
HAL Id: hal-02179982
https://inria.hal.science/hal-02179982

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Design and Development of Greenhouse Energy
Management Platform Based on STM32

Junlin Sun, Xin Zhang, Cheng Zeng, Wengang Zheng, Lipeng Guo, Yali Du

To cite this version:
Junlin Sun, Xin Zhang, Cheng Zeng, Wengang Zheng, Lipeng Guo, et al.. Design and Development
of Greenhouse Energy Management Platform Based on STM32. 10th International Conference on
Computer and Computing Technologies in Agriculture (CCTA), Oct 2016, Dongying, China. pp.160-
172, �10.1007/978-3-030-06155-5_16�. �hal-02179982�

https://inria.hal.science/hal-02179982
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Design and development of greenhouse energy

management platform based on STM32

Junlin Sun

2
, Xin Zhang

 1()
, Cheng Zeng

 2
, Wengang Zheng

1
, Lipeng Guo

3
, Yali

Du
2

1 Beijing Research Center for Intelligent Agricultural Equipment, Beijing, China

{zhangx,zhengwg}@nercita.org.cn
2 Electronic and Information Engineering, Hebei University of Technology, Tianjin China

{379473744，1135240956}@qq.com,zch@hebut.edu.cn
3Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang China

576837620@qq.com

Abstract. Greenhouse energy management system can make some systemic

administration such as measure and analysis for water flow, electric quantity

and quality, heat energy, gas flow and some other energy parameters in

greenhouse for achieving a certain energy-saving effect. The introduction of the

technology is mostly based on PC platform. The embedded greenhouse energy

management platform based on STM32 was designed. This paper gave the

system hardware and software architecture including the selection of hardware,

transplantation of μCOS-Ⅲ, transplantation of embedded database, design of

human-machine interface and the main process of software. Finally, the

platform is verified by STM32-V5 development board of Arm fly. The results

show that the platform can meet the basic needs of energy management in

greenhouse, and it has the advantages of low cost, strong expansibility and so

on, it is feasible and effective to apply it to the greenhouse industry in China.

Keywords: Greenhouse · Energy · Management · Embedded system · Energy

conservation · μCOS-III

1 Introduction

 Energy management system is developed in the 1990s, a system of energy-

saving technology, which utilize the processing control theory, network technology,

optimization theory and the technology of database to conduct a comprehensive

monitoring for energy systems, and to provide the basis for energy scheduling and

allocation for achieving the purpose of efficient use of energy and energy

conservation
[1]

. At present, energy management system has been widely used in iron

and steel enterprises, office building, home and some other fields
[2-8]

, through the

monitoring, measurement, evaluation and analysis of the energy consumption, the

optimization of the energy saving control strategy has been worked out, which has

achieved remarkable results
[9]

.

In order to solve the problem of greenhouse energy consumption, some

horticultural developed countries have carried out research on energy management

system in the greenhouse and achieved certain results. The greenhouse energy

management system of ARGUS company in Canada, through the monitoring of

mailto:zhengwg%7D@nercita.org.cn
mailto:379473744，1135240956%7D@qq.com,zch@hebut.edu.cn
mailto:576837620@qq.com

2

greenhouse environment and energy consuming equipment, can detect abnormal

energy consuming equipment and alarm, and make a optimization strategy suitable for

the specific conditions according to the analysis of the data, comprehensive energy

saving up to 30% to 40%; The system designed by PRIVA company in Netherlands,

using advanced astronomical time control, delay technology, integral blind control

technology and control strategy, give full consideration to the relationship between

processing control and the whole system up to save 50% of energy
[10]

.

The majority of domestic greenhouse has no supporting energy management

system, although some large greenhouse also uses the corresponding energy

management technology, but the technology is mainly introduction in foreign

countries, and due to the different climate and geological conditions as well as the

specific circumstances, the introduction of energy-saving technology is not entirely

suitable for China's national conditions
[11]

, low efficiency, high energy consumption

and the problem has not been resolved. Thus, the situation of greenhouse energy

consumption in China is grim, specific problems are as follows:

(1) diverse types of greenhouse, backward facilities, lack of metering equipment,

difficult to deploy the application of energy management system;

(2) bias on the structure of greenhouse, lack of suitable greenhouse energy

management system, resulting in the low energy utilization rate, energy cost is

increasing year by year;

(3) the introduction of foreign greenhouse energy management systems are

mostly based on PC platform development, system operation is complex, does not

conform to embedded system development needs, poor scalability, narrow application.

