overall workload that a data center can accept such that
service requests are always very likely to be accepted,
even though they are unknown in advance. In other words,
we aim at optimizing the SFC request acceptance ratio.
Constraints As our algorithm aims to be used in an online
manner, its resolution time must be kept fast. Namely, the
resolution of an SFC placement must be done in a time
no larger than the one required to instantiate the SFC
functions in the infrastructure (i.e., the order of a few tens
of seconds) even for large data center topologies (more
than 30,000 physical nodes).

Solution We develop a two-step approximation algorithm
that �rst computes the optimal placement of functions on
the DC nodes regardless of the link constraints. It then
computes the routing table for the traf�c carried by the
SFC, using a feasible shortest path between functions.

A. Assumption

In the following of this section we detail the as-
sumption we took to address the problem of robust SFC
placement in large data centers.

1) Environment: Data Center Topologies with Fault
Domains: In this paper, we consider the common case
of multi-tier DC topologies [24] decomposable in fault
domains such as Fat-Tree or Spine-and-Leaf topologies.

Fat Tree (see Figure 1) is a common bigraph based
three-tier topology for data centers [25]. The elementary
block in this topology is calledpod and is a collection of
access and aggregation switches connected in a complete
bigraph. Each pod is connected to all core switches. Fat
Trees are clos topologies relying on high redundancy of
links and switches.

Spine and Leaf [26] (see Figure 2) are common two-
tier topologies in data centers, where each lower-tier
switch, calledleaf switch, is connected to each of the
top-tier switches, namedspine switches, in a full-mesh
topology. In Spine-and-Leaf networks groups of servers
are connected to the leaves.

�&�R�U�H

�$�J�J�U�H�J�D�W�L�R�Q

�(�G�J�H

�3�R�G�� �3�R�G�� �3�R�G�� �3�R�G��

Figure 1: Fat-tree Topology.
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Figure 2: Spine-and-Leaf Topology

When network reliability and availability are consid-
ered at the early network design phases, topologies are
built with multiple network fault domains. A fault domain



Figure 3: SFC Request Topology.

is said to be a single point of failure. It represents a group
of machines that share a common power source and a
network switch and it is de�ned based on the arrangement
of the hardware. A machine, rack or pod can be a
fault domain. In tree-based, switch-centric DC network
topology such as Fat Tree and Spine and Leaf [26], we
can de�ne the fault domains easily. In Fat-Tree topologies,
each pod is considered as one fault domain. In Spine-and-
Leaf topologies, each leaf switch and the hosts connected
to it form a fault domain.

On the contrary, it is not possible to de�ne fault
domains in server-centric DCs – such as Dcell and
Bcube [27]. We therefore do not consider such topologies
in our study.

2) Service Function Chains independence and work-
load: Public cloud DCs share the same physical infras-
tructure with heterogeneous services operated by multiple
tenants. In this paper, we consider the case of tenants
willing to deploy SFCs in the DC. An SFC is a group
of virtual functions ordered in sequences to provide a
service to an end user. Each function uses the output of
the previous one in the chain as an input [1]. An SFC can
be represented as a directed graph. Each node represents a
virtual function annotated with its resource requirements
(e.g., CPU, memory, etc.) while each edge represents a
virtual link vLink annotated with its requirements (e.g.,
bandwidth). A virtual link logically represents the �ow of
traf�c between two functions where the destination node
(i.e., function) consumes the traf�c generated by the origin
node (i.e., function). If no traf�c is directly exchanged
between two functions, no vLink is de�ned. While in the
general case SFCs can be arbitrary directed graphs, we
restrict our work to the common case of directed acyclic
graphs [28].

In this work, each function is dedicated to only one
SFC, and an SFC is under the sole control of a single
tenant. This assumption holds in case of public clouds,
where tenants are independent actors and the DC operator
considers functions as opaque virtual machines. If a
function is implemented by using multiple instances of
the same VM (e.g., because of processing limitations
of a single host), we assume that the load is equally
and instantaneously balanced between all the function
instances, e.g., through LBaaS in OpenStack.

To preserve performance while sharing the same phys-
ical hosts between many tenants, the total amount of the
physical host resources is always larger than the sum of

the used resources by various VMs deployed on that host.
As we do not consider the deployment phase of SFCs

and given that we consider Fat-Tree and Spine-and-Leaf
topologies in this paper, we can safely assume that the
network provides in�nite bandwidth w.r.t. SFCs demands.

3) Online Placement:In some speci�c private cloud
deployments, one can control the workload and thus
apply of�ine optimization techniques to decide on the
placement of virtual service chain functions in the data
center. However, in the general case of a public cloud,
the workload and the management of the infrastructure
are handled by different independent entities (i.e., tenants
and the cloud provider). As a result, the placement of
SFCs must be determined in an online manner that is
oblivious to future demands.

4) Robustness and Failure Model:We target the place-
ment of SFCs with robustness guarantees, where thek
robustness level stands for the ability of an SFC to remain
fully operational upon the failure ofk entities of the
infrastructure and without having to re-deploy or migrate
virtual machines upon failures in order to guarantee zero
downtime.

When a tenant requests the placement of a service
function, it provides the service function graph with
its required resources – the VM �avor for each chain
function – and the SLA commitment for the chain (e.g.,
�ve nines).

Assuming a strictfail-stop failure model[29] with
uncorrelated events and given the knowledge of its infras-
tructure (MTBF and MTTR of the physical equipment),
the SFC graph and subscribed duration, and the requested
SLA commitment [23], the data center operator can deter-
mine the maximum number of concomitant physical node
failures that the chain may encounter during its lifetime.

IV. SFC PLACEMENT WITH ROBUSTNESS

In this section, we propose a two-phase algorithm
to place SFCs in a DC such that whenever a chain
is deployed, it offers robustness guarantees. To avoid
downtime upon failures in the physical infrastructure, we
cannot rely on a reactive approach that would redeploy
functions after failure detection [7]. Instead, we propose to
account in advance for the potential fail-stop node failures
that the chains may encounter during their life cycle.

To that aim, our algorithmreplicatesmultiple times
the chain andscales downeach replica such that each
replica has an equal fraction of the total load of the
initial chain. In the remaining of this paper, we refer to
such scaled down replicas with the termscaled replica.
Our algorithm is called each time a request to install an
SFC is received. Speci�cally, for arobustness levelR, the
algorithm determines how many scaled replicas to create
for that SFC and where to deploy them within the data



Figure 4: Initial placement. Link capacity: 20 Mbps, Core per
hosts:3

Figure 5: Final placement. Link capacity: 20 Mbps, Core per
hosts:3

center such that the chain will be robust to at leastR
simultaneous fail-stop node failures without impairing the
robustness guarantees of the chains already deployed. In
other words, even ifR nodes fail, every chain deployed in
the data center will keep working at its nominal regime.

To guarantee the isolation between scaled replicas of
a chain, each replica of a chain is deployed in a different
fault domain [30]. Also, as we assume a fail-stop failure
model, at leastR + 1 scaled replicas are needed to be
robust toR failures. At �rst, the algorithm createsR + 1
scaled replicas1 and tries to �nd R + 1 fault domains
able to host the scaled replicas. If no solution exists, the
algorithm is repeated forR + 2 , R + 3 ,. . . , max iteration
replicas until a solution is found. If a solution is found,
the scaled replicas can effectively be deployed in the data
center.

To determine whether or not a placement is possible
for a given robustness level, the algorithm considers
the normal committed resources, i.e., the minimum re-
sources (e.g., cores, memory) that a compute node must
dedicate to guarantee proper functioning under normal
conditions (i.e., no failures) and theworst-case committed
resources, i.e., the minimum number of resources required
on compute nodes to guarantee proper functioning uponR
simultaneous compute node failures impacting the chain.

1Each scaled replica is in charge of1R +1 chain load.