In view of the above problems, this paper designs the embedded greenhouse

energy management platform based on STM32 for energy management of greenhouse

in China. On the basis of analyzing the basic function requirements of the energy

management, the software and hardware design framework of the whole platform is

presented. The platform uses embedded operating system μCOS- III to realize multi

task real-time scheduling, the SQLite database is transplanted to store the energy data,

and the human-machine interaction interface is designed based on μC/GUI. After

verification, the platform can meet the basic needs of energy management in the

greenhouse, and has the advantages of low cost, strong expansion, suitable for China's

national conditions and so on.

2 System Architecture

2.1 Functional requirements analysis

The system used intelligent electric meter, flow meter and some other energy

metering equipment to gather the energy consuming data of greenhouse internal water,

electricity, heat, etc. Then, the data was transmitted to the embedded terminal and

directly reflected to the user in form of graphs and reports, and according to the

analysis of these data, the system could provide energy saving scheduling decision

support. Therefore, the overall function of the greenhouse energy management system

can be divided into "energy measurement", "energy consumption analysis", "decision

support" and "system settings", the specific function framework is as shown in Fig.1.

3

 Fig.1. Basic function framework of greenhouse energy management system

In the module of “energy measurement”, system completed the measurement

of energy consumption including water, electricity, heat, gas and so on. The user

could select the time of measurement, the type of energy, the measuring area, the

measuring equipment and the type of graphic display; The analysis module could

provide energy consumption analysis compared with the same period last year and

provide consumption analysis for several months, it could also give a report form

according to the needs of users; The support function was an extension module, which

could make different optimization schemes according to different conditions of the

greenhouse. General decision support mainly included whether there was heating or

cooling demand, energy demand budget and recommended heating/cooling program;

In the "Settings" module, there were some common setting options such as “user

login”, “time setting”, “device options”, “alarm options” and so on.

2.2 Software and hardware architecture

The basic work flow of energy management system was as follows: The system

collected the consumption information of water, electricity, heat, gas and other energy

in greenhouse by intelligent electric meter, flow meter and other data acquisition

equipment, then, the data was transmitted to the central processing unit and stored to

the data storage module, and finally through the human-machine interaction module

to complete the interaction with the user. Therefore, in order to meet the basic

functional requirements of the energy management system, the hardware composition

should contain at least six main modules: data acquisition module, communication

module, processor, data storage module, human-computer interaction module and

power supply module. The concrete structure was shown in Fig. 2.

User
login

Energy
manage

ment

analysis

support

settings

Metering time
Types of energy
Region selection

Graphic display
Equipment selection

Year analysis
Month analysis

Report

Energy demand
Heat scheme

Cooling scheme
Energy budget

measure

User login
Time setting

Alarm
Device

Memory
Operation diary

reset

4

Cortex-M4 kernel

ARM microprocessor

（STM32F407IGT6）

Data storage module

Human-computer

interaction

Data

acquisition

Flash RAM

Communi

cation

module

Power

supply

 Fig. 2. System hardware architecture

 The software structure of the whole system was shown in Fig.3, including the

driving layer, OS layer, middleware, real-time database and application layer. The

driver layer included a drive to display, serial port hardware parts and the board

support package; OS layer used the embedded operating system μCOS-Ⅲ to realize

the multitask switch scheduling; The middleware was composed of a variety of API

including the GUI interface; Real-time database was used to realize the fast data

storage and query; The application layer was the basic task program for the realization

of the function module.

Fig. 3. System software architecture

3 Hardware design and composition

3.1 Hardware selection

In CPU selection, in order to meet the performance requirements of greenhouse

energy management, considering the requirements of the use of embedded terminal

platform and economic, the system took the STM32F407 micro-controller as the main

processor. STM32F407 was based on advanced Cortex-M4 kernel and had enhanced

DSP processing instructions and float point computing capability. It had up to

Middle ware API

embedded real time operating system (μCOS-Ⅲ)

Device drivers、BSP

Application program（GUI Interface）

monitoring

database

metering analysis support settings

5

1M bytes of on-chip flash memory (flash) and 196K bytes of embedded SRAM, in

addition, it had a flexible external memory interface which could extend NOR Flash,

NAND Flash, SRAM and so on. The main frequency was 168MH, this running speed

could achieve the processing ability of 210DMIPS which could meet the demand of

the design.

 At present, most of the other areas of energy management communication using

RS485 interface and Modbus communication protocol, and most energy metering

devices supported this communication, therefore, the design used this kind of quite

mature communication mode. This protocol supports the traditional RS-232, RS-422,

RS-485 and Ethernet equipment, in addition, it also had the advantages of standard,

open, simple and compact frame format, etc.

Storage module was mainly used for temporary data storage and power down

protection of data storage. RAM used to achieve the temporary data storage, was

expected to need 1M storage space, and the model of this design used is

IS61WV102416BLL-10TL, which could meet the requirements of the data storage

module. Flash was used for the preservation of data after power outages and storage

of data statistics, in the selection of Flash, NAND Flash had a large capacity, the

memory could meet the code requirements, and it also had the advantages of fast

rewriting speed, low cost and practicability, so, this design selects NAND Flash, the

type was HY27UF081G2A.

In human-machine interaction selection, RA8875 was a powerful and low-cost

color TFT controller, and it provided low-cost 8800/6800 parallel MCU serial port. In

addition, RA8875 could combine text and 2D graphics applications, it also had built-

in touch-screen function, and It could support the 800*480point resolution of small

and medium size digital panel, therefore, the LCD screen used the RA8875 driver in

this design and in order to better human-machine interaction experience, the design

choosed 7 inches of liquid crystal display.

About power supply, the system directly used an external DC power supply

adapter, the voltage range of 7-32V DC and the power was not less than 10W. It was

also suitable for the STM32-V5 development board which we used to verify
[12]

.

3.2 Data acquisition

 In the acquisition module, compared with other areas of energy management

system, the energy management system in greenhouse environment had a requirement

of wide range and high accuracy for the data collection. In addition to using various

sensors to get accurate detection of real-time temperature and humidity, light intensity,

carbon dioxide concentration and other environmental variables, it needed to

accurately collect water, electricity, heat, gas and other energy consumption data. In

the acquisition of energy consumption data, the system not only needed to collect a

variety of energy consumption, but also to the specific refinement of different

equipment, different periods of energy consumption. At present, energy measurement

mainly rely on flow meter, smart meters and other measuring devices to achieve data

acquisition, the specific collection of the situation was as shown in Table1.

Table 1. Data acquisition in greenhouse

number type device position strategy device

model

1

water flow meter irrigation /

wet curtain/

water

supply

pipeline

/etc.

directly

measure

GLP/TDS-

100 series

ultrasonic

water meter

2

electricity electric

meter

fill-in light

/fan/

shade

curtain/

directly

measure

SDT670

series

electric

meter

6

water pump

/

state

grid/etc.

3 heat meter/senso

r

hot water

pipeline/

hot air

heater/

air

conditioner/

etc.

Indirect

calculation

GLP/TDS-

100 series

ultrasonic

heat meter

4

gas flow meter

gas pipeline

directly

measure

GLP/TDS-

100series

5 temperature

and

humidity

temperature

and

humidity

sensor

Inside and

outside the

greenhouse

distributed

acquisition

SHTxx

series/

DHT11

6 CO2

concentratio

n

CO2

concentratio

n

sensor

Inside and

outside the

greenhouse

distributed

acquisition

T6713

series

7 light

intensity

light

intensity

sensor

Inside and

outside the

greenhouse

distributed

acquisition

ISL29013

series

4 Embedded software design

4.1 Transplantation of embedded system μCOS-Ⅲ

μCOS-Ⅲ source code can be divided into the documents related to computer

hardware, the files related to the application and various service files related to system

kernel. At the time of transplantation, it was necessary to modify the files related to

computer hardware such as OS_CPU.H file, OS_CPU_A.ASM file and OS_CPU_C.C

file. And the documents of system kernel such as OS_FLAG.C, OS_CORE.C,

OS_MBOX.C, OS_MUTEX.C, etc. and the documents related to application as

INCLUDES.H and OS_CFG.H did not need to modify.