Figure 4 and Figure 5 illustrate the behavior of the
algorithm with the deployment of a chain composed of
two functions: the �rst function requires 4 cores, while the
second one requires 2 cores and the �ow between these
two functions requires 30 Mbps to properly work, with the
target of being robust to one node failure. Figure 4 shows
the placement of the chain in a Fat-Tree data center where
each node in the DC has 3 cores. Each replica receives
50% of the expected load, shown in red. After checking
the robustness, the algorithm decides to split the chain
since the �rst placement does not meet the robustness
requirements because the worst-case commitment is not
respected, as one failure would result in the need of
4 cores on the remaining hosts. Moreover, the physical
network links cannot support more than 20 Mbps while
in the worst-case the link requirement is 30 Mbps. The
placement in Figure 5, depicted in green, meets the
robustness level as when a node fails, one of the scaled
replicas will fail but the other replicas will be able to
temporarily support the whole load of the failed one as
in the worst case each link needs to hold 5 Mbps more.

In order to �nd such a placement, we propose a two-
step algorithm, listed in Algorithm 1. In the �rst step,
SolveCPU( G, C, R, M ) solves the problem of
placing the service function chainC on the DC topology
G taking into account the required robustness levelR and
the functions CPU requirements (see Sec. IV-A). If the so-
lution is empty, this means that no function placement can
be found and the SFC request will be rejected. Otherwise,
the result of this step corresponds to the set of mappings
associating replica functions and the compute nodes on
which they have to be deployed. In the second step, the
obtained solution will be used as an input of Algorithm
SolveBW( G, C, CPU- P lacement) in which each
vLink is mapped to one or more physical link(s), called
path(s), according to the bandwidth requirements, see
Sec. IV-C. If all vLinks can be mapped, the service
will be accepted and deployed on the DC network. Else,
the service request will be rejected as the bandwidth
requirements cannot be satis�ed.

A. Node placement

In the function placement step (see Algorithm 2),
the solve_placement( S, G, n) function consid-
ers two graphs: the DC topology graphG and the
scaled replica graphS where the scale_down( C,
n) function computes the scaled replica scheme, i.e.,
an annotated graph representing the scaled down chain,
for a chainC if it is equally distributed overn scaled
replicas (see Sec. IV-B). The goal of the function
solve_placement( S, G, n) is to projectn func-
tion replicas of the scaled replica graphS on the topology



Algorithm 1: Robust placement algorithm
Input: Physical network Graph:G

C 2 Chains
Robustness level:R
Maximum number of replicas: maxiterations

M = max iterations
CPU Placement=SolveCPU( G, C, R, M)
if CPU Placement=� then

Error( Impossible to place the chain NFs)
else

BW Placement=SolveBW( G, C, CPU Placement)
if BW Placement=� then

Error( Impossible to place the chain vLinks)
else

deploy( G, CPU Placement, BWPlacement)

Algorithm 2: SolveCPUalgorithm
Input: Physical network Graph:G

C 2 Chains
Scaled chain replica graph:S
Robustness level:R
Maximum number of replicas:M

n = R + 1
CPU Placement =�
while CPU Placement =� and M > 0 do

S = scale_down( C, n)
CPU Placement =solve_placement( S, G,
n)

n = n + 1
M = M -1

return( CPU Placement)

Algorithm 3: SolveBWalgorithm
Input: Physical network Graph:G

C 2 Chains
CPU Placement: Placement of SFCs nodes

BW Placement =�
foreach replica placement2 CPU Placementdo

foreach vLink do
paths =all_shortest_paths( G, S, D)
path =valid_path( paths)
if path 6= � then

BW Placement] path
else

BW Placement =�
break

return( BW Placement)

graph G with respect to the physical and chain node
constraints.

For each fault domain,solve_placement( S, G,
n) tries to �nd a solution for the linear problem de�ned
in Sec. IV-A1, which aims at �nding a placement for the
scale replica graph in the fault domain while respecting
VNFs requirements. If there are at leastn fault domains
with a solution to the problem, then anyn of them is a
solution to our robust placement problem. Otherwise, no
solution is found and an empty set is returned.

Parameter Description

G G = (V, E) Undirected graph that represents the physical
network

V Set of physical nodes V= S[ H, where S represents the
switch nodes for routing and H stands for the nodes with
computational resources used to host service functions

E Set of physical links with available bandwidth resources

C C = (V
0
; E

0
) Directed graph that represents the SFC

requested by tenants

V
0

Set of nodes representing virtual functions with computa-
tional resources requirements

E
0

Set of virtual links with bandwidth requirements

H Set of compute hostsh

F Set of virtual functionsf of the SFC to place

A Set of start/end points for SFC requests

CP U (h) Number of available CPU cores on the physical host node
h 2 H : CP U (h) 6=0

CP U (f ) Number of CPU cores required by the chain function

f 2 F : CP U (f ) 6=0 , while 8a 2 A : CP U (a)=0

CP U R (h) Number of remaining CPU cores on the host nodeh after
placement

u(h) Binary variable for physical host node assignment:

8h 2 H; u (h)=1 if host h is used and u(h) = 0 otherwise

m f;h Binary variable for chain functionf to host nodeh mapping

8h 2 H; 8f 2 F; m f;h = 1 if function f mapped toh
andm f;h =0 otherwise.

T IA Mean inter-arrival time of chain placement requests

S Mean service time in which chain remains in the system

R Required robustness level (i.e., maximal number of simulta-
neous physical failures allowed in the system)

Table I: Notations used in the paper

1) ILP Approach:
The online robust placement problem can be formulated
as an Integer Linear Programming (ILP).

Given the physical network undirected graphG =
(V; E) and the service function chain directed graph
C = ( V

0
; E

0
), Table I summarizes all the variables that

de�ne the problem and other variables used in our model
formulation to place one particular service chain.

To solve the placement problem, we introduce two
binary decision variables of different types:
(1) Bin used variables.u(h) indicates whether physical
hosth is used.



(2) Item assignment variables.mf;h indicates whether
function f is mapped to physical hosth.

2) ILP Formulation:

Objective:
max min

8h2 H
(CPUR (h)) (1)

Subject to:

Assignment constraints:

8f 2 F;
X

h2 H

mf;h = 1 (2)

8h 2 H; u (h)=1 if
X

f 2 F

mf;h � 1 (3)

Capacity constraints:8h 2 H ,

X

f 2 F

mf;h : CPU(f ) � CPU(h) (4)

CPUR (h) = CPU(h) �
X

f 2 F

mf;h : CPU(f ) (5)

3) ILP Explanation:
Normally, to implement their policies, operators must
de�ne their objective function; for example, service
providers may want to reduce the placement cost or the
energy consumption by minimizing the number of used
hosts involved in the placement.

For our model, the optimization objective presented in
Equation 1 aims at maximizing the minimum remaining
CPU resources on each physical host in the network. This
objective corresponds to spreading the load over all the
hosts in the DC.

Constraint (2) guarantees that each virtual function is
assigned only once while Constraint (3) accounts for the
used hosts. Constraints (4) and (5) ensure that hosts are
not over-committed and account for their usage, where
CPU(h) is the amount of available CPU cores of the
physical host (h) and CPU(f ) is the number of CPU
cores required by function (f ).

B. Replication Model

When a new SC request is received, in order to ful�ll
its required robustness level, the chain is replicated in
additional chains; each one is called ascaled replica.
The idea behind replication is to exactly replicate the
functionality of a chain such that the load can be balanced
equally among all replicas. Each replica requires only a
fraction of the initial required resources. More precisely,
each scaled replica requires1

n of the resources of the main
chain if the chain has been replicatedn times.

Thescale_down( C, n) function computes an an-
notated graph representing the same graph asC but where
the resources associated to each node and link have been
scaled down by a factorn. It is worth noting that some
resources are discrete or cannot go below some threshold,
meaning that the function may not be linear. For example,
if the unit of core reservation is 1 core, then scaling down
3 times a resource that requires 2 cores will result in
requiring 1 core on each replica.

C. vLink placement

The BW problem (see algorithm 3) represents the
last step in our placement process. Its objective is to
map virtual links to actual network paths, based on the
placement of virtual network functions obtained from the
CPU placementstep.

For each virtual link between two functions in each
service scaled replica, it retrieves all the shortest paths
between the source and the destination physical servers
that host these two functions (i.e., the traf�c traversing
a vLink may cross several physical links). Among these
shortest paths, thevalid_path( paths) function tests
the shortest paths randomly in order to �nd one path
that can hold the required traf�c. Thus, for each vLink
it tries to �nd one valid shortest path. If none exists, it
returns an empty set, which means that the placement
will be rejected. Else, this accepted path will be ap-
pended to the list of accepted paths. The set of vLinks
placement (BW Placement) is returned so that the chain
can ultimately be deployed by using theDeploy(G,
CPU_Placement, BW_Placement) function (i.e.,
virtual functions are instantiated and network routes are
installed in the switches).