In the OS_CPU.H file, we needed to set some parameters: 1) the use of the data

type, that is, the unified expression of the length of the data unit; 2) stack parameter

settings, such as the operating unit, the growth direction, etc.The stack growth mode

supported by STM32F407 is from top to down, that is, the stack space is from high

address to low address growth; 3) task interrupt macro definition options: Mask all

interrupts, restore all interrupts used to ensure that the important function or task

running data (code critical section) will not be changed and task switching is used for

task switching in μCOS-Ⅲ system.

In OS_CPU_C.C file we needed to use the C language to write the task stack

initialization function: OSTaskStkInit (). This function was called by OSTaskCreate ()

or OSTaskCreateExt () when the task was created to initialize task stack, and it was

closely related to the characteristics of the processor.

In the OS_CPU_A.ASM file, we needed to use assembly language to write the

underlying function: OSStartHighRdy (), OSCtxSw () and OSIntCtxSw ().

OSStartHighRdy () was called when the multi-task system starting the function

OSStart (), it setted the run flag bit of system OSRunning = TRUE and loads the stack

pointer of the highest priority task in the ready list into the SP and force it to return;

OSCtxSw () was called in the task machine switching function, the task level switch is

realized through the SWI or the TRAP man-made interrupt, ISR's vector address must

point to OSCtxSw (); OSIntCtxSw () was called in the task exit interrupt service

function OSIntExit (), to achieve the interrupt level task switch. Because it was in the

interrupt call, the processor registers into the stack had been completed, we just

needed to adjust the stack pointer.

7

4.2 Transplantation of SQLite database on μCOS-Ⅲ

SQLite database operating system interface achieved an operating system

abstraction layer, was designed to be compatible with a variety of operating system

platforms, and it was composed of three subsystems: mutex, memory allocation and

virtual files
[13]

. Memory allocation subsystem was used to realize the allocation and

recovery of memory by SQLite; The mutual exclusion signal quantum system was

used in the multi thread environment to use the linear SQLite resources, and the

creation of the signal quantity needs to allocate the memory resources through the

memory allocation subsystem; Virtual file subsystem was used in SQLite and the

underlying operating system to provide a unified file operation interface, the creation

of the file, delete and other operations also needed the support of memory allocation

subsystem.

In multi thread environment, SQLite used the serial access to share resources in

the system of mutual exclusion. Because μCOS-Ⅲ supported multi task management,

it was necessary to set the variable SQLITE_THREADSAFE=1 to enable SQLite

support for multiple threads. Mutual exclusion was a kernel object that was defined as

the OS_MUTEX data type, which was derived from the structure OS_MUTEX.

μCOS-Ⅲ allows users to call the mutual exclusion of the recursive signal to avoid the

priority inversion problem, and thus the configuration could be set

DSQLITE_HOMEGROWN_RECURSIVE_MUTEX=1 to enable the SQLite to

support the recursive signal. In order to realize the mutual exclusion signal quantum

system of the database, it was necessary to redefine the structure of sqlite3_mutex and

used the signal operation function of μCOS-Ⅲ to achieve the package of the signal

operation function of SQLite database.

 SQlite provided dynamic allocation and static allocation of mutex two

mechanisms, and there are 8 types of mutex (2 kinds of dynamic, 6 kinds of static). To

achieve dynamic allocation of mutex, we needed to use sqlite3MallocZero() function

to create a pointer to sqlite3_mutex, and used the OSMutexCreate() function provided

by μCOS-Ⅲ to create the OS_MUTEX object. For statically allocated mutex, we

could create a static sqlite3_mutex type array to store.

Because the μCOS-Ⅲwas a small and medium size embedded system, it did not

provide a file system, however, it had a good extension performance, users could add

the file system on their own. Embedded file system μC/FS was designed for resource

limited embedded applications, it used the modular structure, providing a variety of

modules for different hardware configuration
[14]

. And it provided an interface to

support μCOS-Ⅲ operating system by default, which could be transplanted to the

system.

4.3 Transplantation of μC/GUI

 μC/GUI is a graphics support system in embedded applications
[15]

, it is

designed to provide an efficient graphical user interface independent of the processor

and LCD controller for any application that uses LCD graphics display. It applied to a

single task or multi task system environment, and was applicable to any size of the

true display or virtual display with any LCD controller and CPU
[16]

. As was shown in

Fig.4, the software architecture of μC/GUI was modular, composed of different layers

of different modules. The bottom layer directly points to the LCD hardware operation,

and different systems need to do the corresponding transplant based on different LCD

controller. The second layer was the most important level of the LCD driver, it used

the hardware operating layer to achieve the most basic drawing function. The third

layer was the package of the function library to achieve a complex graphics functions,

providing API interface to the user layer to solve the problem of most of the problems

occurred in the drawing. Users could add their own applications to achieve the

graphical interface system by API interface.

8

uC/GUI application

uC/GUI function library

LCD hardware driver

uC/GUI basic function

typeface graphical

text

numerical value

Fig.4. μC/GUI software architecture

The transplantation of uC/GUI mainly includes:

 1) The definition of multi system support, window management and so on in

guiconf.h file.

 2) Hardware interface configuration and definition of the bus interface and

register interface in lcdconf.h file.

3) The essence of LCD driver programming was corresponding to the point on

the LCD screen programming and the bottom function calls for painting point

function, it operates according to its own platform, bus interface and register interface

or LCD controller register. First of all, we wrote the operation function of graphical

display of the the underlying drivers such as the setpoint () and GetPoint (); Then, we

realized the basic drawing functions such like picturesque circle, draw lines and frame

by GUI_Line(), GUI_Rectangle() and so on; Finally, we setted the interface between

the bottom driver and the uC/GUI function, because there was the basis of the above,

we just need to fill in the interface function.

After the completion of the above work, we only needed to write the interface

file between uC/GUI and uCOS- III, touch screen files, that is, to modify the

GUI_X_Touch.c and GUI_X_uCOS.c files to successfully run uC/GUI on uCOS- III

system.

4.4 Software process design

 The entrance function after the system powered up was the main function, at the

beginning, it needed to complete the initialization of the hardware, the operating

system initialization and the creation of tasks and so on. We completed the system

initialization directly using the system function OSInit (), and the hardware peripheral

initialization mainly includes:

RCC_Configuration(); //System clock initialization and port peripheral clock

enable

NVIC_Configuration(); //Interrupt source configuration

IO_Configuration(); //IO port initialization

TP_Configuration(); //Touch circuit initialization

FSMC_LCD_Init(); //TFT FSMC interface initialization

In the creation of the tasks, we directly used the OSTaskCreate () function

provided by the system to create tasks and the main tasks mainly include: interface

display task, touch operation task, data processing task, communication task and some

other tasks like alarm. After the establishment of the above tasks, the system performs

OSStart () function to start the multi task environment, so as to carry out the multi

task management and scheduling. The operation of the system was as shown in Fig.5.

9

Fig.5. Main flow chart of system software

The system was based on priority to perform the task scheduling, which assigned

different priorities according to different tasks. The whole process of the system was

as follows: The platform first completes the communication with each intelligent

instrument to receive the data, then the data was analyzed and the results are displayed

in the interface so as to complete the human-machine interaction task. Therefore, the

priority ranking should be communication task, data processing task, interface display

/ touch screen operation tasks (human-computer interaction task). Due to the other

tasks such as alarm interrupt was a random event, the priority is relatively low.

5 System verification

The whole platform was verified in the STM32-V5 development board of

Armfly company and the user login interface is as shown in Fig. 6.

Fig. 6. User login interface Fig. 7. Device configuration interface

When the platform was connected to a new metering device, the user needs to

configure a series of parameters such as the serial number, address, baud rate,

corresponding energy consuming equipment and energy sources, etc. The specific

interface was as shown in Fig.7.
 In energy metering, the user can choose measurement range by the buttons of

lower side, and then set the metering time, energy and graphics types through the

drop-down menu so as to inquires the energy consumption, the specific interface was

start

Clock configuration

Hardware initialization

μCOS- III initialization

Tasks create

interface

display task

touch

operation task

data

processing

task

communication

task
Other tasks

System tasks

scheduling

10

shown in Fig. 8.