D. Discussion

De�ning the optimal of an online problem is always a
challenge as it potentially requires solving at any timet a
problem whose optimal depends on timet0 > t for which
the knowledge is incomplete or absent.

In this paper we aim at �nding, in an online manner,
placements for SFCs in large data centers that guarantee
robustness and with the objective of maximizing the SFC
request acceptance ratio. Our problem is a variation of
the online job shop scheduling problem with multiple
operations (i.e., functions) per job (i.e., SFCs) for a
number of resources> 2 (i.e., servers and links), with
penalties and unknown jobs arrival and duration. This
particular problem is reputed to be NP-complete [31],
[32], [33]. To the best of our knowledge, no bounded
heuristic is known for this problem.

We approximate this problem with a two-step algo-
rithm to be executed at each SFC request arrival. The �rst
step �nds an optimal feasible placement for the different



constituting functions of the service function chain within
one fault domain. A feasible placement is a placement
for which there is no over-commitment of CPU cores
on the server (i.e., a function never shares a core with
another function and the number of consumed cores on
a server does not exceed the number of cores of the
server) and an optimal placement is a placement for which
each server maximizes its number of available cores for
future potential function placements. Even though this is
a variation of the Knapsack problem, which optimization
is NP-hard, in practice as chains are small and as fault
domains do not face high contention situations, �nding the
optimal is feasible in short time (see Sec. V for practical
examples on very large data centers). Once the placement
of functions is decided at the �rst step, regardless of the
network situation, a feasible path is decided in the second
step of the algorithm in polynomial time using shortest
path computation exploration.

It is worth it to mention that our approximation al-
gorithm does not guarantee to maximize the acceptance
ratio of SFC requests. However, it approximates it by
ensuring that after each placement, each server will of-
fer the maximum number of free CPU cores. In tight
scenarios with high contention, this would be far from
optimal. However, in practical cases with limited resource
contention, this approach offers both good acceptance
ratios and acceptable computation times, as demonstrated
in Sec. V.

V. EVALUATION

In the following we evaluate the robust SFC placement
algorithm introduced in Sec. IV.

A. Simulation Environment

We have implemented a discrete event simulator in
Python.2 In the evaluation, requests to deploy a chain
are independent and follow an exponential distribution
of meanTIA , whereTIA is the mean inter-arrival time
of chain placement requests (measured in arbitrary time
unit). Service function chains have a service time ofS
time units, i.e., the time the chain remains in the system
is randomly selected following an exponential distribution
of mean S. An SFC that cannot be deployed in the
topology is lost, i.e., there is no further request for the
rejected chain. In total, our synthetic workload for the
simulations contains 1,000 service request arrivals made
of 20 arbitrary chains.

In the simulations, every SFC forms a linear chain
of functions put in sequence. Each chain has one single
starting point and one single destination point. The num-
ber of functions between the two endpoints is selected

2All the data and scripts used in this paper are available on
https://team.inria.fr/diana/IEEEAccess/.

uniformly between 2 and 5, based on typical use cases
of networks chains [34], and the requirements of each
function in terms of cores is 1, 2, 4, or 8 inspired by the
most common Amazon EC2 instance types [35]. Each
vLink consumes 250 Mbps.

Simulations are performed on the three following
topologies: (i)48-Fat-Tree topology, with 48 pods, each
of them having 576 hosts for a total of 27,648 hosts;
(ii) Spine-and-Leaf topology, a network with 48 leaf
switches directly connected to 512 hosts for a total of
24,576 hosts, andgeneric topology, which is built from
54 switches connected to each other and each one of them
is connected to 512 host nodes. Each switch represents
one fault domain with a total number of 27,648 hosts
in this topology. The three topologies are representative
of today's data centers and are directly comparable (they
have either the same number of fault domains, or the same
number of hosts and cores). Resources are homogeneous
in the topologies: all hosts have the same number of
cores (4 cores per host); all links between aggregation
and core switches in the Fat Tree and between leaf and
spine switches are 10 Gbps links; and hosts are connected
to their ToR/leaf switch through a 1 Gbps link.

To ensure that we are not studying transient results
with the workload, we veri�ed that the whole system
is in steady state before running a workload of 1,000
service requests. We �xedTIA to the value0:01 such
that in the ideal case, theFat-Tree topology would be
loaded at about 90%. Because of space limitations, we
�xed R to be equal for each chain in a run, however
the algorithm allows using a different value ofR for
each chain. Our simulations have been performed in
Grid'5000.3 In addition, all the following experiments
were repeated 10 times using ten different workloads with
the same parameters.

B. Acceptance Ratio

In this section we study the impact of required
robustness levelR on the ability to satisfy SFCs
placement requests. To that aim, we use theacceptance
ratio de�ned as the number of accepted requests over the
total number of requests.

Figure 6 shows the evolution of the acceptance ratio
with the 3 different large data-center topologies described
above (i.e., Fat Tree, Spine and Leaf, and Generic) w.r.t.
the robustness level. The particular choice of topologies
permits to evaluate the impact of the number of fault do-
mains and the number of core resources on the acceptance
ratio. Here we distinguish between two con�gurations for

3We ran the experiments on the site located in Rennes,
https://www.grid5000.fr/.
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Figure 6: Comparing acceptance ratio of the Optimal solution and Greedy FFD for 3 different topologies with 3 robustness levels.
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Figure 7: The ECDF for the number of created replicas with 3 robustness levels with 3 different topologies for the optimal algorithm.
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Figure 8: ECDF of the number of created replicas with 3 robustness levels with 3 different topologies for the FFD algorithm.
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Figure 9: Probability of service chain being accepted based on the number of requested CPU cores for different robustness levels with
3 different topologies using the Optimal algorithm.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of requested CPU cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e 

P
ro

ba
bi

lit
y

relax-R= 1

relax-R= 2

relax-R= 3

strict-R= 1

strict-R= 2

strict-R= 3

(a) 48-F at -T ree Topology

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of requested CPU cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e 

P
ro

ba
bi

lit
y

relax-R= 1

relax-R= 2

relax-R= 3

strict-R= 1

strict-R= 2

strict-R= 3

(b) Spine-and-Leaf Topology

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of requested CPU cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e 

P
ro

ba
bi

lit
y

relax-R= 1

relax-R= 2

relax-R= 3

strict-R= 1

strict-R= 2

strict-R= 3

(c) Generic Topology

Figure 10: Probability of service chain being accepted based on the number of requested CPU cores for different robustness levels
with 3 different topologies using the FFD algorithm.

our placement algorithm: instrict we impose the number
of scaled replicas to be exactlyR + 1 while in relax
the number of scaled replicas can be any integer value
betweenR + 1 and(R + 1) � 2.

Moreover, we consider two different function place-
ment algorithms:(i ) Optimal solves the optimization
problem speci�ed in Sec. IV-A1 and(ii ) FFD uses the
well-known First-Fit Decreasing (FFD) greedy heuris-
tic [19], [20].

In general we can expect that the acceptance ratio
decreases when the robustness level increases as increas-
ing robustness means dedicating more resource to each
function. This trend is con�rmed by Figure 6. One can
also expect to have better acceptance ratio withOptimal
than with FFD but even if it is true, in practice the
difference is negligible as shown in Figure 6. While the
impact of R and the impact of using FFD instead of
the optimal are evident to forecast, it is much harder to
speculate on the impact of being strict in the number of
scaled replicas or not (i.e.,strict versusrelax). On the

one hand being strict reduces the amount of resources
used for each deployed function and should thus give
more space for other functions. On the other hand, not
being strict allows splitting chains further such that the
replicas can be “squeezed” in servers with less available
resources. This duality is clearly visible in Figure 6. For
R = 0 we observe that by being strict, only around 81%
of the requests can be satis�ed while allowing more than
R + 1 scaled replicas allows to satisfy all demands. The
difference between the two scenarios can be explained by
the fact that we intentionally made the workload such
that in 19% of the demands at least one function in
the chain requires 8 cores. As the servers only have 4
cores, it is then impossible to install them unless we allow
using multiple replicas (which is the case forrelax with
R = 0 case but not forstrict with R = 0 case). This �rst
observation con�rms that allowing more scaled replicas
gives more �exibility in �nding a placement solution.
This trend is clearly visible, except forR = 1 where
we can see that in theSpine-and-Leaftopology (see