Fig. 8. Energy measurement interface Fig 9. Decision support interface

 In decision supports, the system could be extended to give different support

decisions according to different conditions of greenhouse. As showed in Fig. 9, the

heating / cooling demand of greenhouse, the price performance of greenhouse heating

equipment and some other energy saving supports were given.

6 Conclusion

The design selected the suitable hardware to establish the embedded greenhouse

energy management platform, in order to complete the basic functions of energy

management. The real-time operating system μCOS-Ⅲ was used to realize the

switching between multiple tasks, the SQlite database was used to achieve the fast

data processing, and the human-machine interaction interface was designed based on

μC/GUI. Because the system was an embedded platform with the advantages of low

cost, convenient operation and other advantages, it also had a strong expansibility.

After verification, it is proved that the platform can effectively meet the basic needs of

energy management in the greenhouse, and it has a certain feasibility in the

greenhouse industry in China.

Acknowledgment

Research was supported by the National Key Technology R&D program

"Research and application of intelligent management platform for greenhouse energy"

(2014BAD08B0202), Beijing Academy of Agriculture and Forestry Sciences

project(KJCX20170204) and the Construction project of Beijing Engineering

Laboratory of Agricultural Internet of Things (KJCXPT2018-25).

References

1. You Zhangjin. Research on energy management system of manufacturing enterprise based

on BACnet protoco. Beijing: Beijing Institute of machinery industry automation, (2010)

2. Wei Ayong, Ling zhihao, Pan Mengmeng. Development of building energy management

system. Journal of Shanghai Dian Ji University, 2013,16 (3): 141-145

3. Kintner-Meyer M,Conant R.Opportunities of Wireless Sensors and Controls for Building

Operation. Energy Engineering Journal, 2005,102(5):27-48

4. Zhang Yanyu, Zeng Peng, Zang Chuan-zhi. Summary of research on home energy

management system in smart grid environment. Power system protection and

control,2014,42 (18): 144-151

5. Jin Xiaogang, Ye Zhou, Zhang Shen-ming. Research on energy management of intelligent

building. Application of energy technology, 2010 (10): 48-50

6. Menzel K, Pesch D, O，Flynn B, et al. To-wards a Wireless Sensor Platform forEnergy

Efficient Building Operation. Tsinghua Science and Technology,2008, 13(S1): 381-386

7. FengYanping，Wu Yong，Liu Chang-bin．Energy—efficiency supervision systems for

energy management in large public buildings：Necessary choice for China．Energy

11

Policy, 2009, 12(33):2060-2065

8. Zhang Quan. Application of building automation in green building. Electrical engineering,

2012 (7): 9-12

9. Cui Ran, Ma Xu-dong, Peng Chang-hai, Sun Yu. Design and implementation of building

energy management system. Computer technology and development, 2010,20 (7): 184-187.

10. seafreak0123. Argus Provincial energy and PRIVA computer control

technology.http://www.docin.com, 2012-02-28

11. Deng Lujuan. Research on model and control strategy of intelligent greenhouse. Shanghai:

Shanghai University, 2004.

12. Armfly company. Armfly STM32-V5 development board user manual V2.0.

13. Hipp DR. Custom Builds Of SQLite or Porting SQLite To New Operating Systems.

http://www.sqlite.org/custombuild.html.2013-06-26.

14. Li Jia-liang, Mu De-jun. Research on the transplantation of μC/FS file system based on SD

card. microprocessor, 2010, (6): 79-81.

15. Wang Lanying. μC/GUI transplantation and realization of embedded system based on

STM32. Journal of Sichuan University of Science and Engineering: Natural Science

Edition,2012,25 (1): 56-58.

16. Feng Zhinian, Wu You-yu. Design of embedded GUI based on μC/GUI. Journal of

Wuhan University of Technology,2006,28 (z1): 503-509

http://www.sqlite.org/custombuild.html.