X X X X X X XXR
Topology

Fat-Tree Spine&Leaf Generic

0 0.808 0.808 0.808

1 0.838 0.797 0.836

2 0.649 0.615 0.647

3 0.570 0.542 0.578

Table II: Similarity Index between thestrict andrelax con�gu-
ration for the three different topologies

Figure 6(b))strict outperformsrelax. The reason of this
difference lays in the fact that in thestrict case it is still
impossible to install the 19% of requests with at least
one function requiring 8 cores. Indeed, in case of failure
the only remaining replica would still require 8 cores,
while under normal operations each of the two replicas
only needs 4 cores. As these chains are not installed,
they leave enough room for the others to be installed. On
the contrary, with therelax case, these requests can be
satis�ed but consume a substantial amount of resources;
they need at least 3 scaled replicas to be deployed, which
prevents other chains to be installed, hence reducing the
overall acceptance ratio.

It is worth mentioning that if the acceptance ratios
for R = 1 seem to be identical for both cases in the
Fat-Tree and theGeneric topologies, they are actually
slightly different and the similitude is only an artifact
of the workloads and topologies that we used. Indeed,
even though the acceptance ratios are very close, the
placements are largely different as shown by the Jaccard
similarity coef�cient [36] of only 0:84 (see Table II). In
general, the dissimilarity of placements increases withR.
For example, the Jaccard similarity coef�cient is as low
as0:54 in the Spine-and-Leaftopology whenR = 3 .

Keeping in mind that theFat-Tree topology has the
same number of fault domains as theSpine-and-Leaf
topology but has more cores in total, and that theGeneric
topology has the same amount of cores as theFat-Tree
topology but with more fault domains, the comparison
between the 3 topologies leads us to conclude that as
long as the number of fault domains is larger than
max iterations, the number of cores is what in�uences
the most the acceptance ratio.

To complement the acceptance ratio study, Figure 7
and Figure 8 provide the empirical cumulative distribution
functions of the number of scaled replicas created when
placing SFCs while guaranteeing different robustness
levels for the three different topologies with therelax
con�guration. As we consider highly loaded topologies,
most of the timeR + 1 or R + 2 replicas are enough to
ensure robustness level ofR and we seldom reach the
(R + 1) � 2 limit, as most resources are consumed by

replicas of other chains. Moreover, if we take a careful
look at the number of scaled replicas forR = 0 , about
80% of services are placed with only 1 replica which is
the same value of the acceptance ratio forR = 0 with
the strict con�guration in Figure 6 – and about 20%
with two scaled replicas. This extra replica leads to an
increase in the acceptance ratio where the acceptance
ratio reaches 1 when we relax the replication (in Figure 6).

If we study the probability of a chain to be accepted as
a function of its requested number of cores (see Figure 9
and Figure 10), we see that our algorithm favors the
installation of small chains over large ones, particularly
for large values ofR.4

C. Acceptance ratio in case of network congestion

In Sec. V-B when a request is rejected, the reason
is always that the placement algorithm was not able to
�nd hosts with enough free cores, and never because
of the network capacity. This is because each host is
connected to the network with a 1 Gbps link and has
4 cores. As our algorithm cannot overcommit hosts we
know that a host will never run more than 4 functions
simultaneously. Therefore, as each vLink requests 250
Mbps, the traf�c to or from a host never exceeds 1 Gbps,
which is not enough to overload the host links and as we
use clos topologies, it means that the backbone network
also cannot be overloaded.

In this section, we aim at stressing the network as well
as the hosts. To that aim we keep the same workload as
in Sec. V-B but vLinks request 500 Mbps instead of 250
Mbps, which may result in network congestion.

Figure 11 shows the acceptance ratio for this new
scenario (labeledw/ congestion) and compares it to pre-
vious results (labeled asw/o congestion). For R = 0 ,
the acceptance ratio drops by 50% or more because the
network cannot handle the load. Even though the drop
is important in both cases, as therelax option allows to
create multiple replicas, it outperforms thestrict option.
However, as soon asR � 1, we obtain the same results
than in Sec. V-B as we fall back in a case with no network
congestion because when every function uses at least 2
scaled replicas, the network demand for a host will not
exceed 1 Gbps.

D. SFC Request Placement Time

To be acceptable, the time spent on �nding a placement
must be at most of the same order of magnitude as the
deployment of the VMs themselves in order not to impact
the deployment time of a service.

4We can explain that the �gures do not show smooth decreasing lines
by the fact that we only used 20 different chain types, which is not
enough to cover all potential cases.
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Figure 11: Comparing acceptance ratio of the Optimal solution for the different topologies with 3 robustness levels for the two
workloads.
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Figure 12: Algorithm computation time with different robustness levels for the Fat-Tree topology with relax con�guration.

Figure 12 shows the whisker plot of all computation
times of Algorithm 1 for the harder instance of the
problem, namely theFat-Tree topology with therelax
scheme for both the optimal and FFD. The simulations
were performed in Grid5000 [37] on the Rennes site in
fall 2018.

We make the distinction between the time elapsed
when requests result in an effective placement (Accepted
Services) in Figure 12(b) and when they do not (Rejected
Services) in Figure 12(c), while Figure 12(a) (All Services)
aggregates computation time for all requests, regardless of
the outcome.

The computation time increases rather linearly with the
robustness level and never exceeds a few seconds, which
is negligible compared to the typical time necessary to
deploy and boot virtual functions in data centers [38].
This rather linear increase is because an increase ofR
incurs a proportional increase of the number of iterations
(max iterations) and the number of required fault domains
(n in solve_placement( S, G, n) ) but does not
change the size of thesolve_placement problem (see
Sec. IV) as the size of the fault domain is not impacted

by R.

Furthermore, for both �gures, the computation time
is longer when requests are rejected than when they are
accepted as the rejection of a service request can only
be decided after having tested all the allowed number of
replicas (i.e.,max iterations). Note that all demands are
accepted for therelax case whenR = 0 which explains
the absence of observations forR = 0 in Figure 12(c).

Regarding accepted services, (e.g., forR = 1 in Fig-
ure 12(b), the spread between median and upper quartile is
smaller than the spread between median and lower quartile
as most of placements requireR + 1 or R + 2 replicas
only. However, in some scenarios, the algorithm is iterated
until the maximum allowed iterations in order to �nd this
valid placement, which explains having the outliers in the
Figure 12.

Interestingly, even though the execution time is shorter
when FFD is used, it remains of the same order of
magnitude as when the optimal placement is used instead.



VI. CONCLUSION

In this paper we proposed a solution to deploy SFCs in
public cloud data centers with guarantees that chains are
robust tok independent fail-stop node failures. The idea
is to replicate the chain in multiple independent locations
in the data center and to balance the load between these
replicas based on their availability in order to prevent
downtime upon failures in the physical infrastructure.

To that aim, we proposed an online two-phase algo-
rithm that determines the number of replicas and where
to place them to guarantee some robustness level based on
an ILP solution or its approximation. We extensively eval-
uated this algorithm on very large data center networks –
up to 30,528 nodes – to assess the feasibility of our
proposition in very large-scale data centers. We showed
that approximating the solution with the widely used
FFD technique was not mandatory as optimal placement
of independent replicas was feasible in acceptable time,
which allows placement decisions to be made on-demand
and without prior knowledge on the DC workload. We
studied the impact of the choice of the topology and the
expected robustness level on the acceptance ratio and on
the placement computation time. It shows that when the
data center is suf�ciently provisioned, our algorithm is
able to provide a robust placement for all the chains. On
the contrary, when the DC lacks resources, the algorithm
tends to favor shorter chains as they consume less re-
sources, giving them more placement options.

We are currently working on de�ning a generic
stochastic model to automatically translate SLA require-
ments expressed in maximum downtime into robustness
levels. In parallel, we are exploring how to integrate our
mechanism in OpenStack.
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